New Insights into Fabrication of Al-Based Foam with Homogeneous Small Pore-Structure Using MgCO3/Zn Composite Powder as a Foaming Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Decomposition Experiments of MgCO3/Zn Composite Powder
2.3. Fabrication of Al-Based Foams
3. Results and Discussion
3.1. Decomposition Performance of the MgCO3/Zn Composite Powder
3.2. Decomposition Kinetics of the MgCO3/Zn Composite Powder
3.3. The Characterization of Pore-Structure
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lefebvre, L.P.; Banhart, J.; Dunand, D.C. Porous metals and metallic foams: Current status and recent developments. Adv. Eng. Mater. 2008, 10, 775–787. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhu, D.F.; Wu, Y.; Liu, X.J.; Jiang, S.H.; Nieh, T.G.; Lu, Z.P. New insight into the fabrication of Mg-X alloy foams with cellular structure via a gas release reaction powder metallurgy route. J. Iron Steel Res. Int. 2021, 28, 125–132. [Google Scholar] [CrossRef]
- Gibson, L.J. Mechanical behavior of metallic foams. Annu. Rev. Mater. Sci. 2000, 30, 191–227. [Google Scholar] [CrossRef]
- Körner, C.; Singer, R.F. Processing of metal foams-challenges and opportunities. Adv. Eng. Mater. 2000, 2, 159–165. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, D.F.; Hou, S.; Yang, D.H.; Nieh, T.G.; Lu, Z.P. Cellular structure and energy absorption of Al-Cu alloy foams fabricated via a two-step foaming method. Mater. Des. 2020, 196, 109090. [Google Scholar] [CrossRef]
- Ammarullah, M.I.; Afif, I.Y.; Mula, M.I.; Winarni, T.I.; Tauviqirrahman, M.; Akbar, I.; Basri, H.; van der Heide, E.; Jamari, J. Tresca stress simulation of metal-on-metal total hip arthroplasty during normal walking activity. Materials 2021, 14, 7554. [Google Scholar] [CrossRef]
- Zhao, W.; He, S.Y.; Zhang, C.; Li, Y.X.; Zhang, Y.; Dai, G. Generation of a strength gradient in Al-Cu-Ca alloy foam via graded aging treatment. Metals 2022, 12, 423. [Google Scholar] [CrossRef]
- Yang, D.H.; Wang, H.; Guo, S.S.; Chen, J.Q.; Xu, Y.M.; Lei, D.; Sun, J.P.; Wang, L.; Jiang, J.H.; Ma, A.B. Coupling effect of porosity and cell size on the deformation behavior of Al alloy foam under quasi-static compression. Materials 2019, 12, 951. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Wang, H.; Yang, D.H.; Ye, F.; Lu, Z.P. Effects of scandium additions on mechanical properties of cellular Al-based foams. Intermetallics 2012, 28, 71–76. [Google Scholar] [CrossRef]
- Duarte, I.; Vesenjak, M.; Krstulovic-Opara, L. Variation of quasi-static and dynamic compressive properties in a single aluminium foam block. Mater. Sci. Eng. A 2014, 616, 171–182. [Google Scholar] [CrossRef]
- Shi, P.; Liu, S.Y.; Nie, H.L.; Lu, G.X.; Li, Y.L. Study of cell irregularity effects on the compression of closed-cell foams. Int. J. Mech. Sci. 2018, 135, 215–225. [Google Scholar] [CrossRef]
- Yang, D.H.; Chen, J.Q.; Wang, H.; Jiang, J.H.; Ma, A.B.; Lu, Z.P. Effect of decomposition kinetics of titanium hydride on the Al alloy melt foaming process. J. Mater. Sci. Technol. 2015, 31, 361–368. [Google Scholar] [CrossRef]
- Stepura, G.; Rosenband, V.; Gany, A. A model for the decomposition of titanium hydride and magnesium hydride. J. Alloys Compd. 2012, 513, 159–164. [Google Scholar] [CrossRef]
- He, S.Y.; Jiang, Z.R.; Dai, G.; Zhang, Y.; Gong, X.L. Manipulation of TiH2 decomposition kinetics for two steps foaming method. Adv. Eng. Mater. 2014, 16, 966–971. [Google Scholar] [CrossRef]
- Luo, H.J.; Lin, H.; Chen, P.H.; Yao, G.C. Decomposition behavior of titanium hydride treated by surface oxidation. Rare Metals 2015, 34, 28–33. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.M.; Zhou, B.C.; Yang, D.H.; Wu, Y.; Liu, X.J.; Lu, Z.P. Mold-filling ability of aluminum alloy melt during the two-step foaming process. J. Mater. Sci. Technol. 2016, 32, 509–514. [Google Scholar] [CrossRef]
- Sanders, J.P.; Gallagher, P.K. Kinetic analyses using simultaneous TG/DSC measurements Part II: Decomposition of calcium carbonate having different particle sizes. J. Therm. Anal. Calorim. 2005, 82, 659–664. [Google Scholar] [CrossRef]
- Chang, C.Y.; Yang, S.Y.; Chan, J.C.C. Solubility product of amorphous magnesium carbonate. J. Chin. Chem. Soc. 2021, 68, 476–481. [Google Scholar] [CrossRef]
- Bhosale, D.; Devikar, A.; Sasikumar, S.; Kumar, G.S.V. Foaming Mg alloy and composite using MgCO3 blowing agent. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2021, 52, 931–943. [Google Scholar] [CrossRef]
- Chirico, C.; Tsipas, S.A.; Wilczynski, P.; Gordo, E. Beta titanium alloys produced from titanium hydride: Effect of alloying elements on titanium hydride decomposition. Metals 2020, 10, 682. [Google Scholar] [CrossRef]
- Ji, H.B.; Zu, G.Y.; Yao, G.C.; Liu, L.T. On the silica-coated surface of magnesium carbonate particles. J. Northeast. Univ. 2009, 30, 701–703. [Google Scholar]
- Nava, M.G.; Cruz-Ramírez, A.; Rosales, M.A.S.; Gutiérrez-Pérez, V.H.; Sánchez-Martínez, A. Fabrication of aluminum alloy foams by using alternative thickening agents via melt route. J. Alloys Compd. 2017, 698, 1009–1017. [Google Scholar] [CrossRef]
- Chu, X.M.; Wang, H.; He, S.Y.; He, D.P. Study on fabrication of shaped Al alloy foam by two-step foaming method. Int. J. Mod. Phys. B 2009, 23, 972–977. [Google Scholar] [CrossRef]
- Wei, Y.S.; Chu, X.M.; Wang, H.; Ding, L.; He, S.Y.; He, D.P. Pores and spherel structure aluminium and alloy foamed technology with viscosity-controlling agent calclum carbonate. Mater. Sci. Technol. 2010, 18, 429–433. [Google Scholar]
- Qu, Y.R.; Liu, S.A.; Wu, H.C.; Li, M.L.; Tian, H.C. Tracing carbonate dissolution in subducting sediments by zinc and magnesium isotopes. Geochim. Cosmochim. Acta 2022, 319, 56–72. [Google Scholar] [CrossRef]
- Wang, H.; Li, R.; Wu, Y.; Chu, X.M.; Liu, X.J.; Nieh, T.G.; Lu, Z.P. Plasticity improvement in a bulk metallic glass composed of an open-cell Cu foam as the skeleton. Compos. Sci. Technol. 2013, 75, 49–54. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Meng, Q.; Wang, T.; Chu, X.; Fan, A.; Wang, H. New Insights into Fabrication of Al-Based Foam with Homogeneous Small Pore-Structure Using MgCO3/Zn Composite Powder as a Foaming Agent. Metals 2022, 12, 786. https://doi.org/10.3390/met12050786
Wang X, Meng Q, Wang T, Chu X, Fan A, Wang H. New Insights into Fabrication of Al-Based Foam with Homogeneous Small Pore-Structure Using MgCO3/Zn Composite Powder as a Foaming Agent. Metals. 2022; 12(5):786. https://doi.org/10.3390/met12050786
Chicago/Turabian StyleWang, Xianzhen, Qingxuan Meng, Tianze Wang, Xuming Chu, Aiqin Fan, and Hui Wang. 2022. "New Insights into Fabrication of Al-Based Foam with Homogeneous Small Pore-Structure Using MgCO3/Zn Composite Powder as a Foaming Agent" Metals 12, no. 5: 786. https://doi.org/10.3390/met12050786
APA StyleWang, X., Meng, Q., Wang, T., Chu, X., Fan, A., & Wang, H. (2022). New Insights into Fabrication of Al-Based Foam with Homogeneous Small Pore-Structure Using MgCO3/Zn Composite Powder as a Foaming Agent. Metals, 12(5), 786. https://doi.org/10.3390/met12050786