Phase Equilibria of CaO-SiO2-La2O3-Nb2O5 System in Reducing Atmosphere
Abstract
:1. Introduction
2. Experimental Method
2.1. Preparation of Slag Samples
2.2. Experimental Atmosphere Control
2.3. High Temperature Equilibrium Experiment
3. Results and Discussion
3.1. Equilibrium Phases and Phase Equilibria
3.2. Isothermal Phase Diagram at 1200 °C in Reducing Atmosphere
3.3. Practice Relevance of the Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Guo, C.S.; Li, M.; Liu, Z.G.; Zhang, D.L.; Gao, K. Present status and new ideas on utilization of Bayan Obo rare earth and niobium resource. Chin. Rare Earths 2014, 35, 96–100. [Google Scholar] [CrossRef]
- Wang, S.H.; Yang, Z.F.; Wang, Z.J. Study on niobium and rare earth occurrence state in Bayan Obo tailings. Nonferrous Met. Eng. 2019, 9, 60–66. [Google Scholar] [CrossRef]
- Liu, Y.B.; Wang, J.S.; Zhang, X.H.; Zhao, E.X.; Xue, Q.G.; She, X.F. Selective reduction of Baotou Nb-bearing iron ore concentrate. Iron Steel 2016, 51, 22–27. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Zhao, Z.W.; Dong, X.M.; An, W.H. Rare earth enrichment from iron concentrates of main and east orebodies of Bayan Obo by direct reduction and melting separation method. Chin. Rare Earths 2015, 35, 54–58. [Google Scholar] [CrossRef]
- Qu, S.G.; Mao, Y.J.; Zhong, X. Smelting Nb-Fe alloy from low and medium grade niobium concentrate by two-stage electric furnace process. Kuangye Gongcheng 1997, 17, 46–49. [Google Scholar]
- Fang, J.; Wang, Z.R.; Zhang, J.Y.; Zhang, Y.G.; Huang, Y.H.; Li, X.G. Experiment research on smelting of Baotou niobium ore with high iron content. J. Northeast. Univ. Nat. Sci. 1996, 17, 35–40. [Google Scholar]
- Qiu, J.Y.; Liu, C.J. Solid phase equilibrium relations in the CaO-SiO2-Nb2O5-La2O3 system at 1273 K. Metall. Mater. Trans. B 2018, 49, 69–77. [Google Scholar] [CrossRef]
- Qiu, J.Y.; Liu, C.J. Subsolidus phase relations in the CaO–SiO2–Nb2O5–La2O3 quarternary system at 1273 K. ISIJ Int. 2017, 57, 2107–2114. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.J.; Qiu, J.Y.; Sun, L.F. Liquidus and phase equilibrium in CaO-SiO2-Nb2O5-10% La2O3 system. ISIJ Int. 2018, 58, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.Y.; Liu, C.J.; Liu, Z.Y. Phase equilibria in medium basicity region of CaO-SiO2-Nb2O5-(5%, 10%, 15%) La2O3 system. Ceram. Int. 2019, 45, 2281–2288. [Google Scholar] [CrossRef]
- Qiu, J.Y.; Liu, C.J.; Liu, Z.Y.; Yu, Z. Phase equilibria in low basicity region of CaO-SiO2-Nb2O5-(5 wt%, 10 wt%, 15 wt%) La2O3 system. J. Rare Earths 2020, 38, 100–107. [Google Scholar] [CrossRef]
- Qiu, J.Y.; Liu, C.J.; Liu, Z.Y.; Zhu, D.Y.; Wang, Y.G. Phase equilibria in the system CaO–SiO2–Nb2O5–La2O3 at 1473 K with pO2=10−15.47 atm. Ceram. Int. 2020, 46, 7711–7718. [Google Scholar] [CrossRef]
- Qiu, J.Y.; Liu, C.J.; Liu, Z.Y.; Zhu, D.Y. Liquidus Phase Diagram of CaO-SiO2-La2O3-Nb2O5 system with w(La2O3) = 15 to 25 pct. Metall. Mater. Trans. B 2020, 51, 1190–1200. [Google Scholar] [CrossRef]
- Liu, C.J.; Qiu, J.Y.; Liu, Z.Y. Phase Equilibria in the System CaO-SiO2-La2O3-Nb2O5 at 1400 °C. Metals 2021, 11, 1892. [Google Scholar] [CrossRef]
- Shi, J.J.; Sun, L.F.; Qiu, J.Y.; Jiang, M.F. Phase equilibria of CaO-SiO2-5wt.%MgO-30 wt.%Al2O3-TiO2 system at 1400 °C and 1450 °C relevant to high Al2O3 Ti-bearing blast furnace slag system. J. Alloys Compd. 2017, 722, 25–32. [Google Scholar] [CrossRef]
- Le, T.H.; Malfliet, A.; Blanpain, B.; Guo, M.X. Phase Relations of the CaO-SiO2-Nd2O3 system and the implication for rare earths recycling. Metall. Mater. Trans. B 2016, 47, 1736–1744. [Google Scholar] [CrossRef]
- Kimura, H.; Endo, S.; Yajima, K.; Tsukihashi, F. Effect of oxygen partial pressure on liquidus for the CaO-SiO2-FeOx system at 1573 K. ISIJ Int. 2004, 44, 2040–2045. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.W.; Zhai, X.J.; Liu, K.R. A Concise Course of Metallurgical Physical Chemistry, 1st ed.; Chemical Industry Press: Beijing, China, 2007; p. 99. [Google Scholar]
- Hillert, M.; Sundman, B.; Wang, X.Z. An Assessment of the CaO-SiO2 System. Metall. Mater. Trans. B 1990, 21, 303–312. [Google Scholar] [CrossRef]
- Bozena, P.; Aleksandra, J.P.; Irena, S. Phase equilibria in the CaO–Nb2O5 system up to 1600 °C: New experimental results. Ceram. Int. 2019, 45, 1562–1568. [Google Scholar]
- Jongejan, A.; Wilkins, A.L. Phase relationships in the high-lime part of the system CaO-Nb2O5-SiO2. J. Less-Common Met. 1969, 19, 203–208. [Google Scholar] [CrossRef]
- Bai, Z.M.; Deng, Y.X. Physical Chemistry of Silicates, 1st ed.; Chemical Industry Press: Beijing, China, 2018; pp. 71–72. [Google Scholar]
- Liu, J.J.; Zhou, Y.P.; Li, S.L.; Feng, X. Physical Chemistry, 6th ed.; Higher Education Press: Beijing, China, 2017; pp. 237–241. [Google Scholar]
Slag No. | Composition, wt.% | |||
---|---|---|---|---|
CaO | SiO2 | Nb2O5 | La2O3 | |
1 | 29.13 | 30.92 | 33.28 | 6.57 |
2 | 27.78 | 28.38 | 32.82 | 11.02 |
3 | 28.36 | 25.03 | 36.27 | 10.34 |
4 | 22.94 | 19.66 | 47.49 | 9.91 |
5 | 20.55 | 25.25 | 48.31 | 5.89 |
6 | 25.70 | 16.05 | 47.59 | 10.66 |
7 | 17.98 | 24.90 | 45.28 | 11.84 |
8 | 28.30 | 49.24 | 12.24 | 10.22 |
9 | 15.21 | 5.74 | 70.07 | 8.98 |
10 | 15.79 | 21.28 | 58.16 | 4.77 |
Temperature/°C | H2 Gas Flow Rate/mL·min−1 | CO2 Gas Flow Rate/mL·min−1 | Oxygen Partial/atm |
---|---|---|---|
1200 | 500 | 0 | 10−15.0 |
1200 | 475 | 25 | 10−14.3 |
1200 | 450 | 50 | 10−13.7 |
1200 | 425 | 75 | 10−12.9 |
Slag No. | Phase | Ca | Si | Nb | La | O |
---|---|---|---|---|---|---|
1 | Liquid | 12.86 | 16.69 | 9.43 | 3.00 | 58.03 |
CaNb2O6 | 11.37 | 3.97 | 22.42 | — | 62.23 | |
CaSiO3 | 19.48 | 19.52 | 2.50 | — | 58.50 | |
2 | Liquid | 10.30 | 13.99 | 8.54 | 4.69 | 62.49 |
CaNb2O6 | 8.68 | 2.35 | 19.83 | — | 69.13 | |
CaSiO3 | 15.81 | 18.28 | 1.82 | — | 64.08 | |
LaNbO4 | 2.34 | 3.71 | 17.34 | 16.92 | 59.69 | |
3 | Liquid | 10.79 | 14.20 | 8.97 | 4.64 | 61.40 |
CaNb2O6 | 8.82 | 2.20 | 21.02 | — | 67.96 | |
CaSiO3 | 17.16 | 18.71 | 1.44 | — | 62.68 | |
LaNbO4 | 2.82 | 4.36 | 17.13 | 16.98 | 58.71 | |
4 | Liquid | 9.17 | 18.70 | 4.25 | 7.74 | 60.13 |
CaNb2O6 | 8.63 | 2.59 | 19.53 | — | 69.25 | |
CaSiO3 | 15.98 | 17.33 | 2.79 | — | 63.91 | |
5 | Liquid | 10.24 | 15.63 | 8.28 | 2.02 | 63.83 |
CaNb2O6 | 8.52 | 2.81 | 20.92 | — | 67.75 | |
CaSiO3 | 16.02 | 18.27 | 1.99 | — | 63.72 | |
SiO2 | 1.05 | 29.00 | — | — | 69.95 | |
6 | Liquid | 12.27 | 12.91 | 9.41 | 4.72 | 60.69 |
Ca2Nb2O7 | 14.36 | 1.06 | 18.88 | 2.03 | 63.67 | |
CaSiO3 | 17.92 | 18.94 | 1.33 | — | 61.81 | |
7 | Liquid | 9.62 | 15.79 | 8.38 | 2.93 | 63.28 |
CaNb2O6 | 8.02 | 1.71 | 21.88 | — | 68.39 | |
SiO2 | 1.13 | 29.14 | — | — | 69.73 | |
8 | Liquid | 9.74 | 22.70 | 1.15 | 8.32 | 58.09 |
CaSiO3 | 17.84 | 20.62 | 0.94 | — | 60.60 | |
SiO2 | 1.12 | 31.06 | — | — | 67.82 | |
9 | Liquid | 11.48 | 12.23 | 13.76 | 5.91 | 56.63 |
CaNb2O6 | 9.92 | 1.63 | 26.11 | — | 62.34 | |
LaNbO4 | 2.23 | 2.35 | 23.55 | 20.31 | 51.56 | |
10 | Liquid | 10.10 | 19.17 | 9.36 | 2.23 | 59.15 |
CaNb2O6 | 8.73 | 4.85 | 22.91 | — | 63.51 | |
SiO2 | 0.79 | 33.25 | — | — | 65.96 |
Coexist Phase Num. | Phase Equilibria | Slag No | Freedom Degree | Trajectory |
---|---|---|---|---|
3 | L+CN+CS | 1 | 1 | Curve |
L+CN+S | 7, 10 | 1 | Curve | |
L+CS+S | 8 | 1 | Curve | |
L+CN+LN | 9 | 1 | Curve | |
L+CS+C2N | 6 | 1 | Curve | |
4 | L+CN+CS+S | 5 | 0 | Point |
L+CN+CS+LN | 2, 3, 4 | 0 | Point |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Liu, Z.; Jiang, M. Phase Equilibria of CaO-SiO2-La2O3-Nb2O5 System in Reducing Atmosphere. Metals 2022, 12, 768. https://doi.org/10.3390/met12050768
Sun L, Liu Z, Jiang M. Phase Equilibria of CaO-SiO2-La2O3-Nb2O5 System in Reducing Atmosphere. Metals. 2022; 12(5):768. https://doi.org/10.3390/met12050768
Chicago/Turabian StyleSun, Lifeng, Zhengyue Liu, and Maofa Jiang. 2022. "Phase Equilibria of CaO-SiO2-La2O3-Nb2O5 System in Reducing Atmosphere" Metals 12, no. 5: 768. https://doi.org/10.3390/met12050768
APA StyleSun, L., Liu, Z., & Jiang, M. (2022). Phase Equilibria of CaO-SiO2-La2O3-Nb2O5 System in Reducing Atmosphere. Metals, 12(5), 768. https://doi.org/10.3390/met12050768