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Abstract: In this study, isothermal single-pass forming doformation of forged 18CrNiMo7-6 alloy
steel was carried out by Gleeble-3500 thermal simulation testing machine. The constitutive equations
and processing maps with parameters of deformation temperature and strain rate were established.
The results show that the optimum hot deformation parameters are temperature 1050 ◦C, strain rate
0.1 s–1 with the peak power efficiency being 0.432. The mechanism of grain refinement during hot
compression was also characterized by electron backscatter diffraction (EBSD). The results show that
continuous dynamic recrystallization (CDRX), discontinuous dynamic recrystallization (DDRX) and
grain growth are the main microstructure evolution mechanisms during hot working. The rotation of
sub-grains under CDRX mechanism is the main factor for the formation of new grains. In addition,
the DDRX mechanism is formed by the bulging of HAGBs at the grain boundary triple junction of the
original grains, and the CDRX mechanism forms finer grains. The study also found that temperature
affected the organization evolution mechanism, the DDRX mechanism plays a leading role when the
temperature is low. With the increase of deformation temperature, CDRX begins to play a leading
role and forms finer grains. When the deformation temperature rises to 1150 ◦C, the grains continue
to grow at a higher temperature.

Keywords: 18CrNiMo7-6 alloy steel; isothermal single-pass doformation; constitutive equations;
processing map; recrystallization mechanism

1. Introduction

The surface hardening 18CrNiMo7-6 steel has the main characteristics of high wear
resistance, good fatigue performance and high cost performance [1]. As a widely used
carburizing alloy in wind turbine gear, it has industrial application value [2]. Conventional
18CrNiMo7-6 alloys produce fine dispersed AlN and NbC by adding a small amount of
aluminum and niobium, pinning grain boundaries to prevent grain boundary from moving
so as to achieve the purpose of grain refinement. In addition, Al is insoluble in carbides,
which can delay the formation of cementite and stabilize the retained austenite in the matrix.
The contents of Cr and Mo are added to the steel, which produces carbides; they hinder C
diffusion but they are necessary for the surface hardness and carburizing depth [3,4]. Ni is
a stable austenite element, which replaces Mn in steel and reduces austenite transformation
temperature, increasing the possibility of C enrichment in austenite [5].

The final grain size of the alloy determines the mechanical properties. During hot
working of 18CrNiMo7-6 alloy steel, forming thermodynamic parameters such as temper-
ature, strain rate, and deformation degree has significant influence on the deformation
behavior [6,7]. The dynamic recrystallization counteracts strain hardening caused by
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material machining and results in grain refinement [6–11]. However, dynamic recovery
occurs during hot deformation, which reduces dislocation density, competes with dynamic
recrystallization, and hinders grain refinement.

In recent years, scholars have conducted a lot of research in the field of metal hot
deformation behavior. Prasad [12] proposed the instability criterion based on the dynamic
material model (DMM) [13], and established the processing map under the corresponding
deformation conditions. The process map can clearly point out the instability zone in
the process of metal hot deformation, which can optimize the process parameters of heat
treatment and ultimately improve the system properties of materials. Therefore, to study
the hot working process of metal, it is necessary to establish the process map and study
the microstructure evolution behavior in the process of hot deformation. M.G. Jiang [14]
believes that the change of matrix texture during extrusion is mainly caused by twins
and subsequent CDRX and DDRX, and the process parameters such as temperature in
the deformation can also affect them. Therefore, the study of microstructure evolution
during hot deformation and the establishment of processing map are the key to the study
of metal processing technology. However, previous researches on 18CrNiMo7-6 alloy steel
tend to study the influence of its chemical composition on alloy properties, and there are
few investigations to report the microstructure evolution of alloy materials during hot
deformation. In this paper, the single-pass thermal doformation test of 18CrNiMo7-6 alloy
steel were carried out. The constitutive equation of peak stress in the process of hot defor-
mation was established, and the processing map under various strain variables were drawn.
The mechanism of dynamic recrystallization (DRX) during hot deformation was observed
by electron backscatter diffraction (EBSD). Finally, this paper determined the optimal hot
deformation process conditions of alloy materials, and studied the microstructure evolution
and recrystallization mechanism during hot deformation.

2. Experimental

The raw materials were machined into cylinders with Φ8 mm × 12 mm and the
Gleeble-3500 test machine was used to perform isothermal single-pass doformation ex-
periments, the nominal chemical composition (wt%) of 18CrNiMo7-6 steel is as follows:
C 0.17, Si 0.20 Cr 1.66, Ni 1.60, Mo 0.28, Mn 0.69, Cu 0.04, and Nb 0.03; the balance is Fe
(mass%). To prevent the oxidation of the sample during high temperature deformation,
the test sample was vacuumized before being heated. The tantalum foil with thickness of
0.1 mm is placed on both ends of the specimen to reduce friction between the specimen and
the stock and to make the specimen deformation uniform during the test. The specimens
were heated to 1200 ◦C at a heating rate of 10 ◦C·s−1 and then insulated for 5 min. The
experimental specimens was cooled down to the experimental temperature at a cooling
rate of 5 ◦C·s−1 and kept for 30 s, and then the single-pass isothermal doformation exper-
iment was conducted. Figure 1a shows the procedure of hot doformation test. After the
doformation test, the specimens were quenched to retain the high temperature deformed
microstructure under different deformation conditions. The quenched specimens were
cut perpendicular to the doformation axis and then electrolytically polished. JSM-700F
SEM scanning electron microscope with Hikari XP EBSD system was used to observe the
microstructure of the specimen with a step length of 0.13 µm. Thin plate specimen of alloy
8 mm × 5 mm × 3 mm, processed by molybdenum wire cutting machine. Figure 1b is the
schematic diagram of sample size and test direction.
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Figure 1. (a) Schematic diagram illustrating sequence of hot doformation tests, (b) sample size and 
test direction. 
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3. Results and Discussion
3.1. Correction of Friction and Temperature

In the process of single-pass doformation, the friction between the specimens and the
tungsten carbide indenter cannot be completely eliminated by the tantalum chip, resulting
in the detected flow stress value greater than the real value. Therefore, a friction correction
model should be introduced to correct the flow curve [15]:
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where σi is the friction correction flow stress; σ is measured flow stress; ε is the strain, f is
the friction factor; r0 and h0 are the initial radius heights of the specimen, respectively.
According to Ebrahimi [16], friction factor f can be computed by the following equation:

f = 4
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4√
3
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b = 4
(rm−rs)h

r0(h 0−h)3/2 (3)

where h is the height of the sample after doformation; rm is maximum radius of the
compressed specimen; rs is the section radius of the specimen after doformation; b is the
barrel parameter. Figure 2a,b shows the corrected flow stress curve. It can be seen that
the flow stress after friction correction is lower than the measured flow stress, and the
friction correction value increases with the increase of deformation degree. The decrease of
deformation temperature or the increase of strain rate will increase the influence of friction
on flow stress.

In the hot deformation experiment, the adiabatic heating phenomenon caused by the
rapid thermal deformation process will lead to the measured value of flow stress smaller
than the real value. The following equation is used to correct the flow stress value [15]:

σt = σi +
0.95η

ρCp

(∫ ε

0
σidε

)(
dσi

dT

)
.
ε,ε

(4)

where ρ is the density of the alloy; Cp is the specific heat capacity; η is the adiabatic
correction factor. It can be calculated by the following equations [17]:

η =
(
1 + (Hε)/

(
xwρCp

.
ε
))−1 (5)

H = 1/[xw/Kw+1/HTC + xD/KD] (6)
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where xw is half height value of specimen; xD is the length of the uniform temperature
position between the mold surface and inside; Kw is specimen thermal conductivity; KD is
die thermal conductivities; HTC is the interface heat-transfer coefficient. The parameters in
the above formula are shown in Table 1. When the strain rate is lower than 1 s−1, the effect
of adiabatic temperature rise can be ignored, but the effect is more obvious at high strain
rate [15]. In this paper, the flow stress curve at strain rate 1 s−1 and 5 s−1 will be further
corrected on the basis of friction coefficient correction. The revised flow stress curves are
shown in Figure 2c,d.
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Table 1. Adiabatic correction parameters [16,17].

Parameter Value

ρ 7870 (kg/cm3)
xD 0.015 (m)
Cp 460 (J/kg•K)
Kw 38 (W•m/K)
KD 21 (W•m/K)

HTC 25,000 (W/m2•K)
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3.2. Flow Behavior

The hot deformation flow stress curves of 18CrNiMo7-6 alloy steel under various
temperatures and strain rates were studied experimentally Figure 2 shows the flow curves
under various machining parameters, and flow curves show that the value of true stress
is correlated with deformation temperature and rate, and is inversely proportional to
temperature and directly proportional to rate. This is due to the fact that the increase of
strain rate, dislocation density and work hardening, which make the flow stress increase.
When the temperature increases, the resistance of dislocation movement affected by thermal
activation decreases significantly, resulting in the decrease of flow stress [18].

It is generally believed that dynamic softening and work hardening are two competing
complex mechanisms during the process of hot deformation. At the initial stage of ma-
chining, the increase of deformation results in greater misorientation, increased dislocation
resistance and obvious work hardening. As deformation continues, dynamic recovery and
recrystallization mechanisms begin, competing with work hardening, and flow stresses do
not increase or decrease [19].

The energy storage of deformation in the material continues to increase with the
process of deformation, leading to intensified atomic movement, and the dislocated atoms
return to normal arrangement, eliminating lattice distortion, and the material dynamic
recovery (RDV) occurs at this time. When the test temperature increases, the dynamic
recrystallization (RDX) of the material occurs, and the combined effect of the two makes
the work hardening of the material weaken [20].

It can be seen from Figure 2 that under the condition of high temperature and low
strain rate, The flow curves exhibit the pronounced stress peaks that are indicative of the
occurrence of DRX. Figure 3a is the flows stress curve when the deformation temperature
is 1050 ◦C and the deformation rate is 0.01 s−1. The flow stress curve showed obvious
dynamic recrystallization characteristics. When the flow stress reached the peak value, the
flow stress curve decreased significantly with the increase of strain. From the perspective
of slope, the slope of the flow stress curve was 0 when the strain reached the peak strain,
and the peak stress was 58.14 MPa. However, in the case of low temperature or high strain
rate, Figure 3b shows the flow stress curve when the deformation temperature is 900 ◦C
and the deformation rate is 0.1 s−1. The shapes of the flow curves suggest that the only
restoration mechanism in the steel is DRV and that DRX has not been initiated. However,
JONAS [21] believes that the strain hardening curve of the specimen was curved, indicating
that DRX occurred. The steady state stress is calculated as the peak stress. When the
quadratic differential value of the flow stress curve is 0, the change rate is the smallest, and
the corresponding stress is the peak stress. At this time, the peak stress is 141.80 mPa.
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(c) Peak stress under various parameters The above method was used to further study the relationship
between different temperatures and strain rates and peak stress. The results are shown in (c). The
peak stress increases with the increase of strain rate and decreases with the increase of temperature.

3.3. Constitutive Equation of Hot Deformation

The establishment of constitutive equations can obviously show the relationship
between hot working parameters and high temperature mechanical properties of materials.
The hyperbolic sine function Arrhenius equation proposed by Sellars and Tegart [22–25] is
widely used in high temperature deformation of materials. These expressions Equations (7)–(9)
are as follows:

.
ε = Aσn1exp(

−Q
RT

), ασ < 0.8 (7)

.
ε = A exp(βσ) exp(

−Q
RT

), ασ > 1.2 (8)

.
ε = A

[
sin h(ασ)n]exp(

−Q
RT

), (for all) (9)

where T is the Kelvin temperature (K), R is the gas constant (8.314 J mol−1•K−1),
.
ε is the

strain rate (s−1), Q is the activation energy (J•mol−1), and σ is the flow stress (mPa) and
its value is the peak stress. And A, n1, n, α, and β are material constants, and the strain
factor α = β/n1. The following can be obtained by separately calculating the logarithms of
the above Equations:

ln
.
ε = n1ln σ + ln B (10)

ln
.
ε = βσ+ ln B′ (11)

ln
.
ε = ln A + n ln[sin h (ασ)] − Q

RT
(12)

It can be seen from Equations (3)–(5) that ln
.
ε− ln σ, ln

.
ε− σ and ln

.
ε− ln[sin h (ασ)]

all follows a linear relationship, and constants α, β and n are the slopes of the fitting lines.
The activation energy Q can be determined from Equation (13) [26].

Q = Rn
{

∂ln[sin h (ασ)]

∂(1/T)

}
.
ε

(13)

The Zener–Hollomon parameter (Z parameter) first proposed by Zener and Hol-
lomo [27–29] was used to represent the synergistic effect of deformation temperature and
strain rate on deformation behavior:
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After taking the logarithm of the above Equations, the following linear relations can be
obtained: ln

.
ε− ln σ, ln

.
ε− σ, ln

.
ε− ln[sin h(ασ)], ln[sin h(ασ)]−1000/T and lnZ−[sin h(ασ)]

were displayed in Figure 4.
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According to calculations, the values of the material constants are obtained as n1 = 7.57,
β = 0.072, α = β/n1 = 0.0095, Q = 350,307.94 J/mol, A = 1.10 × 1013. Therefore, the hot
deformation constitutive equation of 18CrNiMo7-6 alloy steel can be expressed as follows:

.
ε = 1.10 × 1013[sin h (0.0095σ)5.55] exp(

−350, 307.94
RT

) (15)

The hyperbolic sine function can be expanded by mathematical transformation and
Equation (10) can be written as follows:

σ
( .
ε, T
)
=

(
1
α

)
ln
{
(Z/A)1/n +

[
(Z/A)2/n + 1

]1/2
}

(16)

Equation (16) can be used to estimate the flow stress under high temperature deforma-
tion. Parameters in the Arrhenius model established by peak flow stress and correspond-
ing temperature and strain rate data of 18CrNiMo7-6 alloy steel are substituted into the
Equation (16) and the Stress prediction Equation can be written as:

σ
( .
ε, T
)
=

(
1

0.0095

)
ln

{(
Z/1.10 × 1013

)1/5.55
+

[(
Z/1.10 × 1013

)2/5.55
+ 1

]1/2
}

(17)

where Z =
.
εexp( 350,307.94

RT

)
.

Comparing the predicted peak stress with the experimental peak stress, the error of
the fitting degree of each peak stress is less than 1%, and the relative average error ∆AARE
can be calculated by Equation (18):

∆AARE =
1
n

n

∑
i=1

∣∣∣∣∣Ei
σ−Pi

σ

Ei
σ

∣∣∣∣∣ × 100% (18)
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where Ei
σ is the experimental peak stress, Pi

σ is the fitting predicted peak stress, and n is the
number point of experimental data. By the calculation ∆AARE = 0.23%.

3.4. Analysis of Processing Map

Based on the dynamic material model (DMM), PRASAD constructed a process map to
evaluate the hot working performance of various alloys [30–32]. The model regards the
work-piece as the power dissipator of the whole processing system, which can predict the
plastic processing performance of the material at different temperatures and different strain
rates. The power P absorbed by the work-piece during the plastic forging process can be
calculated by Equation (19):

P = G + J =
∫ .

ε

0
σd

.
ε +

∫ σ

0

.
εdσ (19)

where G is the plastic deformation power; J is the microstructure evolution power. The
cubic spline curve fitting result is obtained by Equation (20).

ln σ = c1 + c2 ln
.
ε + c3(ln

.
ε)

2
+ c4(ln

.
ε)

3 (20)

m is the strain rate sensitivity, reflecting the allocation ratio of materials used to deal
with plastic deformation and microstructure evolution, it can be calculated by the following
Equation (21):

J =
∫ σ

0

.
εdσ =

mσ
.
ε

m + 1
(21)

J can be obtained by integrating with Equation (22):

J =
∫ σ

0

.
ε dσ =

mσ
.
ε

m + 1
(22)

For an ideal linear dissipative process, m = 1, Jmax = σ
.
ε /2. The influence of J on

material plastic flow can be expressed by power dissipation efficiency (η):

η =
J

Jmax
=

2
∫ σ

0
.
ε dσ

σ
.
ε

=
2m

m + 1
(23)

Power dissipation efficiency η represents the dissipation capacity of the workpiece.
A large number of studies [33,34] show that power dissipation efficiency can reflect the
evolution of microstructure. The greater the energy dissipation coefficient, the better the
heat treatment performance [32]. At the same time, in order to avoid plastic instability phe-
nomena such as adiabatic shear band and cracking, various plastic instability criteria [30,31]
are proposed, which are expressed as Equation (24).

ξ(
.
ε) =

∂ ln
[ m

m + 1
]

∂ ln
.
ε

+ m < 0 (24)

ξ
( .
ε
)

denotes the relationship among deformation rate, deformation temperature and
strain rate during hot deformation. When ξ

( .
ε
)

is negative, metallurgical instability occurs.
The flow instability map and power dissipation map are superimposed to obtain thermal
processing. Figure 5 presents the processing maps of 18CrNiMo7-6 alloy steel at the strain
of 0.3, 0.6 and 0.8 (the deformation are 25%, 45%, and 55%), respectively.

The shadow part in the Figure 5 represents the unstable region. It can be seen from
the Figure 5 that the power dissipation efficiency and instability region both vary with
different strains, and the instability region exists under the deformation conditions of low
strain temperature and high strain rate. Previous studies [35] show that when the power
dissipation coefficient η is about 0.15–0.25, DRV may occur, and when η is about 0.30–0.60,
DRX may occur. It can be seen from the Figure 5 that the instability region is basically
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coincident with the region with low dissipation efficiency. When the strain increases from
0.2 to 0.5, the instability region has a relatively obvious transformation. Combined with the
previous view, in the process of increasing the strain, RDX appears in the region with high
doformation temperature, and the dissipation efficiency coefficient increases, which makes
the instability region move to the region with low strain temperature and high strain rate.
When the strain increases to 0.8, the data shows that when the strain rate is 0.1 s−1, the
temperature is 1025–1075 ◦C (Domain I), the peak value of power dissipation efficiency
is 0.432. And the instability region is mainly characterized by flow localization, adiabatic
shear band formation, twinning, mixing, and cracking.

Metals 2022, 12, x FOR PEER REVIEW 9 of 15 
 

 

 
 

 
Figure 5. Processing maps of 18CrNiMo7-6 alloy steel at the strain of (a) ε = 0.3, (b) ε = 0.6, (c) ε = 0.8. 

The shadow part in the Figure 5 represents the unstable region. It can be seen from 
the Figure 5 that the power dissipation efficiency and instability region both vary with 
different strains, and the instability region exists under the deformation conditions of low 
strain temperature and high strain rate. Previous studies [35] show that when the power 
dissipation coefficient η is about 0.15–0.25, DRV may occur, and when η is about 0.30–0.60, 
DRX may occur. It can be seen from the Figure 5 that the instability region is basically 
coincident with the region with low dissipation efficiency. When the strain increases from 
0.2 to 0.5, the instability region has a relatively obvious transformation. Combined with 
the previous view, in the process of increasing the strain, RDX appears in the region with 
high doformation temperature, and the dissipation efficiency coefficient increases, which 
makes the instability region move to the region with low strain temperature and high 
strain rate. When the strain increases to 0.8, the data shows that when the strain rate is 0.1 
s−1, the temperature is 1025–1075 °C (Domain Ι), the peak value of power dissipation effi-
ciency is 0.432. And the instability region is mainly characterized by flow localization, 
adiabatic shear band formation, twinning, mixing, and cracking. 

3.5. EBSD Analysis of the Microstructure Evolution 
Constitutive equation and processing map cannot completely determine the hot de-

formation parameters of 18CrNiMo7-6 alloy steel, so it is necessary to observe and analyze 
the microstructure of the alloy. Figure 6 shows the IPF maps of 18CrNiMo7-6 alloy steel 
under different strain parameters. The IPF maps show that the original grain is elongated 
or bent, and the deformed grain boundary presents sawtooth shape, with the fine recrys-
tallized grain grows up at the grain boundary of deformation grain [36]. Compared with 
950 °C and 1150 °C, the average grain size of the specimen at 1050 °C is smaller when the 

Figure 5. Processing maps of 18CrNiMo7-6 alloy steel at the strain of (a) ε = 0.3, (b) ε = 0.6,
(c) ε = 0.8.

3.5. EBSD Analysis of the Microstructure Evolution

Constitutive equation and processing map cannot completely determine the hot defor-
mation parameters of 18CrNiMo7-6 alloy steel, so it is necessary to observe and analyze the
microstructure of the alloy. Figure 6 shows the IPF maps of 18CrNiMo7-6 alloy steel under
different strain parameters. The IPF maps show that the original grain is elongated or bent,
and the deformed grain boundary presents sawtooth shape, with the fine recrystallized
grain grows up at the grain boundary of deformation grain [36]. Compared with 950 ◦C
and 1150 ◦C, the average grain size of the specimen at 1050 ◦C is smaller when the strain
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rate is 0.01 s−1. The IPF map shows that the deformation temperature has a great influence
on the recrystallization. When the temperature increases to 1050 ◦C, the recrystallization
phenomenon is obviously promoted, and the fine recrystallization grains are generated and
replaced by the original grains. When the deformation temperature increases to 1150 ◦C,
the average grain size increases again, and the number of fine crystalline grains decreases
significantly, which is due to the fact that the growth of recrystallized grains increases with
the increase of temperature [37,38]. At a certain deformation temperature, when the strain
rate increases from 0.01 s −1 to 0.1 s −1, the average grain size of the specimen decreases,
indicating that the strain rate also has a certain influence on the microstructure of the alloy.
Since the recrystallization process (DRX) is thermally activated [32], at a low strain rate,
DRX grains have more time for nucleation and growth, resulting in the full progress of
DRX. However, the grain evolution is determined by the interaction between dislocation,
DRX, DRV and grain growth, and the grain size cannot be completely determined by DRX.
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Figure 7 shows the grain boundary maps of 18CrNiMo7-6 steel under various strain.
The red and green lines represent low-angle grain boundaries (LAGBs, 1–15◦ misorientation
angle), and blue lines represent high-angle grain boundaries (HAGBs, >15◦ misorientation
angle). When the deformation temperature is 950 ◦C, a mass of deformed grains and LAGBs
can be observed in the microstructure of the specimens. At this time, the proportion of
HAGBs is low, which is 31.9%. When the temperature increases to 1050 ◦C, the proportion
of HAGBs increases to 35.3%. LAGBs are transformed into HAGBs by sub-grain rotation
and recrystallization, resulting in a significant increase in HAGBs. During the deformation
process. During deformation, dislocations gather and rearrange at grain boundaries and
severe deformation zones to form LAGBs. With the increase of temperature, LAGBs
transform into sub-grains by consuming dislocations, and sub-grains grow up to form
HAGBs [27]. With the continuous formation of HAGBs in grains during hot deformation,
the new RDX mechanism is promoted, which is consistent with the characteristics of CDRX
mechanism [39,40]. It is noteworthy that when the deformation temperature increases to
1150 ◦C, the proportion of HAGBs decreases to 30.0%. When the deformation temperature
is determined (1050 ◦C), the strain rate increases to 1 s−1, and the proportion of HAGBs
decreases to 34.7%. This can be understood as a faster strain rate and higher temperature
will increase dislocation accumulation and promote the occurrence of DRX [41].
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Figure 8 shows the kernel average misorientation (KAM) maps for the 18CrNiMo7-6
alloy steel with different deformation temperature and strain rate, which can reflect the
distribution of the dislocation density (local misorientation). A higher KAM value indicates
a higher dislocation density [42]. The maximum and minimum values of KAM are shown
in blue and red, respectively.
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Figure 8 shows that no matter what deformation parameters are adopted, the local
misorientation is not uniformly distributed. It can be seen that the misorientation at
the grain boundary is higher than that inside the grain, indicating that the dislocation
is mainly accumulated at the grain boundary and providing a large deformation energy
storage, which provides a driving force for the nucleation and growth of DRX. When the
deformation temperature is 950 ◦C, it can be seen from Figure 8a that the dislocation density
of the deformed original grains is low, and there are fine recrystallized grains with higher
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dislocation density around the grain boundaries of these original grains. After overlaying
the KAM maps with the boundary maps, it can be seen that the DRX grains marked by
red arrows nucleate and grow at the grain boundary triple junction of the original grains
(see Figure 9a). Due to the low dislocation density in the alloy at 950 ◦C, the strain energy
difference between the two original grains is small, and the migration of HAGBs leads
to the bulging of grain boundary, accompanied by the evolution of dislocation sub-grain
boundaries or twining which formatted by the higher grain boundary mobility, a new DRX
grain is formed (see Figure 9b), at this time, DDRX plays a leading role [43]. When the
deformation temperature increases to 1050 ◦C, as shown in Figure 9c, the red arrows point
out that there is a higher dislocation density in LAGBs (as shown in the gray line), at this
moment, a large number of dislocations accumulated inside the grains, and dislocation
rearrangement begins to occur. With the increase of strain, LAGBs transform into sub-
grains by consuming dislocations, and the sub-grains grow and rotate to form HAGBs,
further forming the RDX grains marked by yellow arrows in the figure (see Figure 9d).
This is consistent with the CDRX mechanism. As the deformation temperature increases
to 1150 ◦C, it can be seen from Figure 8b that the dislocation density at 1150 ◦C is lower
than that at 1050 ◦C, which can be seen from Figure 9e that at higher temperature, the
formed coarse grains have low dislocation density. At this moment, the large-angle grain
boundary migrates at higher temperature, while swallowing other recrystallized grains, so
that the grains continue to grow. And this indicates that the large-angle grain boundary
migration plays a leading role at 1150 ◦C, and driven by higher temperature, the grains
grow gradually, which explains the reason for the maximum average grain size at 1150 ◦C
in Figure 6b. When the deformation temperature is 1050 ◦C, the strain rate increases to
1 s−1. Figure 8d shows that the original deformation grain quantity decreases and the
dislocation density increases. When the strain rate is 1 s−1, the red arrows point out that
there is still a higher dislocation density in LAGBs, and recrystallization grains can be seen
at the high dislocation density, indicating that the CDRX mechanism still dominates the
DRX process at this moment (see Figure 9g). and the faster the strain rate increases the
dislocation accumulation, which promotes the occurrence of CDRX. The above results show
that the recrystallization process of 18CrNiMo7-6 alloy steel is affected by deformation
temperature and strain rate. There are two recrystallization mechanisms of DDRX and
CRDX during hot deformation, and the CDRX mechanism is beneficial to obtaining finer
grains. The appropriate deformation temperature is 1050 ◦C. Considering the effect of
avoiding instability zone, the optimal strain rate should be 0.1 s−1.
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4. Conclusions

In this paper, the flow stress during hot working of 18CrNimo7-6 alloy steel was stud-
ied, and the microstructure mechanism of recrystallization was analyzed. The conclusions
are as follows:

1. The constitutive equation of 18CrNiMo7-6 alloy steel is
.
ε= 1.10 × 1013

[sin h (0.0095σ)5.55] exp(−350307.94
RT ).

2. According to the processing maps and microstructure evolution law, the optimum
hot process parameters are temperature 1025–1075 ◦C and strain rate 0.1 s−1. And the
peak value of power dissipation efficiency is 0.432.

3. There are three evolution mechanisms CDRX, DDRX and grain growth during hot
deformation. The rotation of sub-grains under CDRX mechanism is the main factor
for the formation of new grains. In addition, the DDRX mechanism is formed by the
bulging of HAGBs at the grain boundary triple junction of the original grains.

4. The temperature and strain rate have an influence on the DRX process. When the
strain temperature is low, DDRX mechanism plays a leading role. With the increase of
deformation temperature, CDRX begins to play a leading role and forms finer grains.
When the deformation temperature rises to 1150 ◦C, the grain will continue to grow
at higher temperature.
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