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Abstract: The hydrogen embrittlement problem of alloy steel heavy forgings not only has the com-
mon properties of general hydrogen embrittlement, but also has the characteristics brought by its
scale characteristics. The research of hydrogen embrittlement, combined with its characteristics and
commonness, is of vital importance for the service safety of engineering structures. The temperature
field and microstructure distribution in the machining process were investigated through the simula-
tion of a finite element. On this basis, the physical simulation experiments were carried out to obtain
the microstructure of heavy forgings in radial directions. The hydrogen embrittlement sensitivity was
characterized by electrochemical hydrogen charging and slow strain rate tests (SSRT). The microstruc-
ture and fracture morphology of the samples were characterized to explore the law and mechanism
of hydrogen embrittlement sensitivity gradient distribution along the axial direction. It is helpful to
understand the hydrogen embrittlement of heavy forgings in order to guide engineering practice.

Keywords: heavy forgings; hydrogen embrittlement; finite element simulation; microstructure

1. Introduction

As a component of large equipment, heavy forgings are widely used in shipbuilding,
metallurgy, manufacturing, and other industrial fields. Due to the poor service environment
in which they exist, such as heavy load, alternating load and other complex mechanical
conditions, the quality and safety of heavy forgings has been a bottleneck problem in the
industrial field. The mechanical properties of the steel decrease due to the interaction of
hydrogen with steel [1,2], and the sudden fracture failure of heavy forgings caused by
hydrogen embrittlement often brings great security risks and economic losses. Therefore, it
is of great engineering value and scientific significance to study the hydrogen embrittlement
mechanism, as well as the hydrogen embrittlement sensitivity of heavy forgings.

Since the discovery of hydrogen embrittlement, many scholars have studied the
mechanism of hydrogen embrittlement of steel. The hydrogen embrittlement of Cr5 backup
roll has been a concern of many scholars [3,4] Fan et al. studied the effect of flaking on the
hydrogen embrittlement of Cr5 material, increasing our understanding of flake formation
and propagation mechanisms in Cr5 steel. A large number of studies [5–15] have proven
that hydrogen embrittlement sensitivity is closely related to the microstructure of the steel
in question. For instance, Michler et al. carried out hydrogen charging experiment and
tensile tests on several industrial BCC steels with different structures, which were ferrite,
pearlite, bainite, and martensite [5,6]. The results showed that different structures have
different hydrogen embrittlement sensitivity. Ji, Kimura, et al. carried out a series of tests
on tempered martensite and full pearlite hydrogen-charged samples with a tensile strength
of 1600 MPa [7,8]. The results of SSRT showed that tempered martensitic steels were more
prone to hydrogen delayed fracture than full pearlitic steels. Jeffrey et al. studied the
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effect of microstructure on hydrogen embrittlement of high strength steels [9,10]. It was
found that the sensitivity of different structures to hydrogen embrittlement was different.
Bollinger, Martin, et al. studied the effect of microstructure on hydrogen embrittlement
sensitivity [11,12]. The results showed that γ phase volume fraction and γ phase boundary
area had significant effects on hydrogen absorption and hydrogen embrittlement sensitivity.
Hejazi studied the hydrogen-induced cracking sensitivity of pipeline steels, and proved
that there was a great difference in hydrogen embrittlement sensitivity caused by different
microstructures [13]. Marchi, Hughes, et al. carried out hydrogen charging experiments
on 304 L and 316 L austenitic stainless steels [14,15]. The results showed that significant
ductility loss was observed in both metastable and stable alloys. Toribio studied the
role of microstructural anisotropy in a hydrogen-assisted fracture. A markedly oriented
microstructure was obtained using heavily drawn pearlitic steel wires. The influence of
microstructural anisotropy in cold-drawn pearlitic steels on the hydrogen-assisted micro-
damage path was analyzed in terms of the so-called tearing topography surface (TTS).
Results revealed that hydrogen enhances the key role of the oriented microstructure in the
anisotropic behavior [16,17].

The above studies have all proven the inseparable relationship between microstructure
and hydrogen embrittlement sensitivity. For small-size parts, it is also easy to obtain
uniform structure. However, the size of heavy forgings is too large, therefore it is difficult
to obtain uniform structure. Especially during the heat treatment process, there will be
a great difference between the external temperature and the internal temperature of the
forgings, and the change of temperature in the machining process will lead to changes
in the microstructure of the material. The non-uniformity of the overall temperature of
forgings will cause the materials in different positions of forgings to show different to
hydrogen embrittlement sensitivity, which will affect the service safety of forgings. To sum
up, only by combining the microstructure distribution characteristics of the actual heavy
forgings can we better explore the causes of hydrogen-induced crack initiation of heavy
forgings and ensure their service safety.

For heavy forgings, the temperature gradient caused by the machining process will
lead to differences in microstructure. Duan et al. [18] simulated the heat treatment process
of heavy forgings by using finite element software. It was proven that different cooling
methods will lead to different structures on the surface of forgings. Skubisz, Roumina, et al.
studied the deformation behavior and microstructure response of medium-carbon high-
strength steels at high strain rate and medium temperature, analyzed the hot workability
and medium temperature workability of the material, and studied the effects of these
factors on the microstructure after forging and direct cooling [19,20]. Hoseiny, Luo, et al.
studied the microstructure and mechanical properties of 300 m forged steels, considered
the temperature gradient in the process of aircraft landing gear forging and direct cooling,
and analyzed the tensile properties and impact strength of different structures [21–23]. Zhu
et al. had studied the effect of retained austenite on hydrogen embrittlement sensitivity of
high-strength alloy steels under three different heat treatment conditions: quenching and
partitioning (IAQP), quenching and partitioning (QP), quenching and tempering (QT). The
results show that hydrogen embrittlement susceptibility increases in the following order:
QT, QP and IAQP [24].

The large geometric characteristics of heavy forgings will inevitably lead to a large
radial gradient of temperature field under limited heat transfer capacity. In addition, some
special parts also require surface heat treatment, and the temperature difference between
the core and the surface of the part will be larger. Therefore, for heavy forgings, considering
only the material as a single factor is not suitable for the analysis of hydrogen embrittlement
sensitivity, and a more accurate method is needed for hydrogen embrittlement sensitivity
analysis of the internal structure of heavy forgings.

However, heavy forgings are extremely expensive. The direct detection of hydrogen
embrittlement sensitivity of heavy forgings requires the destruction of heavy forgings.
The ingenious use of computational simulation technology to build a suitable physical
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simulation experiment can help to overcome this problem. This is an important way to
study the hydrogen embrittlement of heavy forgings.

Therefore, aiming at the problem of hydrogen embrittlement of heavy forgings in
engineering, this study used the combination of computer simulation, physical simulation
experiments, and characterization experiments to explore the hydrogen embrittlement
sensitivity of internal structure of heavy forgings, and analyzes the mechanism of hydrogen
embrittlement sensitivity gradient formation combined with microstructure. Specifically,
the finite element simulation was carried out for the post-forging heat treatment process,
which produces microstructural gradient characteristics for heavy forgings. Gradient
temperature fields along the radial direction generated during the forming process of heavy
forgings were obtained. According to the temperature gradient, a set of characteristic
points were selected along the radial direction to complete the heat treatment with the
temperature change at this point, in order to obtain a set of samples which were close to the
radial distribution of the microstructure of heavy forgings. The hydrogen embrittlement
sensitivity was characterized by an SSRT test, and the variation of hydrogen embrittlement
sensitivity along the radial direction of heavy forgings was obtained. The mechanism was
explained through fracture and microstructure analysis. This study is helpful to guide the
hydrogen embrittlement protection of heavy forgings, and to promote the application of
hydrogen embrittlement mechanism research in engineering practice.

2. Research Methods
2.1. Finite Element Simulation of Heat Treatment Temperature Gradient Characteristics of
Heavy Forgings

Aiming at tackling the problem of hydrogen embrittlement of heavy forgings under
gradient characteristics, this study takes large shaft parts as the research object, which are
made of Cr5 steel. The chemical composition of steel is shown in Table 1. The geometric
model was established according to the actual heavy shaft parts. Due to the large size of
heavy forgings, it was difficult to realize full vacuum treatment. Therefore, the main heat
transfer modes in the heat treatment process of heavy forgings were the heat conduction
inside the forgings, as well as the convective and radiative heat transfer between the
forgings and the medium. The temperature field obeys the first law of thermodynamics
and Fourier law in the whole process of heat conduction. The Fourier formula is:

div(k · gradT) = ρ1CP(
∂T
∂t

) (1)

where k is heat flux density, and gradT is temperature gradient.

Table 1. Chemical composition of Cr5 steel.

Elements C Si Mn Cr Mo V Fe

Contents (wt%) 0.56 0.46 0.69 5.12 0.47 0.14 Balance

The heat transfer of forgings in the process of heat treatment was more complex. In
this study, the comprehensive heat transfer boundary can be expressed as follows:

−λ ∂T
∂n

∣∣∣
S

= Hk(Tw − Tc) + σε
(
T4

w − T4
c
)

= Hk(Tw − Tc) + Hs(Tw − Tc)
= H(Tw − Tc)

(2)

where H is heat transfer coefficient.

H = Hk + Hs (3)
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Hs is radiative heat transfer coefficient.

Hs = σε
(

T2
w + T2

c

)
(Tw + Tc) (4)

σ is the Stefan–Boltzmann constant, and ε is workpiece surface radiance.
The heat transfer coefficients of materials in different heat treatment processes were

measured by Gleeble-3800 thermal simulation machine, and the results obtained are similar
to those reported in the literature [25,26]. The heat transfer coefficients of Cr5 steel during
heating, air cooling, and spray cooling are shown in Figure 1a–c.
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Figure 1. Heat transfer coefficient of Cr5 steel in different processes. (a) Heat transfer coefficient in
heating process; (b) heat transfer coefficient in air cooling process; (c) heat transfer coefficient in spray
cooling process.

The forging temperature and process of Cr5 steel are referenced in this paper, and the
thermal physical parameters of Cr5 steel were measured with a TC-7000H laser thermal
constant tester. The non-static test method was adopted to improve the measurement accu-
racy. The Cr5 steel samples were processed into a circular sheet of Φ 10 mm × 1.5 mm, and
the surfaces were polished to a smooth surface. After the vacuum reached 1.3 × 10−2 MPa,
the samples were heated to the specified temperature at the rate of 10 ◦C/min. After the
temperature was stable, the samples were measured three times, and the average value
was taken. The final thermophysical parameters of Cr5 steel are shown in Table 2.

Table 2. Thermophysical parameters of Cr5 steel.

Temperature
(K)

Coefficient
of Linear

Expansion
(10−6/K)

Specific Heat
Capacity
(J/g·K)

Elastic
Modulus

(GPa)

Shear
Modulus

(GPa)

Thermal
Conductivity

(W/m·K)

Density
(Kg/m3)

300 14.6 0.528 189 73.5 41.67 7763
400 14.1 0.599 184 70.6 37.62 7745
500 15 0.698 172 66.6 34.17 7718
600 14.9 0.805 139 - 31.38 7691
700 14.9 0.993 93.3 - 29.45 7664
800 15.4 0.945 81.3 - 26.86 -
900 30.2 0.734 41.7 - - -
1000 26.2 0.747 29.9 - - -
1100 24.1 0.587 17.4 - - -

In this study, finite element software was used to simulate the heat treatment of
forgings, and the third kind of boundary conditions were adopted. The finite element
simulation for shaft parts of heavy forgings was carried out on the commercial software
Design Environment for Forming (DEFORM ® is developed by American Scientific Form-
ing Technologies Corporation, Columbus, OH, USA). DEFORM ® software is a finite
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element-based process simulation system for analyzing various forming processes and heat
treatment processes in metal forming and related industries. It can simulate normalizing,
annealing, quenching, tempering, carburizing, and other processes, as well as predict
hardness, grain structure composition and other functions. The material of shaft parts
was considered to be single and uniform. The grids were divided automatically by the
software, and the calculation accuracy was improved by refinement of the grid under the
condition of ensuring convergence. Since the shaft parts were symmetrical, in order to
reduce the amount of calculation, this study simplifies the parts into a two-dimensional
model for simulation calculation. The dimensions and geometric characteristics of large
shaft forgings are shown in Figure 2a. Figure 2b shows the specific objects of the forgings.
According to the dimension and spatial symmetry of the forgings, the two-dimensional
model was simplified and meshed on the DEFORM ® software, as shown in Figure 2c. The
model selects five reference points, A, B, C, D and E, from outside to inside in the radial
direction of the part. That is, on the radial plane of the red line in Figure 2a, five points are
uniformly (at 275 mm intervals) selected from the outer surface to the center of the cylinder.
Point A was marked on the outer surface, and point E is the center of the cylinder. The
temperature gradient along the radial direction during the heat treatment of heavy forgings
was replaced by five reference points to facilitate the subsequent the analysis of hydrogen
embrittlement sensitivity in different positions along the radial distribution.
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Figure 2. Geometric dimension and finite element model of heavy forging. (a) Geometric features
and dimensions of forgings; (b) physical drawing of heavy forgings; (c) grid division diagram of
forging DEFORM ® model.

Overall, five parts of Cr5 steel were prepared from a piece of Cr5 steel, and they repre-
sented five sample points (A–E). The curves of temperature changes at five locations with
the time obtained by the finite element simulation were used as heat treatment parameters
to perform heat treatment operations on five groups, respectively. The curves of tempera-
ture changes at five locations with the time is determined by the heat treatment results.

2.2. Preparation and Characterization of Samples

Backup roll Cr5 steel was widely used as a material for large shaft parts. The heat
treatment of the material was carried out in the heating furnace. The heat treatment process
was controlled according to the temperature field of the selected point, in order to obtain
each point samples and further experimental study. After heat treatment, rectangular cross-
section tensile specimens were prepared using a wire cutting machine. A dogbone-shaped
tensile test sample with a gauge length of 25 mm and width of 6 mm and its thickness was



Metals 2022, 12, 610 6 of 17

1.6 mm. Tensile samples are designed according to national standards (NACE Standard
TM 0198-2004).

The microstructure of samples with different heat treatment processes was character-
ized by the metallographic etching method. The sample surfaces are mechanically polished
to the mirror surface, using 4% nitric acid ethanol solution as an etching agent, and etching
for 20s at room temperature. After the corrosion is completed, the surfaces were cleaned
with a 99.99% ethanol solution. The microstructure obtained by optical microscopy. The
crystal orientation and size of the samples were characterized by electron backscattering
diffraction (EBSD). In addition, the dislocation density was calculated from the kernel
average misorientation (KAM). The scanning electron microscope experiment was carried
out on a FEI-SCIOS scanning electron microscope. In order to ensure the measurement
accuracy, the scanning step was 0.2 µm, the scanning voltage was 20 kV, and the current
is 13 nA. Under the FEI-SCIOS scanning electron microscope, the fracture surfaces of the
tensile samples were observed by scanning voltage 20 kV and current 6.4 nA.

2.3. Evaluation of Hydrogen Embrittlement Sensitivity

Hydrogen embrittlement samples were prepared through the electrochemical hydro-
gen charging method. In the electrolytic hydrogen charging experiments, 99.99% platinum
electrode was used as an anode, and the sample as a cathode. The composition of the
hydrogen charging electrolyte was 0.5 mol/L H2SO4 + 3.84 mmol/L Na2S. The CS elec-
trochemical workstation was used to provide hydrogen charging current. The current
density used for hydrogen charging was 100 mA/cm2, and the temperature was 25 ◦C.
The duration of hydrogen charging for all samples was all 60 min. The tension experiment
was carried out in 30 min after electrolytic hydrogen charging, and the SSRT was used to
characterize the mechanical properties of the sample under the hydrogen charging process.
The experiment was carried out on the Zwick Roell Z100 universal tensile testing machine.
According to the ASTM G129-00 standard, the strain rate is taken as 1 × 10−5s−1 [27–29].
The average values of five groups of samples were taken for the same process parameters
to eliminate random errors.

3. Results and Discussion
3.1. Temperature Field Gradient Characteristics of Heavy Forgings

The heat treatment process of Cr5 steel support shaft was referenced in this paper,
and the heat treatment parameters of “spheroidizing annealing + tempering” were written
into the finite element software for simulation. The whole heat treatment process is shown
in Figure 3a, and the temperature cloud diagram of each stage is shown in Figure 3b. It
can be seen from the figures that, during the whole process of heat treatment of forgings,
the radial gradient characteristics of forgings are obviously shown, and the temperature
of the outside of the forgings varies greatly in each stage. The temperature change of the
whole heat treatment process of the extraction mark points A–E is shown in Figure 4a.
The temperature curve of the internal point obtained by the finite element can simulate
the change of the internal temperature in the actual process. The obtained temperature
curves were used as the heat treatment process for each sample, respectively, and the heat
treatment operation was performed on the five groups of samples. Figure 4b–e show the
volume fraction of the microstructure content of point A with the whole heat treatment
time. Points B–E on the inside of the forging show the same microstructure change. There
is almost no martensite and austenite inside the forging, only pearlite and ferrite. Point
A on the outside of the forging shows different microstructure changes from other points.
The heat treatment process of heavy forgings can be regarded as the process of producing
different structures in the radial direction of heavy forgings.
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Figure 4. The temperature change diagram of heat treatment and the volume fraction of microstruc-
ture at each point. (a) The temperature change at each point of A–E during the whole heat treatment
process; (b) the change of volume fraction of austenite content at point A with time; (c) the change
of volume fraction of bainite content at point A with time; (d) the change of volume fraction of
martensite content at point A with time; (e) the change of volume fraction of pearlite content at point
A with time.
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The cloud diagrams of the microstructure distribution of austenite, pearlite, and
bainite before spray cooling are given in Figure 5a–c, respectively. When the backup roller
is heated at a differential temperature, there is a huge temperature difference between the
surface and the core, which leads to the difference in the radial microstructure. At the end
of this process, a certain thickness of austenite was formed on the surface of the backup
roll, since the surface position reached the phase transformation temperature. At this time,
the core temperature did not reach the phase transformation, and the microstructure was
still composed of pearlite and bainite with high toughness. From the cloud diagrams of
microstructure distribution, it can be seen that the distribution of austenite on the surface of
the backup roll is highly uniform. The roll body of the backup roll has reached the thickness
of 200 mm, which is ready for the next step of spray cooling. It meets the technological
requirements of differential temperature heating. When spray cooling is carried out, it is
necessary to set aside a distance on both sides of the roll body of heavy forgings not to cool
spray, so as to prevent shoulder loss.
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Figure 5. Cloud diagram of microstructure distribution before spray cooling. (a) Pearlite; (b) bainite;
(c) austenite.

The cloud maps of the microstructure distribution of the backup roller after spray
cooling are given in Figure 6a–c, respectively. After spray cooling of the backup roll, the
temperature on the surface drops rapidly, while the core still measures a high temperature.
After the start of spray cooling, the surface temperature of the backup roll changes very
sharply, and a certain thickness of martensite will be formed rapidly. In the subsurface layer,
there will be a certain amount of bainite. The reason for this is that, during spray cooling,
the temperature of the outermost layer decreases very quickly, while the temperature of the
subsurface layer decreases slowly, and a part of the austenite is transformed into bainite,
forming a bainite layer in the roll body. There is almost no phase transition from the
outermost 200 mm of the roll body. The core structure of the forging is still pearlite.

According to the temperature results of the finite element simulation, the five groups
of samples were respectively subjected to heat treatment operations, and the specific
heat treatment processes corresponded to the temperatures at each point, as shown in
Figure 4a. The microstructure morphology of five groups of samples after picric acid
etching are shown in the Figure 7. The results show that the microstructure at point A
outside the forging is martensite, the microstructure at point B is martensite and bainite,
and the microstructure at points C, D, and E inside the forging is pearlite. The formation
of the needle-shaped martensite at point A was due to the large degree of under-cooling
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caused by spray cooling— the solid solution of carbon atoms in austenite has no time
to diffuse out of the cell. For point B, the under-cooling degree was lower than point A.
This means that the austenite was undercooled to a temperature lower than the pearlite
transformation temperature and higher than the martensite transformation temperature.
The transformation of austenite will be coordinated by shear transformation and short-
range diffusion. This led to the microstructure of martensite and bainite in point B. With
regard to points C, D, and E, the pearlite structure is retained at these positions due to
incomplete austenitization. Therefore, it can be found that the microstructure obtained by
heat treatment is consistent with the simulation results in this paper, and the accuracy of
the simulation in this paper is proved.
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3.2. Results of Hydrogen Embrittlement Sensitivity

With reference to the time-varying temperature curve of each point in the finite element
simulation (Figure 4a), the Cr5 steel with the same composition as the heavy forging was
heat-treated according to the temperature change of the A–E points, and the experimental
samples matched with the A–E points process were obtained. The strength and plasticity of
five groups of the A–E samples after electrolytic hydrogen charging are shown in Figure 8.
At the same time, error bars for repeated trials are marked on each point. The projection of
the two-point connection line on the abscissa before and after hydrogen charging reflects
the hydrogen-induced plasticity loss of the sample.
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The index of hydrogen embrittlement sensitivity of metallic materials can accurately
reflect the sensitivity of materials to hydrogen embrittlement. Through the SSRT test, the
sensitivity index of materials is usually calculated by formula Equations (5) and (6):

Iψ = (ψO − ψH)/ψO × 100% (5)

Iδ = (δO − δH)/δO × 100% (6)

where Iψ is the index of hydrogen embrittlement sensitivity expressed by reduction of
area(RA), ψO is the RA without hydrogen charge, ψH is the RA after hydrogen charging, Iδ is
the hydrogen embrittlement sensitivity index expressed by elongation(EL), δO is expressed
as the EL of uncharged hydrogen, and δH is expressed as the EL after hydrogen charging.
The hydrogen embrittlement sensitivity of steel can be clearly reflected by comparing the
values of Iψ and Iδ. The results of the EL, RA, and hydrogen embrittlement sensitivity
index of each group of materials are shown in Tables 3–5, respectively.

Table 3. EL of different samples.

- A B C D E

Non-hydrogen charging (%) 23.38 26.91 29.61 27.75 27.74
Hydrogen charging (%) 9.03 17.58 13.74 15.80 15.81
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Table 4. RA of different samples.

- A B C D E

Non-hydrogen charging (%) 17.77 14.69 10 14.52 16.88
Hydrogen charging (%) 1.08 6.03 1.27 3.89 4.82

Table 5. Hydrogen embrittlement sensitivity index of different samples.

- A B C D E

Iψ (%) 93.9 58.95 87.3 73.2 71.44
Iδ (%) 61.38 34.67 53.60 43.06 43.01

According to the data in Tables 3–5, the loss rate of hydrogen-induced plasticity of
the samples from largest to smallest were A, C, E, D, and B, respectively. The hydrogen
embrittlement sensitivity index of the five groups of samples corresponds to the five
reference points in the finite element simulation of heavy forgings, and the SSRT and
hydrogen embrittlement sensitivity indexes of hydrogen-charged and uncharged samples
were compared. The EL of sample A decreased by 94%, and the RA decreased by 61%,
which indicated that the hydrogen embrittlement of sample A was the highest. The
degree of hydrogen embrittlement of sample C is also significant, the degree of hydrogen
embrittlement of samples D and E is similar and lower than that of sample C, and the
degree of hydrogen embrittlement of sample B is the lowest. In order to further analyze
the hydrogen embrittlement sensitivity of the samples, we characterized the fracture
morphologies of five groups of samples with and without hydrogen charging. The cross-
sectional morphologies of five groups of samples under SEM after SSRT are shown in
Figures 9–13.
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Figure 9. Slow-strain rate tensile fracture of samples A with and without hydrogen charging. (a) Not
hydrogenated; (b) hydrogenated.
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Figure 10. Slow-strain rate tensile fracture of samples B with and without hydrogen charging. (a) Not
hydrogenated; (b) hydrogenated.
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hydrogenated; (b) hydrogenated.

In order to further analyze the hydrogen embrittlement sensitivity of the samples,
we characterized the fracture morphologies of five groups of samples with and without
hydrogen charging. The cross-sectional morphologies of five groups of samples under
SEM after SSRT are shown in Figures 9–13. Figures 9a, 10a, 11a, 12a and 13a are the tensile
fractures of the five groups of samples without hydrogen, respectively, Figures 9b, 10b, 11b,
12b and 13b are the fracture surfaces of hydrogen-charged samples, respectively. A large
number of dimples can be observed in the fracture morphology of all the samples not filled
with hydrogen. The fracture of the dimple morphology proves that the fracture form is a
ductile fracture, but there is an obvious difference in the fracture surface after hydrogen
charging. After hydrogen charging, the fracture surface of sample A shows obvious river
morphology, which is a typical transgranular fracture. When the fracture surfaces of
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samples C and E are observed, obvious intergranular cracks and high-density tearing edges
can be observed, and some quasi-cleavage platforms appear on the fracture surface, which
is obviously a mixed fracture. There was no significant change in the fracture surface of
group B after hydrogen charging, compared with that of the non-hydrogen charging group.
A large number of dimples appeared after hydrogen charging on the fracture surface
of sample D, and the dimple depth of the fracture surface of sample D was relatively
shallow compared with the group without hydrogen charge. The comparative observation
and analysis of fracture morphology further proved that the hydrogen embrittlement
sensitivity of thegroup B samples was lower, while that of the group A samples was the
highest. Although the fractures of the BDE samples showed obvious ductile fractures, some
quasi-cleavage platforms appeared locally.

The EBSD results of the five groups of samples are collected in Figures 14–18, for a
better discussion on the influence of grain boundary and dislocation on hydrogen embrit-
tlement. From the orientation map in Figures 14a, 15a, 16a, 17a and 18a and the statistical
map of grain area in Figures 14c, 15c, 16c, 17c and 18c, it can be clearly seen that samples in
group A have the smallest grain size, compared groups B, C, D, and E, due to the cooling
rate being significantly lower than that of group A, which provides the driving force for
grain growth. This makes the latter groups’ average grain size larger than that of the
group A samples. Geometrically necessary dislocation (GND) of the five groups of samples
is calculated and shown in Figures 14b, 15b, 16b, 17b and 18b. GND is defined as the
quantitative calculation of the average orientation difference and step size between the
reference point and its adjacent points belonging to the same grain, which can be used to
measure the dislocation situation. It is clear from the GND map that the dislocation density
of the five samples is A, B, C, E, and D, from highest to lowest.
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(c) grain area distribution.

From the overall point of view of heavy forgings, due to the heat treatment process,
the mechanical properties of the outside of forgings are improved, and the hydrogen
embrittlement sensitivity of materials is also improved. The external environment of
forgings leads to the entry of convenient hydrogen on the surface of forgings, which makes
it easier for forgings to undergo hydrogen embrittlement. Hydrogen will lead to a sharp
decline in the mechanical properties of the outer layer of heavy forgings, and even produce
crack sources in low stress environment, and the outer crack sources will cause stress
concentration, resulting in rapid hydrogen-induced crack propagation to the core and
sudden brittle fracturing, which is a serious threat to the service safety of large shaft parts.
This is also a common form of hydrogen-induced failure of heavy forgings in engineering.

3.3. Discussion

Microstructure is the key to bringing about the differences in hydrogen embrittlement
sensitivity. Combined with the microstructure and temperature change curve of sample
groups A, B, C, D, and E, the hydrogen embrittlement sensitivity law was analyzed. It is
well known that the existing forms and distribution of carbides are some of the important
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differences between the above microstructures. Carbides in steel have an important influ-
ence on hydrogen embrittlement. The results show that the carbide interface can effectively
trap hydrogen, and a larger carbide surface will bring more effective hydrogen traps [30].
Hydrogen traps can effectively pin diffusible hydrogen and change the distribution of
hydrogen in the steel. In the martensite of point A, the size of carbides is large and unevenly
distributed. This will lead to serious hydrogen segregation and greatly increase the local
hydrogen concentration. The crack source is formed at the hydrogen enrichment site, which
leads to the cracking of the material. On the contrary, homogeneous and dispersed carbides
can effectively reduce hydrogen segregation and alleviate hydrogen embrittlement. It can
be concluded that the hydrogen embrittlement sensitivity of martensite is higher than that
of pearlite. This is similar to the results obtained by Michler et al. and Wan et al., who
also found the same results in the study of hydrogen-induced cracking resistance of high
strength low alloy steels [5,31]. It can be concluded that the martensite on the outside of
the forging has high hydrogen embrittlement sensitivity.

In addition to microstructure, defects in steel also have an important influence on
hydrogen embrittlement behavior. As an important hydrogen diffusion channel, more grain
boundaries will significantly reduce the diffusion coefficient of hydrogen. According to the
research of Chen and Park, the hydrogen concentration accumulated at the grain boundary
of small-size grains is lower than that of large-size grains under the same variables, thus
obtaining lower hydrogen embrittlement sensitivity [32–37]. Therefore, the smaller grain
size of samples in group A will reduce the degree of hydrogen embrittlement to a certain
extent. Unfortunately, it can be seen from Table 5 that group A has the highest hydrogen
embrittlement sensitivity. The phenomenon of sample A may be considered by more
microscopic factors. It can be seen from the EBSD and GND maps in Figure 14 that the
small-angle grain boundaries in the grains of the A sample occupy a large area. Hydrogen
traps and dislocations can pin hydrogen atoms in the diffusion process. The higher the
dislocation density is, the higher the hydrogen content is. As a result, the hydrogen
concentration accumulated in the lattice with high dislocation density is higher than that
in the lattice with low dislocation density, which leads to higher hydrogen embrittlement
sensitivity. In addition, dislocation also has significant influence on diffusion of hydrogen,
Thus, the crack source is formed at the dislocation wall in the grain, and further propagates
under the action of stress, resulting in transgranular fracture.

To sum up, a series of behaviors of hydrogen diffusion and adsorption in materials are
closely related to the distribution of defects and carbonized second phase in steel, which
comprehensively affect the hydrogen embrittlement behavior of steel. Only a single factor
is considered to analyze the hydrogen embrittlement sensitivity is oversimplified. The
hydrogen embrittlement sensitivity of heavy forgings is the result of the combined effect of
microdefects and microstructure. Changing the distribution of carbides in the surface layer,
as well as reducing the dislocation density and grain size, will contribute to the regulation
of hydrogen embrittlement sensitivity. It is very important to customize the appropriate
post-treatment process for its microstructure evolution.

4. Conclusions and Outlook

(1) The thermophysical parameters of heavy forgings are obtained through experiments,
and the temperature field distribution of heavy forgings is obtained by the finite
element method. Guided by the temperature field distribution, the physical simula-
tion experiment is completed, and a group of samples which conform to the radial
distribution of heavy forging microstructure are obtained.

(2) The results of electrochemical hydrogen charging and SSRT show that the martensite
hardening layer on the edge of large parts has the highest hydrogen embrittlement
sensitivity, while the fine pearlite and bainite nearby have much better resistance to
hydrogen embrittlement.

(3) Microstructure and EBSD orientation show that the hydrogen embrittlement sensitiv-
ity distribution is the result of the combined action of various microstructural features.
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Different microstructures and grain sizes together affect the hydrogen embrittlement
sensitivity of materials.

This study provides a method for the prediction of hydrogen embrittlement suscepti-
bility of heavy parts. The temperature change curve of points A–E inside the large forging is
obtained by FEM, and the corresponding heat treatment can be performed on each point to
study the law of the overall structure of the forging with temperature. For similar projects,
it provides a method for obtaining the microstructure of various internal points without
cutting the processed material.
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