Weldability of Molybdenum–Rhenium Alloy Based on a Single-Mode Fiber Laser
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Laser Beam Welding System
2.3. Orthogonal Test Schemes for Mo–5Re Sheets with Different Thicknesses
2.4. Mechanical Testing and Microstructure Analysis
3. Results
3.1. The Influence Law of Welding Parameters on Morphologies and Sizes of Weld Beads
3.2. The Influence Law of Welding Parameters on Properties and Microstructures of the Joints with the Thickness of 0.5 mm
4. Discussion
The Effect of the Existence Modes of Re on the Properties of the Joints
5. Conclusions
- The orthogonal test reveals that laser power has the most significant effect on the penetration and weld width of Mo–Re joints, and that the penetration and width monotonically rise with the growth of the power; the defocusing amount has the least remarkable influence on the penetration and weld width.
- The maximum and average tensile strengths of the Mo–Re joints are 250 MPa and 127.3 MPa, respectively; the micro-Vickers hardness distribution in the FZ, HAZ, and BM are all within 180~205 HV, and no obvious hardening phenomenon appears in the FZ.
- The microstructure in the FZ of the Mo–Re joints consists of coarsening columnar grains, while that in the HAZ corresponds to equiaxed grains. The EDS result indicates that there is no significant macroscopic segregation of Re in the FZ. Apart from its atomic state, Re in the FZ also exists as ReO2, ReO3, and ReC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zinklea, S.J. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Zhu, Q.; Xie, M.; Shang, X.; An, G.; Sun, J.; Wang, N.; Xi, S.; Bu, C.; Zhang, J. Research status and progress of welding technologies for molybdenum and molybdenum alloys. Metals 2020, 10, 279. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Wang, W.; Zhong, W.; Zheng, J.; Zhao, S. Research Progress on Application of Mo-Re Alloy in Space Nuclear Power. At. Energy Sci. Technol. 2020, 54, 505. [Google Scholar]
- Hiraoka, Y.; Morito, F.; Okada, M.; Watanabe, R. Effect of a small amount of additional carbon on the ductility of recrystallized sintered-molybdenum sheet. J. Nucl. Mater. 1978, 78, 192–200. [Google Scholar] [CrossRef]
- Hiraoka, Y.; Okada, M.; Watanabe, R. Effect of aging after carbon doping on the ductility of molybdenum. J. Less-Common Met. 1980, 75, 31–42. [Google Scholar] [CrossRef]
- Klopp, W.D.; Witzke, W.R. Mechanical properties of electron-beam-melted molybdenum and dilute molybdenum-rhenium alloys. Metall. Trans. 1972, 4, 2006–2008. [Google Scholar] [CrossRef]
- Hiraoka, Y.; Okada, M.; Irie, H. Alloying to improve the properties of welded molybdenum. J. Nucl. Mater. 1988, 155, 381–385. [Google Scholar] [CrossRef]
- Morgunova, N.N.; Abramyan, A.V.; Kazakova, N.I. Effect of rhenium on the brittle fracture threshold of molybdenum. Met. Sci. Heat Treat. 1987, 29, 441–447. [Google Scholar] [CrossRef]
- Burkhanov, G.S.; Yusupov, V.S.; Roschupkin, V.V.; Karelin, F.R.; Kirillova, V.M.; Karelin, R.D.; Ermishkin, V.A.; Minina, N.A.; Sdobyrev, V.V.; Serebryany, V.N.; et al. Manufacturing features, structure, and properties of high-purity Mo-Re thin sheets. J. Phys. Conf. Ser. 2021, 1758, 012006. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Jiang, S.; Zhang, B.; Yong, W.; Feng, J. Effect of rhenium content on microstructures and mechanical properties of electron beam welded TZM alloy joints. J. Manuf. Process. 2018, 32, 337–343. [Google Scholar] [CrossRef]
- Peng, L.; Feng, K.Y.; Zhang, G.M. A novel study on laser lap welding of refractory alloy 50Mo–50Re of small-scale thin sheet. Vacuum 2017, 136, 10–13. [Google Scholar]
- Olds, L.E.; Rengstorff, G.W.P. Effects of Oxygen, Nitrogen, and Carbon on The Ductility of Cast Molybdenum. JOM 1956, 8, 150–155. [Google Scholar] [CrossRef]
- Babinsky, K.; Weidow, J.; Knabl, W.; Lorich, A.; Leitner, H.; Primig, S. Atom probe study of grain boundary segregation in technically pure molybdenum. Mater. Charact. 2014, 87, 95–103. [Google Scholar] [CrossRef]
- Janisch, R.; Elsässer, C. Segregated Light Elements at Grain Boundaries in Niobium and Molybdenum. Phys. Rev. B 2003, 67, 2209–2219. [Google Scholar] [CrossRef]
- Kurishita, H.; Tokunaga, O.; Yoshinaga, H. Effect of Nitrogen on the Intergranular Brittleness in Molybdenum. Mater. Trans. 2007, 30, 1009–1015. [Google Scholar] [CrossRef] [Green Version]
- Leitner, K.; Lutz, D.; Knabl, W.; Eidenberger-Schober, M.; Huber, K.; Lorich, A.; Clemens, H.; Maier-Kiener, V. Grain boundary segregation engineering in as-sintered molybdenum for improved ductility. Scr. Mater. 2018, 156, 60–63. [Google Scholar] [CrossRef]
- Krajnikov, A.V.; Drachinskiy, A.S.; Slyunyaev, V.N. Grain boundary segregation in recrystallized molybdenum alloys and its effect on brittle intergranular fracture. Int. J. Refract. Met. Hard Mater. 1992, 11, 175–180. [Google Scholar] [CrossRef]
- Hughes, G.G.J. The alloys of rhenium with molybdenum or with tungsten and having good high-temperature properties. In Plansee Proceedings; Pergamon Press: London, UK, 1955. [Google Scholar]
- Kramer, D.P.; Mcdougal, J.R.; Booher, B.A.; Ruhkamp, J.D. Electron beam and Nd-YAG laser welding of niobium-1% zirconium and molybdenum-44.5% rhenium thin select material. Energy Convers. Eng. Conf. Exhib. 2013, 2, 956–961. [Google Scholar]
- Matsuda, F.; Nakata, K.; Mandokoro, Y. Effect of Rhenium and Niobium on Weld Metal Ductility of Molybdenum by EB Welding. Trans. JWRI 1984, 13, 255–261. [Google Scholar]
- Morito, F. Characteristics of EB-weldable molybdenum and Mo-Re alloys. JOM 1993, 45, 54–58. [Google Scholar] [CrossRef]
- Zhang, L.J.; Liu, J.Z.; Pei, J.Y.; Ning, J.; Zhang, L.L.; Long, J.; Zhang, G.F.; Zhang, J.X.; Na, S.J. Effects of Power Modulation, Multipass Remelting and Zr Addition Upon Porosity Defects in Laser Seal Welding of End Plug to Thin-Walled Molybdenum Alloy. J. Manuf. Process. 2019, 41, 197–207. [Google Scholar] [CrossRef]
- Wronski, A.; Chilton, A.; Capron, E. The ductile-brittle transition in polycrystalline molybdenum. Acta Metall. 1969, 17, 751–755. [Google Scholar] [CrossRef]
- Wadsworth, J.; Morse, G.R.; Chewey, P.M. The microstructure and mechanical properties of a welded molybdenum alloy. Mater. Sci. Eng. 1983, 59, 257–273. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Zhang, L.-J.; Long, J.; Ding, X.-D.; Sun, J.; Sun, Y.-J. Improvement in the weldability of molybdenum alloy by pre-welding solid carburizing. J. Mater. Sci. Technol. 2020, 80, 1–12. [Google Scholar] [CrossRef]
- Watts, J.F.; Wolstenholme, J. An Introduction to Surface Analysis by XPS and AES, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Magneli, A.; Andersson, G. On the MoO2 structure type. Acta Chem. Scand. 1955, 9, 1378–1381. [Google Scholar] [CrossRef]
- Zelenskii, G.K.; Borodich, V.D.; Korontsevich, V.K.; Milovidov, S.N.; Filkin, V.Y. Effect of purity on the structure and properties of molybdenum. Met. Sci. Heat Treat. 1972, 14, 22–25. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Zhang, L.-J.; Long, J.; Sun, X.; Zhang, J.-X.; Na, S.-J. Enhanced mechanical performance of fusion zone in laser beam welding joint of molybdenum alloy due to solid carburizing. Mater. Des. 2019, 181, 1–12. [Google Scholar] [CrossRef]
Elements | Mo | Re | K | Na | Sn | Ca | Fe | Mn |
---|---|---|---|---|---|---|---|---|
Contents (wt.%) | Bal. | 5 | ≤0.002 | ≤0.002 | ≤0.001 | ≤0.0002 | ≤0.0055 | ≤0.0015 |
Test Number | Defocusing Amount (mm) | Power (kW) | Welding Speed (m/min) |
---|---|---|---|
1 (2) # | 1 | 1.4 | 0.3 |
2 (2) # | 1 | 1.6 | 0.4 |
3 (2) # | 1 | 1.8 | 0.5 |
4 (2) # | 1 | 2 | 0.6 |
5 (2) # | 0.5 | 1.4 | 0.4 |
6 (2) # | 0.5 | 1.6 | 0.3 |
7 (2) # | 0.5 | 1.8 | 0.6 |
8 (2) # | 0.5 | 2 | 0.5 |
9 (2) # | 0 | 1.4 | 0.5 |
10 (2) # | 0 | 1.6 | 0.6 |
11 (2) # | 0 | 1.8 | 0.3 |
12 (2) # | 0 | 2 | 0.4 |
13 (2) # | −0.5 | 1.4 | 0.6 |
14 (2) # | −0.5 | 1.6 | 0.5 |
15 (2) # | −0.05 | 1.8 | 0.4 |
16 (2) # | −0.50 | 2 | 0.3 |
Test Number | Defocusing Amount (mm) | Power (kW) | Welding Speed (m/min) |
---|---|---|---|
1 (0.5) # | 1 | 1.4 | 2 |
2 (0.5) # | 1 | 1.7 | 3 |
3 (0.5) # | 1 | 2 | 4 |
4 (0.5) # | 0.5 | 1.4 | 3 |
5 (0.5) # | 0.5 | 1.7 | 4 |
6 (0.5) # | 0.5 | 2 | 2 |
7 (0.5) # | 0 | 1.7 | 2 |
8 (0.5) # | 0 | 2 | 3 |
9 (0.5) # | 0 | 1.4 | 4 |
Test Number | Defocusing Amount (mm) | Power (kW) | Welding Speed (m/min) | Penetration (mm) |
---|---|---|---|---|
1 (2) # | 1 | 1.4 | 0.3 | 0.16 |
2 (2) # | 1 | 1.6 | 0.4 | 0.58 |
3 (2) # | 1 | 1.8 | 0.5 | 0.98 |
4 (2) # | 1 | 2 | 0.6 | 0.96 |
5 (2) # | 0.5 | 1.4 | 0.4 | 0.22 |
6 (2) # | 0.5 | 1.6 | 0.3 | 0.60 |
7 (2) # | 0.5 | 1.8 | 0.6 | 0.46 |
8 (2) # | 0.5 | 2 | 0.5 | 1.11 |
9 (2) # | 0 | 1.4 | 0.5 | 0.31 |
10 (2) # | 0 | 1.6 | 0.6 | 0.23 |
11 (2) # | 0 | 1.8 | 0.3 | 0.70 |
12 (2) # | 0 | 2 | 0.4 | 1.06 |
13 (2) # | −0.5 | 1.4 | 0.6 | 0.32 |
14 (2) # | −0.5 | 1.6 | 0.5 | 0.23 |
15 (2) # | −0.5 | 1.8 | 0.4 | 0.71 |
16 (2) # | −0.5 | 2 | 0.3 | 1.57 |
k1 | 0.670 | 0.251 | 0.757 | - |
k2 | 0.596 | 0.412 | 0.642 | - |
k3 | 0.574 | 0.713 | 0.659 | - |
k4 | 0.708 | 1.171 | 0.883 | - |
R | 0.134 | 0.920 | 0.241 | - |
Test Number | Defocusing Amount (mm) | Power (kW) | Welding Speed (m/min) | Weld Width (mm) |
---|---|---|---|---|
1 (2) # | 1 | 1.4 | 0.3 | 0.9 |
2 (2) # | 1 | 1.6 | 0.4 | 1.0 |
3 (2) # | 1 | 1.8 | 0.5 | 1.2 |
4 (2) # | 1 | 2 | 0.6 | 1.4 |
5 (2) # | 0.5 | 1.4 | 0.4 | 0.7 |
6 (2) # | 0.5 | 1.6 | 0.3 | 1.1 |
7 (2) # | 0.5 | 1.8 | 0.6 | 1.1 |
8 (2) # | 0.5 | 2 | 0.5 | 1.3 |
9 (2) # | 0 | 1.4 | 0.5 | 0.7 |
10 (2) # | 0 | 1.6 | 0.6 | 0.9 |
11 (2) # | 0 | 1.8 | 0.3 | 1.3 |
12 (2) # | 0 | 2 | 0.4 | 1.6 |
13 (2) # | −0.5 | 1.4 | 0.6 | 0.7 |
14 (2) # | −0.5 | 1.6 | 0.5 | 0.8 |
15 (2) # | −0.5 | 1.8 | 0.4 | 1.2 |
16 (2) # | −0.5 | 2 | 0.3 | 2.0 |
k1 | 1.125 | 0.750 | 1.325 | - |
k2 | 1.050 | 0.950 | 1.125 | - |
k3 | 1.125 | 1.200 | 1.000 | - |
k4 | 1.175 | 1.575 | 1.025 | - |
R | 0.125 | 0.825 | 0.325 | - |
Test Number | Defocusing Amount (mm) | Power (kW) | Welding Speed (m/min) | Tensile Strength MPa |
---|---|---|---|---|
1 (0.5) # | 1 | 1.4 | 2 | 245.5 |
2 (0.5) # | 1 | 1.7 | 3 | 163.3 |
3 (0.5) # | 1 | 2 | 4 | 84.4 |
4 (0.5) # | 0.5 | 1.4 | 3 | 137.3 |
5 (0.5) # | 0.5 | 1.7 | 4 | 67.4 |
6 (0.5) # | 0.5 | 2 | 2 | 112.1 |
7 (0.5) # | 0 | 1.7 | 2 | 81.8 |
8 (0.5) # | 0 | 2 | 3 | - |
9 (0.5) # | 0 | 1.4 | 4 | - |
k1 | 164.4 | 191.4 | 146.8 | - |
k2 | 105.6 | 104.2 | 150.3 | - |
k3 | 81.8 | 98.3 | 75.9 | - |
R | 82.6 | 93.2 | 74.4 | - |
Position | Test No. | Elements (wt.%) | |||
---|---|---|---|---|---|
Mo | Re | C | O | ||
FZ | 1 | 85.07 | 3.71 | 8.3 | 2.92 |
2 | 82.76 | 4.03 | 10.75 | 2.45 | |
3 | 84.04 | 4.5 | 9.69 | 1.77 | |
4 | 81.39 | 3.41 | 11.88 | 3.32 | |
5 | 83.56 | 4.62 | 9.18 | 2.64 | |
6 | 86.33 | 3.9 | 7.64 | 2.12 | |
Average | 83.86 | 4.03 | 9.57 | 2.54 | |
HAZ | 7 | 79.22 | 4.18 | 11.84 | 4.76 |
8 | 85.33 | 4.38 | 8.31 | 1.99 | |
9 | 86.28 | 3.19 | 7.9 | 2.63 | |
10 | 86.08 | 3.8 | 7.83 | 2.29 | |
Average | 84.23 | 3.90 | 8.97 | 2.92 | |
BM | 11 | 83.29 | 4.95 | 11.76 | 0 |
12 | 79.4 | 4.14 | 12.6 | 3.86 | |
13 | 83.87 | 4.46 | 9.5 | 2.46 | |
14 | 82.64 | 3.38 | 10.53 | 3.54 | |
Average | 82.30 | 4.23 | 11.10 | 2.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.-L.; Zhang, L.-J.; Yang, Q.-J. Weldability of Molybdenum–Rhenium Alloy Based on a Single-Mode Fiber Laser. Metals 2022, 12, 841. https://doi.org/10.3390/met12050841
Zhang L-L, Zhang L-J, Yang Q-J. Weldability of Molybdenum–Rhenium Alloy Based on a Single-Mode Fiber Laser. Metals. 2022; 12(5):841. https://doi.org/10.3390/met12050841
Chicago/Turabian StyleZhang, Liang-Liang, Lin-Jie Zhang, and Qing-Jie Yang. 2022. "Weldability of Molybdenum–Rhenium Alloy Based on a Single-Mode Fiber Laser" Metals 12, no. 5: 841. https://doi.org/10.3390/met12050841
APA StyleZhang, L. -L., Zhang, L. -J., & Yang, Q. -J. (2022). Weldability of Molybdenum–Rhenium Alloy Based on a Single-Mode Fiber Laser. Metals, 12(5), 841. https://doi.org/10.3390/met12050841