Effect of Surface Mechanical Attrition Treatment on Torsional Fatigue Properties of a 7075 Aluminum Alloy
Abstract
:1. Introduction
2. Material and Experimental Procedure
2.1. Material
2.2. Heat Treatment
2.3. SMAT Process
2.4. Microhardness
2.5. Fatigue Tests
3. Experimental Results
3.1. Microhardness Gradient
3.2. Fatigue Tests Results
3.2.1. S–N Curves
3.2.2. Macro-Fracture Analyses
3.2.3. Micro-Fracture Analyses
4. Analysis and Discussion
4.1. Fracture Mechanism
4.2. Effect of SMAT on Torsional Fatigue Properties
5. Conclusions
- AM-SMAT samples show superior fatigue strength only in the range of high stress levels. The detrimental effect of SMAT leads to the reduction in fatigue life under low stress levels. HT-SMAT samples have markedly higher fatigue lives under all the stress levels investigated in this work compared with HT samples, according to the analyses of the S–N data.
- The fracture mechanism of torsional fatigue tests can be described as follows: the micro-cracks initiate and propagate on the circumferential surface along maximum shear planes (either parallel or perpendicular to the axis of the samples), which is known as Stage I. In Stage II, the cracks change their directions to propagate along maximum principal stress planes (45° to the axis), due to the effect of principal stress.
- SMAT leads to a narrow damage zone on the lateral surface of sample and, therefore, results in a decreased number of longitudinal cracks. This phenomenon is related to the higher stress gradient level introduced by SMAT, which can hinder the initiation and propagation of longitudinal cracks and lead to increased fatigue lives. However, the rough surface and the acceleration of crack propagation, due to grain refinement, are regarded as detrimental factors, which lead to decreased fatigue lives in the low stress range.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benedetti, M.; Fontanari, V.; Scardi, P.; Ricardo, C.L.A.; Bandini, M. Reverse Bending Fatigue of Shot Peened 7075-T651 Aluminium Alloy: The Role of Residual Stress Relaxation. Int. J. Fatigue 2009, 31, 1225–1236. [Google Scholar] [CrossRef]
- Pandey, V.; Chattopadhyay, K.; Santhi Srinivas, N.C.; Singh, V. Role of Ultrasonic Shot Peening on Low Cycle Fatigue Behavior of 7075 Aluminium Alloy. Int. J. Fatigue 2017, 103, 426–435. [Google Scholar] [CrossRef]
- Maurel, P.; Weiss, L.; Grosdidier, T.; Bocher, P. How Does Surface Integrity of Nanostructured Surfaces Induced by Severe Plastic Deformation Influence Fatigue Behaviors of Al Alloys with Enhanced Precipitation? Int. J. Fatigue 2020, 140, 105792. [Google Scholar] [CrossRef]
- Kumar, S.; Chattopadhyay, K.; Singh, V.; Satyanarayana, D.V.V.; Kumar, V. Low Cycle Fatigue Life of the Alloy IN718 Enhanced through Surface Nanostructuring. Mater. Charact. 2020, 159, 1100666. [Google Scholar] [CrossRef]
- Dureau, C.; Novelli, M.; Arzaghi, M.; Massion, R.; Bocher, P.; Nadot, Y.; Grosdidier, T. On the Influence of Ultrasonic Surface Mechanical Attrition Treatment (SMAT) on the Fatigue Behavior of the 304L Austenitic Stainless Steel. Metal 2020, 10, 100. [Google Scholar] [CrossRef] [Green Version]
- Li, R.H.; Zhang, P.; Zhang, Z.F. Fatigue Cracking and Fracture Behaviors of Coarse-Grained Copper under Cyclic Tension-Compression and Torsion Loadings. Mater. Sci. Eng. A 2013, 574, 113–122. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, Q.; Shi, X.; Fei, B. Effect of Mean Shear Stress on Torsion Fatigue Failure Behavior of 2A12-T4 Aluminum Alloy. Int. J. Fatigue 2014, 67, 173–182. [Google Scholar] [CrossRef]
- Kumar, P.; Mahobia, G.S.; Chattopadhyay, K. Surface Nanocrystallization of β-Titanium Alloy by Ultrasonic Shot Peening. Mater. Today Proc. 2020, 28, 486–490. [Google Scholar] [CrossRef]
- Kumar, S.; Chattopadhyay, K.; Mahobia, G.S.; Singh, V. Hot Corrosion Behaviour of Ti–6Al–4V Modified by Ultrasonic Shot Peening. Mater. Des. 2016, 110, 196–206. [Google Scholar] [CrossRef]
- Wu, X.; Tao, N.; Hong, Y.; Xu, B.; Lu, J.; Lu, K. Microstructure and Evolution of Mechanically-Induced Ultrafine Grain in Surface Layer of AL-Alloy Subjected to USSP. Acta Mater. 2002, 50, 2075–2084. [Google Scholar] [CrossRef]
- Maleki, E.; Unal, O.; Kashyzadeh, K.R. Effects of Conventional, Severe, over, and Re-Shot Peening Processes on the Fatigue Behavior of Mild Carbon Steel. Surf. Coat. Technol. 2018, 344, 62–74. [Google Scholar] [CrossRef]
- Maleki, E.; Unal, O.; Reza Kashyzadeh, K. Fatigue Behavior Prediction and Analysis of Shot Peened Mild Carbon Steels. Int. J. Fatigue 2018, 116, 48–67. [Google Scholar] [CrossRef]
- Maleki, E.; Unal, O.; Reza Kashyzadeh, K. Surface Layer Nanocrystallization of Carbon Steels Subjected to Severe Shot Peening: Analysis and Optimization. Mater. Charact. 2019, 157, 109877. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, L.; Liu, L.; He, W.; Pan, X.; Nie, X.; Luo, S. Fatigue Strength Improvement in Ti-6Al-4V Subjected to Foreign Object Damage by Combined Treatment of Laser Shock Peening and Shot Peening. Int. J. Fatigue 2022, 155, 106581. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Lu, J.Z.; Ren, X.D.; Yao, H.B.; Yao, H.X. Effect of Laser Shock Processing on the Mechanical Properties and Fatigue Lives of the Turbojet Engine Blades Manufactured by LY2 Aluminum Alloy. Mater. Des. 2009, 30, 1697–1703. [Google Scholar] [CrossRef]
- Nalla, R.K.; Altenberger, I.; Noster, U.; Liu, G.Y.; Scholtes, B.; Ritchie, R.O. On the Influence of Mechanical Surface Treatments-Deep Rolling and Laser Shock Peening-on the Fatigue Behavior of Ti-6Al-4V at Ambient and Elevated Temperatures. Mater. Sci. Eng. A 2003, 355, 216–230. [Google Scholar] [CrossRef]
- Hassan, A.M. The Effects of Ball- and Roller-Burnishing on the Surface Roughness and Hardness of Some Non-Ferrous Metals. J. Mater. Process. Technol. 1997, 72, 385–391. [Google Scholar] [CrossRef]
- Gao, T.; Sun, Z.; Xue, H.; Retraint, D. Effect of Surface Mechanical Attrition Treatment on High Cycle and Very High Cycle Fatigue of a 7075-T6 Aluminium Alloy. Int. J. Fatigue 2020, 139, 105798. [Google Scholar] [CrossRef]
- Zhou, J.; Retraint, D.; Sun, Z.; Kanouté, P. Comparative Study of the Effects of Surface Mechanical Attrition Treatment and Conventional Shot Peening on Low Cycle Fatigue of a 316L Stainless Steel. Surf. Coat. Technol. 2018, 349, 556–566. [Google Scholar] [CrossRef]
- Sun, Z.; Retraint, D.; Baudin, T.; Helbert, A.L.; Brisset, F.; Chemkhi, M.; Zhou, J.; Kanouté, P. Experimental Study of Microstructure Changes Due to Low Cycle Fatigue of a Steel Nanocrystallised by Surface Mechanical Attrition Treatment (SMAT). Mater. Charact. 2017, 124, 117–121. [Google Scholar] [CrossRef]
- Zhou, J.; Sun, Z.; Kanouté, P.; Retraint, D. Effect of surface mechanical attrition treatment on low cycle fatigue properties of an austenitic stainless steel. Int. J. Fatigue 2017, 103, 309–317. [Google Scholar] [CrossRef]
- Cheung, K.P.; Silvanus, J.; Shi, S.Q.; Lu, J. Study on Mechanical Properties of 2024 Al Sheet Treated by SMAT. Adv. Mater. Res. 2011, 410, 257–262. [Google Scholar] [CrossRef]
- Roland, T.; Retraint, D.; Lu, K.; Lu, J. Fatigue Life Improvement through Surface Nanostructuring of Stainless Steel by Means of Surface Mechanical Attrition Treatment. Scr. Mater. 2006, 54, 1949–1954. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Q.; Xiao, L.; Sun, J. Torsion Fatigue Behavior of Pure Titanium with a Gradient Nanostructured Surface Layer. Mater. Sci. Eng. A 2016, 649, 359–368. [Google Scholar] [CrossRef]
- Gallitelli, D.; Retraint, D.; Rouhaud, E. Comparison between Conventional Shot Peening (SP) and Surface Mechanical Attrition Treatment (SMAT) on a Titanium Alloy. Adv. Mater. Res. 2014, 996, 964–968. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.; Lu, J. Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment. Mater. Sci. Eng. A 2004, 375, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Lei, W.; Yong, Y.; Yaming, W.; Ying, J. Effect of Nanocrystalline Surface and Iron-Containing Layer Obtained by SMAT on Tribological Properties of 2024 Al Alloy. Rare Met. Mater. Eng. 2015, 44, 1320–1325. [Google Scholar] [CrossRef]
- Akiniwa, Y.; Kimura, H.; Sasaki, T. Effect of Residual Stresses on Fatigue Strength of Severely Surface Deformed Steels by Shot Peening. Powder Diffr. 2009, 24, S37–S40. [Google Scholar] [CrossRef] [Green Version]
- Bagherifard, S.; Guagliano, M. Fatigue Behavior of a Low-Alloy Steel with Nanostructured Surface Obtained by Severe Shot Peening. Eng. Fract. Mech. 2012, 81, 56–68. [Google Scholar] [CrossRef]
- Rai, P.K.; Pandey, V.; Chattopadhyay, K.; Singhal, L.K.; Singh, V. Effect of Ultrasonic Shot Peening on Microstructure and Mechanical Properties of High-Nitrogen Austenitic Stainless Steel. J. Mater. Eng. Perform. 2014, 23, 4055–4064. [Google Scholar] [CrossRef]
- Li, R.H.; Zhang, Z.J.; Zhang, P.; Zhang, Z.F. Improved Fatigue Properties of Ultrafine-Grained Copper under Cyclic Torsion Loading. Acta Mater. 2013, 61, 5857–5868. [Google Scholar] [CrossRef]
- Wang, Y.M.; Ma, E. Strain Hardening, Strain Rate Sensitivity, and Ductility of Nanostructured Metals. Mater. Sci. Eng. A 2004, 375, 46–52. [Google Scholar] [CrossRef]
- Cheng, S.; Zhao, Y.H.; Zhu, Y.T.; Ma, E. Optimizing the Strength and Ductility of Fine Structured 2024 Al Alloy by Nano-Precipitation. Acta Mater. 2007, 55, 5822–5832. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, N.; Sha, G.; Ringer, S.P.; Starink, M.J. Microstructural Evolution, Strengthening and Thermal Stability of an Ultrafine-Grained Al-Cu-Mg Alloy. Acta Mater. 2016, 109, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Shi, X.; Bao, R.; Fei, B. Tension-Torsion High-Cycle Fatigue Failure Analysis of 2A12-T4 Aluminum Alloy with Different Stress Ratios. Int. J. Fatigue 2011, 33, 1066–1074. [Google Scholar] [CrossRef]
- Davoli, P.; Bernasconi, A.; Filippini, M.; Foletti, S.; Papadopoulos, I.V. Independence of the Torsional Fatigue Limit upon a Mean Shear Stress. Int. J. Fatigue 2003, 25, 471–480. [Google Scholar] [CrossRef]
- Kongiang, S.; Plookphol, T.; Wannasin, J.; Wisutmethangoon, S. Effect of the Two-Step Solution Heat Treatment on the Microstructure of Semisolid Cast 7075 Aluminum Alloy. Adv. Mater. Res. 2012, 488–489, 243–247. [Google Scholar] [CrossRef]
- Leng, L.; Zhang, Z.J.; Duan, Q.Q.; Zhang, P.; Zhang, Z.F. Improving the Fatigue Strength of 7075 Alloy through Aging. Mater. Sci. Eng. A 2018, 738, 24–30. [Google Scholar] [CrossRef]
- Mahathaninwong, N.; Plookphol, T.; Wannasin, J.; Wisutmethangoon, S. T6 Heat Treatment of Rheocasting 7075 Al Alloy. Mater. Sci. Eng. A 2012, 532, 91–99. [Google Scholar] [CrossRef]
- Tehinse, O. Response of 7075 and 7050 Aluminium Alloys to High Temperature Pre-Precipitation Heat Treatment. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 2014. [Google Scholar]
- Tao, N.R.; Wang, Z.B.; Tong, W.P.; Sui, M.L.; Lu, J.; Lu, K. An Investigation of Surface Nanocrystallization Mechanism in Fe Induced by Surface Mechanical Attrition Treatment. Acta Mater. 2002, 50, 4603–4616. [Google Scholar] [CrossRef]
- Bagheri Fard, S.; Guagliano, M. Effects of Surfaces Nanocrystallization Induced by Shot Peening on Material Properties: A Review. Frat. Ed Integrità Strutt. Ed Integrità Strutt. 2009, 3, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.; Telang, A.; Gill, A.S.; Suslov, S.; Idell, Y.; Zweiacker, K.; Wiezorek, J.M.K.; Zhou, Z.; Qian, D.; Mannava, S.R.; et al. Gradient Nanostructure and Residual Stresses Induced by Ultrasonic Nano-Crystal Surface Modification in 304 Austenitic Stainless Steel for High Strength and High Ductility. Mater. Sci. Eng. A 2014, 613, 274–288. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.W.; Hei, Z.K.; Liu, G.; Lu, J.; Lu, K. Formation of Nanostructured Surface Layer on AISI 304 Stainless Steel by Means of Surface Mechanical Attrition Treatment. Acta Mater. 2003, 51, 1871–1881. [Google Scholar] [CrossRef]
- Wang, Z.B.; Tao, N.R.; Li, S.; Wang, W.; Liu, G.; Lu, J.; Lu, K. Effect of Surface Nanocrystallization on Friction and Wear Properties in Low Carbon Steel. Mater. Sci. Eng. A 2003, 352, 144–149. [Google Scholar] [CrossRef]
- Kumar, S.A.; Raman, S.G.S.; Narayanan, T.S.N.S. Influence of Surface Mechanical Attrition Treatment Duration on Fatigue Lives of Ti-6Al-4V. Trans. Indian Inst. Met. 2014, 67, 137–141. [Google Scholar] [CrossRef]
- Tschegg, E.K. Mode III and Mode I Fatigue Crack Propagation Behaviour under Torsional Loading. J. Mater. Sci. 1983, 18, 1604–1614. [Google Scholar] [CrossRef]
- Beretta, S.; Foletti, S.; Valiullin, K. Fatigue Strength for Small Shallow Defects/Cracks in Torsion. Int. J. Fatigue 2011, 33, 287–299. [Google Scholar] [CrossRef]
- Tanaka, K.; Matsuoka, S.; Kimura, M. Fatigue Strength of 7075-T6 Aluminium Alloy Under Combined Axial Loading and Torsion. Fatigue Fract. Eng. Mater. Struct. 1984, 7, 195–211. [Google Scholar] [CrossRef]
- Forsyth, P.J.E. Fatigue Damage and Crack Growth in Aluminium Alloys. Acta Metall. 1963, 11, 703–715. [Google Scholar] [CrossRef]
- Serrano-Munoz, I.; Shiozawa, D.; Dancette, S.; Verdu, C.; Buffiere, J.Y. Torsional Fatigue Mechanisms of an A357-T6 Cast Aluminium Alloy. Acta Mater. 2020, 201, 435–447. [Google Scholar] [CrossRef]
- Murakami, Y.; Fukushima, Y.; Toyama, K.; Matsuoka, S. Fatigue Crack Path and Threshold in Mode II and Mode III Loadings. Eng. Fract. Mech. 2008, 75, 306–318. [Google Scholar] [CrossRef] [Green Version]
- Murakami, Y.; Takahashi, K.; Kusumoto, R. Threshold and Growth Mechanism of Fatigue Cracks under Mode II and III Loadings. Fatigue Fract. Eng. Mater. Struct. 2003, 26, 523–531. [Google Scholar] [CrossRef]
- Wang, Q.; Yin, Y.; Sun, Q.; Xiao, L.; Sun, J. Gradient Nano Microstructure and Its Formation Mechanism in Pure Titanium Produced by Surface Rolling Treatment. J. Mater. Res. 2014, 29, 569–577. [Google Scholar] [CrossRef]
- Singh, V.; Pandey, V.; Kumar, S.; Srinivas, N.C.S.; Chattopadhyay, K. Effect of Ultrasonic Shot Peening on Surface Microstructure and Fatigue Behavior of Structural Alloys. Trans. Indian Inst. Met. 2016, 69, 295–301. [Google Scholar] [CrossRef]
- Jiang, H.; Bowen, P.; Knott, J.F. Fatigue Performance of a Cast Aluminium Alloy Al-7Si-Mg with Surface Defects. J. Mater. Sci. 1999, 34, 719–725. [Google Scholar] [CrossRef]
- Bag, A.; Delbergue, D.; Bocher, P.; Lévesque, M.; Brochu, M. Statistical Analysis of High Cycle Fatigue Life and Inclusion Size Distribution in Shot Peened 300M Steel. Int. J. Fatigue 2019, 118, 126–138. [Google Scholar] [CrossRef]
- Závodská, D.; Guagliano, M.; Bokůvka, O.; Trško, L. Fatigue Resistance of Low Alloy Steel after Shot Peening. Mater. Today Proc. 2016, 3, 1220–1225. [Google Scholar] [CrossRef] [Green Version]
- Aboulkhair, N.T.; Maskery, I.; Tuck, C.; Ashcroft, I.; Everitt, N.M. Improving the Fatigue Behaviour of a Selectively Laser Melted Aluminium Alloy: Influence of Heat Treatment and Surface Quality. Mater. Des. 2016, 104, 174–182. [Google Scholar] [CrossRef]
- Chung, C.S.; Kim, J.K.; Kim, H.K.; Kim, W.J. Improvement of High-Cycle Fatigue Life in a 6061 Al Alloy Produced Byequal Channel Angular Pressing. Mater. Sci. Eng. A 2002, 337, 39–44. [Google Scholar] [CrossRef]
Cr | Cu | Fe | Mg | Mn | Si | Ti | Zn | Al |
---|---|---|---|---|---|---|---|---|
0.18–0.28 | 1.2–2.0 | 0.50 | 2.1–2.9 | 0.30 | 0.40 | 0.20 | 5.1–6.1 | Balance |
Parameter | σ'f | b | |
---|---|---|---|
Material State | |||
AM | 606.47 | −0.092 | |
AM-SMAT | 1396.69 | −0.160 | |
HT | 534.56 | −0.095 | |
HT-SMAT | 640.62 | −0.093 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Retraint, D.; Gao, P.; Xue, H.; Gao, T.; Sun, Z. Effect of Surface Mechanical Attrition Treatment on Torsional Fatigue Properties of a 7075 Aluminum Alloy. Metals 2022, 12, 785. https://doi.org/10.3390/met12050785
Li Y, Retraint D, Gao P, Xue H, Gao T, Sun Z. Effect of Surface Mechanical Attrition Treatment on Torsional Fatigue Properties of a 7075 Aluminum Alloy. Metals. 2022; 12(5):785. https://doi.org/10.3390/met12050785
Chicago/Turabian StyleLi, Yizhuo, Delphine Retraint, Pengfei Gao, Hongqian Xue, Tao Gao, and Zhidan Sun. 2022. "Effect of Surface Mechanical Attrition Treatment on Torsional Fatigue Properties of a 7075 Aluminum Alloy" Metals 12, no. 5: 785. https://doi.org/10.3390/met12050785
APA StyleLi, Y., Retraint, D., Gao, P., Xue, H., Gao, T., & Sun, Z. (2022). Effect of Surface Mechanical Attrition Treatment on Torsional Fatigue Properties of a 7075 Aluminum Alloy. Metals, 12(5), 785. https://doi.org/10.3390/met12050785