Study of the Double-Layer Sintering Process with Stand-Support
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
2.3. Evaluation
2.3.1. Sintering Index
2.3.2. Characterization
3. Results and Discussion
3.1. Sinter Index of Sinter Products
3.2. Thermal Permeability
3.3. Flue Gas Composition
3.4. Morphology Characterization
4. Conclusions
- The DLSP-S distinctly enhanced the yield and productivity of ultra-thick bed sintering, but it would also cause a certain decrease of the tumbler index. The tumbler index, yield, productivity, and vertical sintering velocity were 57.33%, 66.74%, 2.12 t·m−2·h−1, and 26.33 mm·min−1, respectively, at a stand height of 350 mm. The quasi-powder level of 5–10 mm and the return portion of <5 mm decreased significantly, which effectively solved the key problems existing in the practical industrial application of the DLSP;
- Under the condition of a concentrate proportion ratio of 70%, the lowest oxygen content in the flue gas during the DLSP was about 8.6% at 33 min. The lower layer of the material bed was combusted in a low-oxygen atmosphere, thereby resulting in a poor sinter index. By using stand-support sintering, the lowest oxygen content increased to 10.6% at 28 min. The DLSP-S can significantly improve the oxygen content in the material bed, which effectively improves the combustion atmosphere and metallogenic environment of the lower layer;
- In the DLSP, the permeability of the material layer can be divided into three stages. With the utilization of a 350 mm height stand, the lowest air permeability in Stages I–III increased by 9.29%, 11.80%, and 31.60%, respectively;
- The morphology characterization of the sinter products demonstrated that there was more calcium ferrite in the lower layer of the DLSP-S350 than in the lower layer of the DLSP due to the higher air permeability, which further confirmed that the DLSP-S is beneficial to improving the quality of the sinter product. The DLSP-S was proven to be feasible in the laboratory.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.X.; Huang, J. Review of Technological Development of BF Ironmaking in China. Iron Steel 2007, 42, 2. (In Chinese) [Google Scholar]
- Long, H.M.; Li, J.X.; Wang, P. Influence of dioxin reduction on chemical composition of sintering exhaust gas with adding urea. J. Cent. South Univ. 2012, 19, 1359–1363. [Google Scholar] [CrossRef]
- Zhang, B. Measures for improving 900mm deep bed sintering permeability. Sinter. Pelletizing 2014, 39, 15–20. (In Chinese) [Google Scholar]
- Wang, Y.Z.; Zhang, J.L.; Liu, Z.J.; Du, C.B. Recent advances and research status in energy conservation of iron ore sintering in China. JOM 2017, 69, 2404–2411. [Google Scholar] [CrossRef]
- Wu, S.L.; Chen, D.F.; Zhao, C.X.; Han, H.L.; Zhang, L.H. Study on improving combustion of solid fuel in deep bed sintering. Kang T’ieh/Iron Steel (Peking) 2010, 45, 16–21. [Google Scholar]
- Gu, F.Q.; Zhang, Y.B.; Li, G.H.; Zhong, Q.; Luo, J.; Su, Z.J.; Rao, M.J.; Peng, Z.W.; Jiang, T. Effective preparation of blast furnace burdens from superfine iron concentrates by composite agglomeration process. J. Iron Steel Res. Int. 2020, 12, 1363–1371. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Liu, Z.J.; Zhang, J.L.; Zhang, Y.P.; Niu, L.L.; Cheng, Q. Study of stand-support sintering to achieve high oxygen potential in iron ore sintering to enhance productivity and reduce CO content in exhaust gas. J. Clean Prod. 2020, 252, 119855. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zhang, J.L.; Liu, Z.J.; Zhang, Y.P.; Liu, D.H.; Liu, Y.R. Characteristics of combustion zone and evolution of mineral phases along bed height in ore sintering. Int. J. Min. Met. Mater. 2017, 24, 1087–1095. [Google Scholar] [CrossRef] [Green Version]
- Li, J.M.; Wang, M.J. Discussion and prospect on the new techniques of identical load sintering. Iron Steel Vanadium Titan. 1995, 16, 10–15. (In Chinese) [Google Scholar]
- Higuchi, K.; Kawaguchi, T.; Kobayashi, M.; Hoso Ta Ni, Y.; Nakamura, K.; Iwamoto, K.; Fujitomo, M. Improvement of productivity by stand-support sintering in commercial sintering machines. Rev. Métallurgie 2002, 99, 241–248. [Google Scholar] [CrossRef]
- Inazumi, T.; Fujimoto, M.; Sato, S.; Sato, K. Effect of Sinter-Cake Load Reduction by Magnetic Force on Iron Ore Sintering. ISIJ Int. 1995, 35, 372–379. [Google Scholar] [CrossRef]
- Zuo, H.B.; Liu, Z.J.; Zhang, X.; Yang, T.J. Numerical simulation of the stand in load-reduction sintering process. J. Univ. Sci. Technol. Beijing 2009, 31, 1298–1304. (In Chinese) [Google Scholar]
- Zuo, H.; Zhang, J.; Hu, Z.; Yang, T. Load reduction sintering for increasing productivity and decreasing fuel consumption. Int. J. Miner. Metall. Mater. 2013, 20, 131–137. [Google Scholar] [CrossRef]
- Zuo, H.; Zhang, J.; Zhang, X.; Liu, Z.; Yang, T. Supporting structure optimization of stand in load reduction sintering process. Chin. J. Process Eng. 2009, 9, 147–151. (In Chinese) [Google Scholar]
- Sato, S.; Kawaguchi, T.; Kato, M. Lower Limit of the Energy Consumption and the Double Ignition Process for Iron Ore Sintering. Trans. Iron Steel Inst. Jpn. 1988, 28, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Q.; Li, G.H.; Liu, H.B.; Jiang, T. An efficient method for iron ore sintering with high-bed layer: Double-layer sintering. J. Iron Steel Res. Int. 2021, 28, 1366–1374. [Google Scholar] [CrossRef]
- Zhou, M.S.; Wang, Y.D.; Han, S.F.; Zhao, D.M.; Zhu, J.W.; Zhong, Q.; Jiang, T. Research and industrial test on ultra-deep bed double-layer pre-sintering process. Sinter. Pelletizing 2019, 44, 23–38. (In Chinese) [Google Scholar]
- Zhu, D.Q.; Xue, Y.X.; Pan, J.; Yang, C.C.; Guo, Z.Q.; Tian, H.Y.; Liao, H.; Pan, L.T.; Xuang, X.Z. An investigation into the distinctive sintering performance and consolidation mechanism of limonitic laterite ore. Powder Technol. 2020, 367, 616–631. [Google Scholar] [CrossRef]
- Yu, W.T.; Zuo, H.B.; Zhang, J.L. Effect of stand-support area on support sintering process. Sinter. Pelletizing 2014, 39, 7–21. (In Chinese) [Google Scholar]
- Liu, Z.J.; Wang, Y.Z.; Zhang, J.L.; Zhang, Y.P.; Zuo, H.B. Effects of stand-support on the sintering process. Chin. J. Eng. 2016, 38, 200–206. (In Chinese) [Google Scholar]
- Webster, N.A.S.; Pownceby, M.I.; Madsen, I.C.; Kimpton, J.A. Effect of Oxygen Partial Pressure on the Formation Mechanisms of Complex Ca-rich Ferrites. ISIJ Int. 2013, 53, 774–781. [Google Scholar] [CrossRef] [Green Version]
- Webster, N.A.S.; Pownceby, M.I.; Madsen, I.C.; Kimpton, J.A. Silico-ferrite of Calcium and Aluminum (SFCA) Iron Ore Sinter Bonding Phases: New Insights into Their Formation During Heating and Cooling. Met. Mater. Trans. B 2012, 43, 1344–1357. [Google Scholar] [CrossRef]
- Webster, N.A.S.; Pownceby, M.I.; Madsen, I.C. In situ X-ray diffraction investigation of the formation mechanisms of silico-ferrite of calcium and aluminium-I-type (SFCA-I-type) complex calcium ferrites. ISIJ Int. 2013, 53, 1334–1340. [Google Scholar] [CrossRef] [Green Version]
TFe | FeO | SiO2 | CaO | MgO | Al2O3 | C | LOI 1 |
---|---|---|---|---|---|---|---|
52.66 | 10.98 | 4.15 | 8.49 | 1.42 | 1.06 | 3.38 | 10.86 |
Sintering Processes | Size of Stand, mm | Moisture Content, % |
---|---|---|
DLSP | / | 7.2 |
DLSP-S350 | 250 × 150 × 350 | 7.2 |
DLSP-S400 | 250 × 150 × 400 | 7.2 |
Sintering Processes | TI, % | P, t·m−2·h−1 | Y, % | VSV, mm·min−1 |
---|---|---|---|---|
DLSP | 59.73 | 1.76 | 64.53 | 22.66 |
DLSP-S350 | 57.33 | 2.12 | 66.74 | 26.33 |
DLSP-S400 | 54.40 | 1.95 | 65.48 | 24.90 |
Distance from the Top | Upper (200 mm) | Middle (500 mm) | Lower (850 mm) |
---|---|---|---|
DLSP | 7.75 | 7.17 | 11.17 |
DLSP-S350 | 7.76 | 7.11 | 9.62 |
DLSP-S400 | 7.75 | 7.14 | 9.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhou, M.; Wu, F.; Zhang, H.; Xu, L.; Zhai, L.; Gao, W.; Zhong, Q. Study of the Double-Layer Sintering Process with Stand-Support. Metals 2022, 12, 629. https://doi.org/10.3390/met12040629
Liu J, Zhou M, Wu F, Zhang H, Xu L, Zhai L, Gao W, Zhong Q. Study of the Double-Layer Sintering Process with Stand-Support. Metals. 2022; 12(4):629. https://doi.org/10.3390/met12040629
Chicago/Turabian StyleLiu, Jie, Mingshun Zhou, Fadeng Wu, Hui Zhang, Libing Xu, Liwei Zhai, Wei Gao, and Qiang Zhong. 2022. "Study of the Double-Layer Sintering Process with Stand-Support" Metals 12, no. 4: 629. https://doi.org/10.3390/met12040629
APA StyleLiu, J., Zhou, M., Wu, F., Zhang, H., Xu, L., Zhai, L., Gao, W., & Zhong, Q. (2022). Study of the Double-Layer Sintering Process with Stand-Support. Metals, 12(4), 629. https://doi.org/10.3390/met12040629