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Abstract: The 316L thick plate electron beam welding (EBW) has been widely used in fusion test
reactor manufacturing. Therefore, the numerical simulation of the 50 mm 316L austenitic stainless
steel by two heat sources and experimental on microstructure and residual stress have been studied
in this article. In the simulation study, the traditional heat source model (3D Gaussian heat source)
and composite heat source (double ellipsoid heat source superimposed on the 3D Gaussian heat
source) were proposed to simulate the welding of local joint. Weld cross-section, temperature curve,
and residual stress after welding obtained by simulations were investigated. The experimental
study involved residual stress tests and microstructure analysis. It turned out that the result of the
composite heat source was closer to the actual joint. The residual stress distribution of simulation was
validated and in accordance with experimental measurement. Moreover, the microstructures were
studied by electro backscattered diffraction (EBSD) and compared with the temperature curve. The
formation mechanism of microstructural heterogeneity was caused mainly by different thermal cycles
at different positions of the thick plate. The top of the joint was more prone to stress concentration.

Keywords: electron beam welding; numerical modeling; residual stress; microstructure

1. Introduction

Energy resource is one of the central issues of the world today [1]. The controlled
fusion is promising energy in the future, one promising and key path to realize it is through
a magnetically confined device Tokamak. The Chinese Fusion Engineering Test Reactor
(CFETR) is the next generation of all superconducting tokamak independently developed
by China. The research and development (R&D) of the CFETR 1/8 vacuum vessel (VV)
aimed to verify the engineering feasibility of the large-scale complex double-layer structure
manufacturing are under development [2,3].

In the production of the VV, welding is the most important essential technology. Due to
electron beam welding (EBW) having the advantages of high-power density, high efficiency,
low deformation, and great depth-to-width ratio [4,5], it has been used in the VV port
stubs manufacturing. The quality of welded joint is the key index of the VV manufacturing.
However, the thick plate welding has led to a barrage of problems for quality control,
including through-thickness microstructure and mechanical properties and theirs variation.
It is very difficult to analyze the relationship between the nonuniform temperature field,
stress–strain field and microstructure of the 50 mm joints of EBW. Thus, it is essential to
establish the appropriate finite element analysis model for the 50 mm thick plate EBW
simulation to perform further investigation and reduce the time and economic costs, also
provide theoretical basis and experimental data for welding simulation of the large-scale
complex double-layer structure.
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The simulation and experiment for thick austenitic stainless steel have been advanc-
ing. Previous research has shown the through thickness microstructure and mechanical
properties for thick austenitic stainless steel evaluated by microstructural analysis and
mechanical tests (e.g., Xia, 2019 [6]; Alali, 2017 [7]). Moreover, there is a large volume of
published studies describing the numerical simulation of the EBW (e.g., Chiumenti, 2016 [8];
Bonakdar, 2017 [9]), most studies focused on the verification of simulation stress and defor-
mation after welding with experiments. So far, however, there has been little discussion
about the relationship between the simulated thermal cycle curve and microstructure at
different positions.

In this paper, the thermo–mechanical finite element (FE) simulation and experiments
of 50 mm 316L stainless steel plate welded by EBW were performed. The objective of this
paper was to reveal the mechanism of microstructure variation through thickness by the
combination of acceptable simulation results and metallurgy analysis, and then verify the
simulation accuracy.

2. Methodology

The technology roadmap is presented in Figure 1. Two key parts: numerical simulation
and experimental measurements were investigated.
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Figure 1. Technology roadmap.

The dimensions of the two ASTM A240/A240M-14 316L stainless steel plates for butt
welding were 300 mm × 150 mm × 50 mm shown in Figure 2. The chemical compositions
obtained by spectroscopic analysis are presented in Table 1. Before welding, the 316L plates
oil and oxide scale should be removed. During the assembly process, the plates should be
closely matched to ensure that the assembly clearance is less than 0.2 mm. A universal type
ZD150-60C CV66M vacuum electron beam machine was applied to the welding test. The
electron beam machine system contains several main components: electron gun (G600KM,
Steigerwald Strahltechnik GmbH (SST), Maisach, Germany), high-voltage power supply
(HCV-150kV/60kW, SST, Maisach, Germany), 66 m2 vacuum chamber and its workbench.
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Table 1. The chemical composition of base metals (wt%). Reprinted from Ref. [6].

Element Cr Ni Mo Mn Si Cu P C N S Fe

wt% 16.31 10.12 2.04 1.36 0.50 0.3 0.032 0.012 0.027 0.004 rest

The welding parameters are given in Table 2. The weld cross-section of the test plates
was taken in the middle of the weld by using wire-electrode cutting. The polished samples
were etched in oxalic acid. The sampling method of the electron backscattered diffraction
(EBSD) samples is shown in Figure 3. The upper, middle, and lower samples were taken
from the weld cross-section. The microscope analysis was performed using a SIGMA300
(Zeiss, Jena, Germany) field emission scanning electron microscope (SEM) with OXFORD
C-NANO EBSD (OXFORD instruments, Oxford, Britain). The hole-drilling technique was
used in determining the local residual stresses on the welding plate’s surface.

Table 2. Welding parameters.

Voltage
Ua (kV)

Beam
Current
Ib (mA)

Focusing Lens
Current
If (mA)

Velocity
v (mm/s)

Working
Distance

(mm)

Welding
Attitude

Working Pressure of the
Electron Beam Machine

Chamber (mbar)

150 140 2407 5 440 horizontal 1.7 × 10−4
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Figure 3. Schematic diagram: sampling location of the EBSD samples (a, b, c), sample placement
direction (TD, RD).

In this paper, a three-dimensional finite element method was built. Based on SYSWELD
2019 software (Framatome, Courbevoie, France), thermo–mechanical uncoupled analyses
of the 50 mm 316L EBW have been simulated.
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3. Simulation of Local Welded Joint

Figure 4 presents the simulation calculation flow of the local welded joint, proposed
by Lin Chen [10] and Rong [11]. The simulation parameters were based on the test results,
and the accuracy of the simulation results was proved by test results. In this paper, thermal
elasto-plastic [12] FE simulation is used to analyze the temperature field and the residual
stresses of the thick plates induced by welding.
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3.1. The Thermal Elastoplastic Theory

This method mainly considered the following four fundamental relations: the strain
displacement relation, the stress–strain relation, the equilibrium relation, and the boundary
condition relation.

3.1.1. Stress–Strain Relation

The stress–strain relationship of elastic and plastic materials is expressed as
follows [13–15]:

{dσ} = [D]{dε} − {C}dT (1)

where [D] is the elastic or plastic matrix, {C} is the temperature-dependent vector.
In the elastic zone:

[D] = [D]e (2)

{C} = {C}e = [D]e

(
{α}+

∂[D]−1
e

∂T
{σ}

)
(3)

where α is the linear expansion coefficient, T is the temperature.
In the plastic zone:

{D} = {D}e − [D]e

{
∂ f
∂σ

}{
∂ f
∂σ

}T
[D]e/S (4)

{C} = {C}ep = [D]ep

(
{α}+

∂[D]−1
e

∂T
{σ}

)
− [D]e

{
∂ f
∂σ

}{
∂ f0

∂T

}
/S (5)

S =

{
∂ f
∂σ

}τ

[D]e

{
∂ f
∂σ

}
+

{
∂ f0

∂εp

}τ{ ∂ f
∂σ

}
(6)

where f is yield function and f0 is yield stress function.
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3.1.2. Balance Equation

Considering a certain element of the structure, the equilibrium equations are
written as: [13–15]

{dF}e + {dR}e = [K]e{dδ}e (7)

[K]e =
∫
[B]

T
[D][B]dV (8)

{dR}e =
∫
[B]

T
{C}dTdV (9)

where {dF}e is an increment of the nodal force, {dR}e is an increment of of thermal
load, {dδ}e is displacement increment, [K]e is element stiffness matrix, [B] is the matrix of
connection strain, and node displacement increment.

[D] and {C} in Equations (8) and (9) can be substituted by [D]e and {C}e or [D]ep
and {C}ep in Section 3.1.1. The equilibrium equation of the entire component is obtained
as follow:

[K]{dδ} = {dF} (10)

where [K] is total stiffness matrix, {dF} is total load vector, are presented as follows:

[K] = ∑[K]e (11)

{dF} = ∑
(
{dF}e + {dR}e) (12)

3.1.3. Solution Procedure

Firstly, the temperature increment is loaded into the elements which divided by the
component. The displacement increment of each node {dδ} can be solved according to the
temperature increment. Thus, the strain increment {dε}e can be obtained by the following
formula [13–15]:

{dε}e = [B]{dδ}e (13)

The stress increment can be estimated by the relationship between stress and strain,
and the dynamic stress–strain change and the final deformation after welding is determined.

3.2. Geometry Model

The two plates were symmetrical along the welding line, to be simplified into a half
model for meshing and analysis. In the region near the welding zone, the fine grid blocks
have been adopted, other regions using the nonuniform upscaling method, as shown in
Figure 5. The entire model consisted of 117,780 nodes, 108,705 solid elements, and the
weld length was 300 mm. The X and Y directions are defined as plate width direction and
welding direction, respectively.
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3.3. Heat Source Model

Welding deformation trend, deformation degree, tensile strength, and crack sensitivity
were the most concerned targets in actual production, and most of the targets were closely
related to material properties and temperature thermal cycle curve of the welding process.
Therefore, the accuracy of the welding thermal cycle curve was the prerequisite to ensure
the reliability of other simulation results.

The 50 mm austenitic stainless steel EBW butt joint was obtained by a single pass.
Considering the effect of the EBW keyhole, the traditional heat source model (3D Gaus-
sian heat source) [16] and composite heat source (double ellipsoid heat source superim-
posed on 3D Gaussian heat source) [10,17] were investigated in this study, as presented in
Figures 6b and 7 respectively.
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Assuming that the double ellipsoid heat source energy is Qv1, the 3D Gaussian heat
source energy is Qv2 in Figure 7, then the heat flux distribution in the front half ellipsoid of
the double ellipsoid heat source model can be expressed by the following formula [16]:

q f (x, y, z) =
6
√

3 f f Qv1

abc f π
√

π
exp

(
−3x2

c f
2 −

3y2

a2 −
3z2

b2

)
, x ≥ 0 (14)

The heat flux distribution in the back half ellipsoid of the double ellipsoid heat source
model is:

qr(x, y, z) =
6
√

3 frQv1

abcrπ
√

π
exp

(
−3x2

cr2 −
3y2

a2 −
3z2

b2

)
, x<0 (15)
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The heat input of the front half ellipsoid in the double ellipsoid heat source model is:

2
∫ ∞

0 q f (x, y, z)dxdydz

= 2
6
√

3( f f Qv1)
abc f π

√
π

∫ ∞
0 exp

(
− 3x2

c f
2

)
dx
∫ ∞

0 exp
(
− 3y2

a2

)
dy
∫ ∞

0 exp
(
− 3z2

b2

)
dz

= 2× 6
√

3( f f Qv1)
abc f π

√
π
× c f√

3

√
π

2 ×
a√
3

√
π

2 ×
b√
3

√
π

2

= 1
2

(
f f Qv1

)
(16)

Similarly, the heat input of the back half ellipsoid in the double ellipsoid heat source
model is:

2
∫ ∞

0 qr(x, y, z)dxdydz

= 1
2 ( frQv1)

(17)

where a, b, c f and cr are shape parameters of the double ellipsoid heat source model, f f and
fr are heat flux distribution coefficient of front and back ellipsoids, in addition, f f + fr = 2.
During the EBW welding process, the focal position is in the 1/3 of the thickness for 50 mm
thick plate. Set a and b to 4 mm and 16 mm, respectively.

As presented in Figure 6b, the heat flux distribution of the 3D Gaussian heat source
model can be expressed by the following formula [18]:

q(r, z) =
9Qv2e3

π(e3 − 1)
× 1

(ze − zi)(re2 + reri + ri
2)

exp
(
−3r2

ro2

)
(18)

r0 = r0(z) = ri + (re − ri)
z− zi
ze − zi

(19)

where ze and zi are Z coordinate of the upper and lower surface of the welding plate, re
and ri are heat flux distribution radius of upper and lower surfaces. Geometric parameters
of heat source are repeatedly modified in accordance with the prospective target, finally set
re and ri to 6 mm and 3 mm, respectively.

Figure 7 illustrates the composite heat source, the heat input can be shown as follows:

QR = Qv1 + Qv2 (20)

3.4. Material Properties and Boundary Condition

The testing coupon was made of austenitic steel 316L, with a density at room tempera-
ture of 7.98 × 103 kg/m3 and a specific heat capacity of 0.502 J/(g·K). During the welding
simulation, as physical and mechanical properties of materials and material properties at
a high temperature need to be taken into account. Table 3 provides the thermophysical
properties of 316L at a high temperature. The thermophysical properties are obtained
through JMatPro (Sente Software, Guildford, UK).

It can be seen from Figure 8a that the weld center plane along the weld direction and
perpendicular to the upper surface of the plate was defined as the symmetrical constraint
plane in welding simulation settings. The clamping position depends on the actual welding
conditions, show as Figure 8b. The initial temperature was 20 ◦C. It was assumed that the
convection loss was 0 W/m2 in the vacuum. The heat density of the heat source was loaded
on the solid element, while the surface effect element was used to consider the boundary
radiation condition.

Thermal radiation loss was carried out by use of Stefan–Boltzmann’s Law, and radia-
tion heat transfer density can be expressed as:

q = σε
(

T4 − Tα
4
)

(21)
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where σ is constant, ε is surface radiation efficiency and the empirical values of 0.8, T is
workpiece temperature, Tα is ambient temperature.

Table 3. The thermophysical properties of 316L at high temperature.

Temperature
(◦C)

Thermal
Conductivity

Specific
Heat

(J/g·K)

Density
(kg/m3)

Coefficient
of Thermal
Expansion

(10−6 mm/K)

Elastic
Modulus

(GPa)

Poisson’s
Ratio

Yield
Strengths

(MPa)

Tensile
Strengths

Limit (MPa)
(1% Strain)

20 13.31 0.470 7966 15.24 195.1 0.267 278 325
200 16.33 0.508 7893 16.43 185.7 0.290 193 226
400 19.47 0.550 7814 17.44 172.6 0.322 154 180
600 22.38 0.592 7724 18.21 155.0 0.296 141 165
800 25.07 0.634 7630 18.83 131.4 0.262 130 153
900 26.33 0.655 7583 19.11 116.8 0.24 86 100

1000 27.53 0.676 7535 19.38 100.1 0.229 45 53
1100 28.67 0.698 7486 19.66 81.1 0.223 22 23
1200 29.76 0.719 7436 19.95 59.5 0.223 13 15
1420 31.95 0.765 7320 20.7 2.0 0.223 3 3.3
1460 320 0.765 7320 20.7 2.0 0.223 3 3.3
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3.5. Simulation Result
3.5.1. Temperature Field Simulation Results

Figures 9 and 10 are the transient temperature contours results of the 3D Gaussian heat
source and composite heat source model after welding for 5, 30, 60, and 100 s, respectively.
The upper temperature limited set as 1400 ◦C, which was the austenitic stainless steel
melting point, and the purple part in the temperature field results was the metal melting
state, namely the weld pool. It can be seen that after the heat source started to move, the
temperature at the heat source center on the test plate rose sharply to above the boiling
point temperature, the temperature around the weld rose unevenly, and the weld depth
was deepening. With the heat source moving, the electron beam just penetrated the plate,
and the molten pool reached a quasi-stationary state. With the heat source away, the
temperature of the test plate decreased rapidly, and the molten metal solidified to the weld.

The density of isotherms can reflect the temperature gradient on the test panel. It
can be seen from Figure 9 that the 3D Gaussian heat source had dense isotherms and a
large temperature gradient in front of the heat source but sparse isotherms and a slight
temperature gradient behind the heat source. The weld pool was cone-shaped in the
cross-section of the weld center. In conclusion, the energy distribution of the electron beam
was concentrated, forming a circle of long oval isotherms near the center, and the weld
pool and heat-affected zone were narrow.
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It is apparent from Figure 10 that the simulation results of the composite heat source
are similar to those of the 3D Gaussian heat source. The isotherms in front of the heat source
were dense, but the difference between them was that the bottom of the molten pool was
narrow, the weld seam was nail shaped, and the top was relatively wide. The weld pool
morphology simulated by the composite heat source was more consistent with the actual
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electron beam weld forming mechanism. That was when the electron beam moved, the
keyhole also moved with the beam current, the metal in front of the keyhole continuously
melted and evaporated rapidly under the heating effect of the keyhole and the molten
metal moved backward along both sides of the keyhole under the action of steam. Finally,
a weld formed with the heat source away. A circle of long oval isotherms was formed near
the center, and the weld pool and heat-affected zone were narrow. The simulation results
of the composite heat source had a strong energy concentration characteristics and could
better reflect the EBW keyhole compared with the 3D Gaussian heat source.

Figure 11 compares the cross-section temperature contour maps of the two simulation
results with the actual weldment. The temperature above 1400 ◦C in the figure (purplish-
red in the figure) was the simulated weld pool profile, indicated that the composite heat
source calculated weld pool was funnel-shaped, which was consistent with the actual weld
morphology. In summary, the simulation result of the composite heat source was more
reliable than the 3D Gaussian heat source.
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3.5.2. Extraction of Welding Thermal Cycle Curve

According to the different paths indicated in Figure 12, the welding thermal cy-
cle curves of different positions near the weld are obtained by simulation, as shown in
Figures 13a–d and 14a–d.
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Figures 13a,b and 14a,b are the welding thermal cycle curves simulation results of
two heat source models on the upper and lower surfaces of the sample from the weld
center to heat-affected zone. The several variation trends of the two simulation results were
nearly the same. The welding thermal cycle curve of the weld and its vicinity showed a
sudden upward trend in a short time with the approaching of the EBW heat source. The
temperature near the weld decreased rapidly, and the temperature reduction rate tended to
be slow with distance from the heat source. The temperature of the point far away from
the weld varied steadily, and the peak temperature was low. It was found that the peak
temperature of the thermal cycle curve of the lower surface was much lower than that of
the upper surface. All the conclusions above proved that EBW had the characteristics of
concentrated energy density and narrow weld, with the maximum heating/cooling rates
of 690 ◦C·s−1/557 ◦C·s−1 during welding.

Figures 13c and 14c are the simulation results in the welding direction. It can be seen
from the figure that the results of the two heat sources were alike. Each node’s temperature
and heat cycle curve were similar in a quasi-steady state—the temperature rose sharply
first and then decreased rapidly. It is worth noting that the cooling rate was significantly
lower than the heating rate due to the continuous effect of the welding heat source on the
plate and the low thermal conductivity of austenitic stainless steel, which could lead to
slow heat dissipation.

Figures 13d and 14d are the simulation results in the penetration direction. The peak
temperature of the node from top to bottom gradually decreased, but all higher than the
melting temperature of 1400 ◦C, the primary cause was the distance from the heat source.
The different shapes of the two welding heat sources had a slight impact on welding heat
cycle curves. The main difference was that the combined heat source cooling speed after
the heat source left was high. This phenomenon was probably due to a more narrow range
of the composite heat source than the 3D Gaussian heat source. Moreover, the temperature
change rate and temperature gradient of the welding heat cycle curve at different welding
positions determined the inhomogeneity of microstructure and mechanical properties.

3.5.3. The Stress–Strain Field Results

The above analysis indicated that the simulation results of the composite heat source
model were more approached the actual EBW process. Therefore, only the stress–strain
field results of the composite heat source and comparing it with the plate butt welding
residual stresses test will be discussed in this section. The findings could provide a reliable
theoretical basis and experimental parameters for the numerical simulation of the tailor
welding process for the port stub.

In SYSWELD, the results of stress–strain were obtained by sequential coupling method
using the results of the temperature field. Figure 15a,b presents the distribution of nodes’
stresses at 60 s and 600 s after welding. During welding, the temperature around the weld
was high, leading to the expansion of metals. The temperature dropped after welding,
resulting in the tensile stresses with the metal cooling shrinkage. With the metal cooled
to room temperature, the residual stresses increased gradually. The weld and its nearby
residual stresses were higher, but the residual stresses far away from the weld were low,
and the maximum residual stresses existed at the bottom of the weld.

Figures 16 and 17 illustrate the residual stresses distribution in BC and AD directions
after welding. It can be seen from Figure 16a that the transverse residual stresses in the
weld area (within 7 mm from the weld centerline) were compressive stresses, and excess
of the weld area were tensile stresses. The tensile stresses reached a maximum stress of
175 MPa at about 24 mm away from the weld centerline and then decreased to 0 MPa.
The rigidly fixed samples caused the transverse restraint to be enormous, so most residual
stresses in the BC direction were tensile stresses. In Figure 16b, the longitudinal residual
stresses gradually transited from tensile stresses to compressive stresses in the BC direction
and gradually decreased to 0.
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Figure 17. The simulated distribution of residual stresses in AD direction: (a) transverse,
(b) longitudinal.

The transverse and longitudinal residual stresses resulted from the cooling shrinkage.
As shown in Figure 17a, the transverse residual stresses along the welding direction were
mainly compressive stresses. Furthermore, the compressive stresses increased at both
ends of the weld and then decreased. Figure 17b shows that the longitudinal residual
stresses changed from tensile stresses to compressive stresses. In the middle of the weld,
the longitudinal residual stresses were positive with the maximum value of 302 MPa, while
at both ends of the weld, it was compressive stresses. That change was owing to the
constraints at both ends.
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3.5.4. Welding Residual Stresses Test

Two 316L austenitic stainless steel thick plates with dimensions of 300 mm× 150 mm× 50 mm
were welded under the same constraint conditions and experimental parameters and then
cooled to room temperature. The residual surface stresses of the EBW plate were measured
by the blind hole method (Figure 18). The test uses the haokeneng stress detector HK21B
(Huayun Electromechanical Technology Co., Ltd., Shandong, China). Drill a small hole in
the position to be measured. Because the residual stress near the small hole is released, the
residual stress field near the hole area changes. As long as the strain change in the local
area is measured, the residual stress value at the borehole before release can be calculated.
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The measured strain in three directions are ε1, ε2, ε3, then the residual stress σmax, σmin
can be calculated by the following formulas [19]:

σmax =
ε1 + ε3
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+

√
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√
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2
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2
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√
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[
2ε2 − (ε1 + ε3)

2
]2

(23)

where A, B are the strain release coefficient, which can be obtained by Kirsch theory [19].
The residual stresses of BC and AD paths were collected and compared with the

simulation data above, as presented in Figure 19.
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From the graph above, we can see that the simulation results of the BC path on the
upper surface of the test plate were close to the test results, showing the same change
trend, which could verify the reliability and validity of the simulation method. The
maximum difference of stress was 15 MPa, except for the weld center. The residual stresses
measurement in the weld center needs to remove the weld reinforcement, which released
the residual stresses in the weld. Above all, the test results were consistent with the
variation of simulated residual stresses that verified the model’s reliability.

4. Mechanism Analysis of Microstructure Heterogeneity

In order to further examine the microstructure in different positions of the EBW
welded joint, the grain size and crystallographic orientation were analyzed using EBSD, the
sampling location as shown in Figure 3. The inverse pole figure (IPF) maps are presented
in Figure 20, indicating the orientation distribution of grains. It can be clearly observed that
the microstructure of the weld metal (WM) was composed of coarse columnar grains; this
was obviously different from the base metal (BM), which was composed of fine equiaxed
grains. Meanwhile, there are a certain number of twins in base metal. The WM was
concentrated toward the <001> and <101>, while the grain orientation of the base metal is
not obvious.

Metals 2022, 12, x FOR PEER REVIEW 17 of 19 
 

 

The kernel average misorientation (KAM) of the welded joint is shown in Figure 21. 
The KAM result can be used to characterize the degree of plastic deformation of the ma-
terial [20]. The brighter the color in the figure, the greater the residual stress. It can be 
found that low angle grain boundaries (2–10°, gray line in Figure 20a–c) had higher resid-
ual stress compared with high angle grain boundaries (>10°, black line in Figure 20a–c). 
The sample “a” at the top of the welded joint was easier to form stress concentration than 
the bottom sample “c”, possibly due to the greater heat input at the top. Compared with 
the simulation results, it can be seen from Figure 14d that the weld at the top is closer to 
the heat source, the temperature peak is higher, and the temperature change is more in-
tense. 

To obtain more microstructural information on the EBW weld joint, the distribution 
of the grain diameter and the misorientation angle were obtained by EBSD data, as shown 
in Figures 22 and 23. Figure 22 shows the equivalent grain size. The grain size of EBW 
welded joint WM is mainly distributed in the range of 15–80 μm and no obvious change 
in grain size can be seen from the statistical chart. Combined with the PIF map, the grain 
morphology at the bottom (sample c) is more slender than others without considering 
low-angle grain boundaries. This may be related to the higher cooling rate at the bottom, 
and is also confirmed by simulation results, Figure 14d. The distribution of misorientation 
angle in Figure 23 indicated that the grain boundary misorientation of WM is mainly dis-
tributed within 0.5–5°. The formation of the low angle grain boundary was due to the 
influence of thermal driving force on the grains by welding and the release of deformation 
stored energy in the grains [21]. 

 
Figure 20. IPF maps of: (a) “a” sample, (b) “b” sample, (c) “c” sample, (d) base metal. See the sam-
pling location of the EBSD samples in Figure 3. 

 
Figure 21. KAM maps of: (a) “a” sample, (b) “b” sample, (c) “c” sample. 
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sampling location of the EBSD samples in Figure 3.

The kernel average misorientation (KAM) of the welded joint is shown in Figure 21.
The KAM result can be used to characterize the degree of plastic deformation of the
material [20]. The brighter the color in the figure, the greater the residual stress. It can be
found that low angle grain boundaries (2–10◦, gray line in Figure 20a–c) had higher residual
stress compared with high angle grain boundaries (>10◦, black line in Figure 20a–c). The
sample “a” at the top of the welded joint was easier to form stress concentration than the
bottom sample “c”, possibly due to the greater heat input at the top. Compared with the
simulation results, it can be seen from Figure 14d that the weld at the top is closer to the
heat source, the temperature peak is higher, and the temperature change is more intense.

To obtain more microstructural information on the EBW weld joint, the distribution of
the grain diameter and the misorientation angle were obtained by EBSD data, as shown
in Figures 22 and 23. Figure 22 shows the equivalent grain size. The grain size of EBW
welded joint WM is mainly distributed in the range of 15–80 µm and no obvious change
in grain size can be seen from the statistical chart. Combined with the PIF map, the grain
morphology at the bottom (sample c) is more slender than others without considering
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low-angle grain boundaries. This may be related to the higher cooling rate at the bottom,
and is also confirmed by simulation results, Figure 14d. The distribution of misorientation
angle in Figure 23 indicated that the grain boundary misorientation of WM is mainly
distributed within 0.5–5◦. The formation of the low angle grain boundary was due to the
influence of thermal driving force on the grains by welding and the release of deformation
stored energy in the grains [21].
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5. Conclusions

1. Compared with the 3D Gaussian heat source, the combined heat sources simulation
was closer to the weld cross-section of the EBW 50 mm 316L butt welding.

2. The results showed that the welding thermal cycle curves of different positions in the
penetration direction are different, and EBW was a rapid heating and cooling process
with the maximum heating/cooling rates of 690 ◦C·s−1/557 ◦C·s−1 during welding.

3. The numerical and measurement results of the residual stresses showed a similar
trend (the maximum difference of stress was 15 MPa, except for the weld center),
confirming the reliability of the simulation results.

4. The differences in heating and cooling rates were the main reason for the inhomogene-
ity of microstructure and mechanical properties. The grains of the weld turned into
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a group of large columnar crystals. The inhomogeneities in microstructure mainly
showed that the sample at the top of the WM was easier to form stress concentration
than the bottom sample.
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