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Abstract: A uniform distribution of power density (energy flux) in a stationary laser beam leads to a
decrease in the overheating of the material in the center of the laser beam spot during laser powder
bed fusion and a decrease in material losses due to its thermal ablation and chemical decomposition.
The profile of the uniform cylindrical (flat-top) distribution of the laser beam power density was
compared to the classical Gaussian mode (TEM00) and inverse Gaussian (donut) distribution (airy
distribution of the first harmonic, TEM01* = TEM01 + TEM10). Calculation of the Péclet number, which
is a similarity criterion characterizing the relationship between convective and molecular processes of
heat transfer (convection to diffusion) in a material flow in the liquid phase, shows that the cylindrical
(flat-top) distribution (TEM01* + TEM00 mode) is effective in a narrow temperature range. TEM00

shows the most effective result for a wide range of temperatures, and TEM01* is an intermediate
in which evaporation losses decrease by more than 2.5 times, and it increases the absolute laser
bandwidth when the relative bandwidth decreases by 24%.

Keywords: energy excess; heat diffusion; laser beam mode; laser powder bed fusion; numerical
simulation; profiling; power density distribution; thermal conductivity

1. Introduction

The well-known drawback of some laser material-processing technologies is non-
uniform thermal conditions in the spot. The material is overheated in the center of the
laser spot when an excess of the energy leads to intensive material evaporations and
chemical decompositions [1–4], which is not characteristic of other additive technologies
using alternative sources of concentrated energy flow [5,6]. Inversely, the material does not
attain the necessary processing temperature at the periphery of the spot, and the energy
is essentially lost by heat diffusion in the treated body (the target) [7–9]. Modern optics
proposes shaping a laser beam that provides alternative laser power density distributions
of transverse electromagnetic (TEM) mode:

• Airy distribution of the first harmonic (donut) TEM01* = TEM01 + TEM10;
• Uniform cylindrical (flat-top) distribution TEMFT = TEM01* + TEM00.

These technical solutions have multiple laser powder bed fusion attempts but have
never been researched theoretically with correction to the beam motion [10–12].

The lack of a reliable solution in terms of heat redistribution leads to the following
disadvantages affecting the quality of parts obtained by laser-additive manufacturing and
processing productivity (Figure 1) [13–17]:

- Local overheating, capturing the underlying layers, creating additional stresses during
metal solidification (partially solved by subsequent heat treatment and preliminary
heating of the substrate) [18–20];
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- Active evaporation of the material and its chemical interaction with the atmosphere
of the chamber (reduced due to the use of more gentle processing modes, which
dramatically affects productivity) [21–23];

- Ejecting material from the processing area (reduces the surface quality of the part
itself, damages the optics, and is reduced by gentle modes and preheating of the
platform) [24–26].
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Figure 1. The main consequences of the active interaction of powder material with atmosphere and
the existing ways of solving them.

An obvious disadvantage of using optical means for redistributing laser energy into
the beam can be its expansion by 150–350%, which may not allow for obtaining more
precision parts, but can become a significant advantage in the production of products with
dimensions of more than 100 mm, for which the width of the heat-affected zone will be
significantly reduced [27,28]. Figure 1 is based on the results of optical diagnostics and
video monitoring described in detail in [27].

There are many factors that influence the final surface quality (roughness, uniformity,
and dimensional accuracy) [29–33] such as:

• laser power, spot size, and laser power distribution among the laser system and
optic parameters,

• scanning speed and strategy and hatch distance among strategy parameters,
• powder particle size, shape and morphology, and layer thickness among

powder parameters,
• inertness of the atmosphere, impermeability of the chamber, dimensions of the part on

the working platform (maximum angle of deviation of the beam from the vertical),
and so on.
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The conventional power (energy flux q, W/mm2) density distribution in radius r of
the laser focus is the classical bell-like one approximated by the normal Gauss distribu-
tion (Laguerre–Gaussian mode, circularly symmetric beam profile TEM00) of the optical
resonator as:

q =
P
πr2

0
exp

(
− r2

r2
0

)
, (1)

where P is the laser beam power, W and r0 is the radius circle, mm.
In some laser-based technologies such as lithography (photo-activated processes) [34,35],

laser scribing [36,37], and thin surface laser treatment (including medical purposes) [38–41],
the optimal beam profile seems to be the flat-top (TEMFT) one that provides the energy flux’s
uniformity (uniform laser power density distribution). The typical powder consolidation
mechanisms in laser powder bed fusion are thermo-activated [42]. Then the objective is
transferred from the uniform power density distribution (energy flux q, W/mm2) to a
radiation-induced uniform temperature field T (◦C).

Since the thermal energy is released on an adiabatic plane bounding a uniform con-
ducting half-space inside a circle of radius r0 (mm), with radial distribution [43]:

q =
P

2πr2
0

1√
1− r2/r2

0

, (2)

the temperature rise over the circle:

T0 =
P

4λr0
, (3)

where λ is the material thermal conductivity, W/mm·K. In this case, the laser radiation is
absorbed by layered powder to heat a massive body with conduction as the principal heat
transfer mechanism. Then profile (2) can be better for laser powder bed fusion and similar
laser-based powder technologies. TEMFT profile (the cylindrical flat-top temperature
distribution) is challenging to obtain because of a discontinuity at the beam boundary
where r = r0. Then the airy distribution of the first harmonic, (donut of the first overtone)
TEM01*, seems to be a reasonable compromise [43]:

q =
P
πr2

0

r2

r2
0

exp

(
− r2

r2
0

)
, (4)

In the thermo-activated processes, the laser beam scans the powder surface, resulting
in a non-uniform temperature distribution over the laser spot for various laser beam
profiles [44,45]. An inverse problem of heat diffusion for the scanning laser beam can be
solved to find the ideal power density distribution. Still, the solution mainly depends
on the scanning speed factor—its value and direction. The influence of direction on the
absorbed energy flux shows that the laser beam profile would be asymmetric. Moreover,
the laser beam scans quite fast (up to 400 mm/s) and changes direction rapidly. Therefore,
it can be an even more complicated scientific and technical task never solved before,
since most of the published work on beam profiling considers the symmetric beam for
their calculations.

This work aims to compare three types of abovementioned laser beam profiles, research
the influence of the scanning speed in a linear medium, and develop a non-linear model,
including the material evaporation factor.

2. Numerical Simulations
2.1. Simulations and Influence of Scanning Speed

The powder layer on the target surface is considered thermally thin and is not taken
into account. Laser radiation is supposed to be absorbed on the surface. In the case of
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partial reflection, the laser power in the equations mentioned above means the absorbed
part of the laser beam radiation. In the coordinate system moving with the scanning speed,
the steady-state heat diffusion equation is [43]:

α∆T + us
∂T
∂x

= 0, (5)

where us is scanning speed, m/s; α is the thermal diffusivity, m2/s; and ∆ is the Laplace
operator. Equation (5) is solved by numerical or analytical methods where possible, with
boundary condition:

T → Ta at x → ±∞, y→ ±∞, z→ ∞, (6)

where Ta is the ambient temperature. The target surface z = 0 is adiabatic, excluding the
laser spot where

− λ
∂T
∂z

= q. (7)

The temperature fields are presented in Figures 2 and 3.
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Figure 2. Normalized distributions: flux density of the absorbed laser energy q over the target surface
z = 0 (top row); temperature T over the target surface (second and third rows); temperature T over
the vertical plane of mirror symmetry y = 0 formed by the beam axis and the scanning line (two rows
on the bottom). Red in the q/q0 graph indicates the approach to the area of the discontinuity at the
beam boundary where r = r0.
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Figure 3. 3D plot of the implicit function q0 (a); implicit function q0 for various values of r0 (b);
normalized implicit function q/q0 (TEM00 profile) (c); normalized implicit function q/q0 (TEMFT

profile) (d); normalized implicit function q/q0 (TEM01* profile) (e); and temperature distributions
along the direction of the scanning speed on the surface, when y = 0, z = 0 (f). The beam boundary
where r = r0 is marked red in graphs (c–e).
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The scanning speed is specified by the thermal Péclet number:

Pe =
2r0us

α
. (8)

The temperature rise relative to the ambience (T − Ta) is normalized by T0 specified
by Equation (3). Normalizing coordinates by r0 makes the obtained results universal for a
linear conductive medium. The results significantly depend on the Péclet number. The top
row in Figure 2 shows two-dimensional views of laser profiles (1), (2), and (4) normalized
by [43] (Figure 3a,b):

q0 =
P
πr2

0
. (9)

The normalized graphs of profiles are as follows (Figure 3c–e):

qTEM00

q0
= e

(− r2

r2
0
)
, (10)

qTEMFT

q0
=

1

2·
√

1− r2

r2
0

, (11)

qTEM01∗

q0
=

r2

r2
0
·e
(− r2

r2
0
)
. (12)

The other rows in Figure 2 are two-dimensional temperature distributions over two
characteristic planes. The 3D plot of the implicit function is shown in Figure 3a.

Figure 3f shows all the obtained results as profiles of the surface temperature along
line y = 0, z = 0. For all laser profiles, the temperature profiles decrease with the increase of
Pe that corresponds to the increase of the scanning speed. The forward temperature front
becomes sharper with the increase of Pe, and the backward temperature front is insensible
to Pe, according to the well-known asymptotics:

T − Ta

T0
=

2
π

r0

R
exp

(
Pe
4

x− R
r0

)
, (13)

with R2 = x2 + y2 + z2, shown by dashed lines in Figure 3f. In the case of mode TEM00, all
three numerically calculated temperature profiles are bell-like. At Pe = 0, the maximum is
in the origin. The numerically obtained maximum value is about the analytical result Tmax,

Tmax − Ta

T0
=

2√
π

, (14)

shown by a horizontal dash in Figure 3f. The increase of Pe slightly shifts the position of
the temperature maximum in the direction opposite to that of the scanning speed vector
that is explained by the thermal inertia of the target.

At Pe = 0, the flat-top laser beam profile forms steady-state temperature distribution

T − Ta

T0
=

2
π

arcsin
2r0√

(r− r0)
2 + z2 +

√
(r + r0)

2 + z2
, (15)

where r2 = x2 + y2, with an exactly horizontal plate over the laser spot. When Pe increases,
this plate inclines towards the scanning speed vector and slightly sags. In the case of donut
mode, the surface temperature distribution inherits the ring-like ridge. The ridge becomes
more asymmetric with the increase of Pe (Figure 3f).
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2.2. Temperature and Energy Flux Profiles

Temperature distribution in a cross-section perpendicular to the scanning direction
cannot objectively characterize the temperature conditions for laser powder bed fusion
because retarding the maximum target temperature relative to the central cross-section
x = 0. The retardation depends on the scanning speed value and the distance from the
scanning axis (X). The most representative quantity is the maximum temperature along
axis X for threshold-like and Arrhenius temperature dependencies of the process kinetics.
Figure 4a shows the transverse profile of the quantity on the surface [43]:

max
x

T(x, y, 0), (16)
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The asymptotics at Pe = 0 are given by Equation (13) at x = 0. At Pe = 0.71 and
Pe = 2.86, the asymptotics are obtained by numerical treatment of Equation (13) by
Equation (16). The widths of the re-melted zone on the surface often estimate the con-
tact’s width between the consolidated powder, and the substrate can be deduced by
this profile.

The transverse profiles of the surface temperature shown in Figure 4a present the
thermal conditions for laser powder bed fusion. They cannot be compared with the tested
laser beam profiles because all the obtained temperature profiles have different absolute
maxima. The tentative laser-beam radius r0 is not an objective measure of its width
applicable to various beams’ radial profiles. Thus, beam TEM01* in Figure 4b seems wider
than beam TEM00 at the same r0. Let us estimate the width of a laser profile by its diameter
at half-maximum d 1

2
that is conventional in laser technology applications. The scheme for

estimating the corresponding radius at half-maximum r 1
2

= d 1
2
/2 is shown in Figure 4b and

Table 1.
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Table 1. Calculated absolute maximum of temperature Tmax versus Péclet’s number Pe.

Laser Beam Profile
Beam Radius at Half Maximum,

r1/2/r0

(Tmax − Ta)/T0

Pe = 0 Pe = 0.71 Pe = 2.86

TEM00 (Gaussian)
√

ln 2 = 0.8326 2/
√
π = 1.128 1.027 0.8417

TEM01* (donut) 1.6366 1.6453 0.5889 0.4735
TEMFT (flat-top) 1 1 0.9613 0.8819

It should be noted that temperatures above Tmax are unallowable because of material
evaporation or chemical decomposition. Temperatures below the minimum Tmin are not
sufficient to complete the specified physical or chemical processes. The boiling point
is specified as Tmax, and the melting point is Tmin for laser powder bed fusion of pure
metals [46,47]. For alloys, Tmax and Tmin are determined by the component with the lowest
boiling and melting points, correspondingly.

The temperature dependencies of the kinetic constants can be taken into account to
define the laser powder bed fusion interval (Tmin, Tmax). The maximum temperature in
the laser-processing zone and the width of the laser beam characterized by d1/2 or r1/2
can be effectively controlled by variation of the laser power or by laser beam expansion.
The former quantity can be set at Tmax. The latter quantity can be set at the specified
dimensional uncertainty.

Figure 5 shows the same temperature profiles as in Figure 4a to apply the chosen
criterion for evaluating the laser beam profiles. However, these profiles are renormalized
by their absolute maxima, height, laser beam radii at half maximum, and width. The
normalizing constants for all the nine testing profiles are obtained from the data shown
in Figure 4a,b and Table 1. A qualitative review of the temperature profiles shown in
Figure 5 indicates that laser profile TEMFT results in the broadest top of the temperature
profile, as expected. Laser profile TEM00 results in the broadest base of the temperature
profile. This means that evaluating the three tested laser profiles is not straightforward and
depends on the acceptable temperature range of laser treatment Tmax − Tmin relative to
the maximum temperature increment Tmax − Ta. If the acceptable temperature range is
narrow, the treated band of the surface is near the top level of the temperature profile. In
this case, theoretically, the flat-top profile provides the widest laser-treated band, which
means the most effective use of the laser energy. If the acceptable temperature range is
wide, the most effective profile seems to be TEM00.
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3. Model Evaluation
3.1. Quantitative Evaluation

Let us introduce the width of the laser-treated band Bn where non-dimensional pa-
rameter γ for quantitative evaluation of the laser beam profile characterizes the relative
temperature range of the laser treatment [43]:

γ =
Tmin − Ta

Tmax − Ta
. (17)

The definitions of B1/2 and B0.9 are shown in Figure 5. Band B1/2 approximately
corresponds to laser powder bed fusion of metals and alloys such as CoCr at the ambient
temperature Ta with Tmax equal to the boiling/decomposition point (~2800–3300 ◦C) and
Tmin equal to the melting point (~1250–1650 ◦C) [48]:

γCoCr =
1458 °C− 20 °C
3000 °C− 20 °C

≈ 0.4826. (18)

The main properties of the cobalt-chromium alloy are shown in Table 2. The data
presented in the table are taken from [49,50].

Table 2. Properties of the cobalt-chromium alloy (64–65% of Co, 29–30% of Cr).

Properties Density,
g/cm3

Melting
Point, ◦C

Boiling
Point, ◦C

Tensile
Strength,
kN/cm2

Yield
Strength,
kN/cm2

Young’s
Modulus,

GPa

Coefficient
of Thermal
Expansion,
×10−6 ◦C−1

Thermal
Conductivity,

W/(m·K)

CoCr
alloy 8.0–8.4 1250–1650 2800–

3000 ≥61.7–70 ≥50–64 210–250 11.2–14.2 13

Band B0.9 corresponds to laser-additive manufacturing of oxide ceramics at the am-
bient temperature Ta with Tmax equal to the temperature of chemical decomposition
(~2900 ◦C) [51–55]. Tmin should be chosen as high as possible because of the Arrhenius
temperature dependence of the powder consolidation rate [56].

The calculated values of B1/2 and B0.9 versus Péclet’s number for the laser beam
profiles are shown in Table 3 and Figure 6. In the considered range of Péclet’s numbers
(Pe = 0–2.86), the conventional Gaussian profile of TEM00 seems to be the most effective
for the wide temperature range of laser treatment of 1

2 (alloys, metals) when the flat-
top profile can be significantly more advantageous for the narrow temperature range of
0.9 (mostly oxide ceramics). For B1/2, profile TEM01* seems to be the least effective one,
and the flat-top is intermediate. For B0.9, profile TEM00 seems to be the least effective one,
and TEM01* is intermediate.

Table 3. Calculated widths of the laser-treated band B1/2 and B0.9 versus Péclet’s number.

Laser Beam Profile
B1/2/d1/2 B0.9/d1/2

Pe = 0 Pe = 0.71 Pe = 2.86 Pe = 0 Pe = 0.71 Pe = 2.86

TEM00 (Gaussian) 1.57 1.485 1.32 0.53 0.535 0.50
TEMFT (flat-top) 1.415 1.28 1.118 1.012 0.974 0.775
TEM01* (donut) 1.39 1.24 1.07 0.80 0.70 0.565
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3.2. Dynamic Evaluation

Let us calculate the steady temperature at the laser spot boundary for two laser modes
and a laser power of 100 and 400 W. The experimental diameter of the laser spot will be
approximately 100 µm (0.001 m) for the TEM00 mode and 300 µm (0.003 m) for the TEM01*
mode (Table 4) [57]. As can be seen, with an increase in the power of laser radiation to 400 W,
due to excess heat, a multifaceted local overheating is predicted (the calculated temperature
is 2.56 times higher than Tmax) at the boundary of the laser radiation of the Gaussian mode
(as a result, active evaporation of metal from the processing zone). At the same time, when
using the reverse Gaussian profile (donut), the temperature at the edge of the laser spot
does not reach Tmin (less than 2.34 times), which means that there is no sufficient heat to
initiate the CoCr alloy granule fusion. The powder consolidation temperature can be closer
to the melting temperature. Implicit graphs of the function of temperature on the radius for
a cobalt-chromium alloy (λ = 13 W/(m·K)) depending on the power of laser radiation are
shown in Figure 7 (Equation (3)). It should be noted that Figure 7a is an implicit graph of
the temperature (Tmax − Ta) on the radius and laser power function for the material with
the mentioned material thermal conductivity, where the solution area is marked red, since
only values above zero can be taken into account for technological purposes, since other
areas have no physical sense in the context of engineering.
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Table 4. The steady temperature values at the laser spot boundary for two laser modes.

Laser Beam Profiles Laser Spot Diameter, mm
Steady Temperature (Tmax − Ta), K

P = 100 W P = 400 W

TEM00 (Gaussian) ~0.1 1923 7692
TEM01* (donut) ~0.3 641.03 2564
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Table 5 presents two evaluated groups of laser beam parameters based on the experi-
mental data obtained by optical achievements of the laser beam profiles using an expander
and profiler installed in the LPBF setup and optical evaluation of the obtained profiles [28].
Specific energy contribution (J/m2) was calculated by:

E =
q0

us
. (19)
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Table 5. Parameters of laser powder bed fusion chosen for modeling.

Factor Measuring Unit Values

Absorbed power of the beam, P W 100 400
Laser beam radius, r0 mm ~0.1/2 ~0.3/2
Scanning velocity, us m/s 0.0213 0.0286

Normalized power density
distribution, q0

W/m2 0.320 × 108 0.142 × 108

Specific energy contribution, E J/m2 1.5 × 105 0.5 × 105

Péclet’s number, Pe - 0.71 2.86

Two numerical calculations for Gaussian (Equation (1)) and donut (Equation (4)) laser
beam profiles are made for each group. Thermal diffusivity of CoCr alloy is presented in
Table 6 [58,59]:

α =
λ

ρ·Cp
, (20)

where ρ is density, kg/m3 and Cp is specific heat capacity, J/(kg·K). The dependence of the
Péclet number on the laser spot radius and scanning speed for a cobalt-chromium alloy is
shown in Figure 8.

Table 6. Thermal diffusivity α of CoCr alloy.

Thermal Diffusivity α, cm2/s

at 20 ◦C at 500 ◦C

0.02–0.14 0.03–0.074
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Figure 9 shows the calculated temperature fields for two types of laser beam profiles:
TEM00 and TEM01* at laser powers of 100 and 400 W, correspondingly, when laser beam di-
ameters are 0.109 and 0.310 mm, respectively. The difference from Figure 2 is that laser beam
profiles are shown at the level of calculated steady temperatures (Table 4). Formation of the
temperature plateau is explained by a small value of overheating sufficient for evaporation
under the given conditions. In the case of mode TEM01*, the characteristic temperature
sink is still visible in the center. The energy losses for evaporation are listed in Table 7. The
corresponding mass losses are proportional to the energy ones [43]. Comparison of values
listed in Table 7 indicates that the change from mode TEM00 to mode TEM01* decreases the
evaporation loss for all four calculations made. Thus, the laser profile corresponding to
mode TEM01* seems to provide more efficient laser power density distribution (Figure 10).
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Table 7. Calculated values of power loss for evaporation Pv for CoCr alloy for the laser beam profiles.

Parameter
Evaporation Loss, Pv (W)

TEM00, P = 100 W, Pe = 0.71 TEM01*, P = 400 W, Pe = 2.86

Max vapor velocity uv, m/s 3.63 14.51
Max recoil pressure precoil − p0, Pa 17.67 267.67

Mass loss rate Lmass, mg/s 144.30 520.22
Recoil force Frecoil, mN 0.55 7.57

Power loss for evaporation Pe, W 3.53 2.68
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4. Discussion

It should be noted that the proposed dynamic model could not be used for precise
data on the thermal history and simulation of the thermal stresses. The point was in
researching an optimal laser power density distribution for the engineering tasks of LPBF.
As known, the optimal melt pool configuration for the tasks of thick (more than 10 mm
in thickness) material laser cutting or welding is torch-like (Figure 11) [25] and has a
certain disadvantage when the laser power exceeds 100 W [26]. For laser scribing, surface
treatment, and LPBF [40,41], the optimal one can be a more surface-like uniform distribution
related to the following issues [60]:

a. avoiding overheating in the centrum of the melt pool and consequences such as
material loss on evaporation and ejecting granules from the melt pool of thermal heat
with the laser power set at more than 100 W;

b. avoiding secondary remelting and involvement of the previously solidified layers in
the newly formed melt pool; and

c. melt ejection under steam pressure.
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Figure 11. Melt pool formation: (a) torch-like; (b) torch-like with an increase of energy in the laser
beam; (c) more uniform surface-like with an increase of redistributed energy in the melt pool.

The conducted research confirmed the effectiveness of the proposed approach not
only for static modeling but for a dynamic one, as well. Achieved laser beam pro-
files are presented in Figure 12. As can be seen (Figure 12c), the flat-top profile is
practically hard to be achieved close to the theoretical profile using the existed opti-
cal means [60]. The provided Figure 12d–f are reconstructed from the formed CoCr single
tracks (Figure 12g–i) [61,62]. A detailed description of the developed LPBF setup equipped
with an optical laser beam profiler and expander and optical diagnostics are presented
in [26]. The experimental conditions are presented in [57]. Figure 13 presents the optical
and modulation systems of LPBF setup.

The dynamic melt pool evaluation during experiments with metallic powders by
optical diagnostic means [63,64] is expected for further research.

It should be noted that TEMFT cannot be called a “desirable intensity distribution”
since it was a theoretical proposal [50]. The idea was to achieve a more uniform energy
density instead of peaks in the centrum of the laser beam spot. The picture of energy
distribution in the laser beam spot and adsorbed energy by powder material is different.
However, it can be even more varied, considering the dynamic factor (Pe number). De-
sirability can only be called a distribution that allows the achievement of uniform energy
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adsorption in the laser beam spot [57], taking into account the used material’s thermal
conductivity and dynamic factor. Definitely, it will be already varied for metallic [65,66]
and ceramic [67–69] groups of materials. However, it can also vary depending on granulo-
morphometric parameters of the powder, mainly shape and reflect ability [45,70,71], which
was not considered in the article. The TEM00 + TEM01* equation is the only way to achieve
approximate TEMFT by existing optical means [72,73].
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Figure 12. Laser beam profiles (objective control data achieved experimentally): (a) TEM00 (Gaus-
sian); (b) TEM01* (donut); (c) TEMFT (flat-top); reconstruction of the temperature fields’ features
in the formed melt pools: (d) TEM00 (Gaussian); (e) TEM01* (donut); (f) TEMFT (flat-top); formed
experimental tracks: (g) TEM00 (Gaussian); (h) TEM01* (donut); (i) TEMFT (flat-top), where W is a
track’s width, Cz is powder consolidation zone’s width.

Comparing two radiation beams with different profiles is possible only with the
different values for laser beam spot radii (Table 7). The same LPBF setup with a similar
laser beam diameter provided technically and focused on a plane for all cases is practically
used in the conditions of real production. Laser beam diameter corresponds to the main
characteristics of the LPBF equipment (in our case, it is up to 100 µm) and cannot be
changed quickly. The alternative laser beam profiles are experimentally achieved using
a laser beam profiler and an expander and optically evaluated [60]. That was taken
as a basis for theoretical evaluation of the dynamic factor to be closer to the common
industrial conditions.
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The average laser beam power distribution (E, J/m2) will not be similar in these cases
as it was previously evaluated and compared (Table 5). Still, the question is not in the
energy density in the laser beam spot radii, but in the practically achievable profile that can
be useful and implemented in standard or experimental LPBF equipment (Figure 13).

Practically, the achievable profile by mixing TEM00 and TEM01* is far from the profile
simulated based on Equation (2) due to the use available for market optical means. More-
over, as it was shown theoretically, the TEMFT profile is not the one that corresponds the
most to the technological tasks of LPBF of metallic powder with the high material thermal
conductivity (λ).

5. Conclusions

Three radial laser beam profiles of the power density distribution (energy flux) were
compared for laser powder bed fusion. The uniform cylindrical (flat-top) distribution
(TEM01* + TEM00 mode) was compared with the standard Laguerre–Gaussian law distri-
bution TEM00 and the airy distribution of the first harmonic TEM01* (TEM01 + TEM10 mode).

The TEM00 laser beam profile demonstrated the most effective result for a wide range
of temperatures for thermos-activated processes such as laser powder bed fusion in the
Péclet number range of 0–2.86, while the uniform cylindrical (flat-top) distribution is shown
to be effective in a narrow temperature range. The inverse Gaussian (donut) laser beam
distribution showed an interval result. With an increase in laser power, the transition
from TEM00 to TEM01* mode reduces the evaporation losses by more than 2.5 times, and it
increases the absolute laser bandwidth when the relative bandwidth decreases by 24%.

The prospects of laser beam profiling for the purposes of increasing laser powder
bed fusion productivity stay underestimated by the industry. However, they have a huge
potential in the context of the switch to the sixth technological paradigm associated with
Kondratieff’s waves.
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