Comparative Analysis on the Corrosion Resistance to Molten Iron of Four Kinds of Carbon Bricks Used in Blast Furnace Hearth
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Experimental Apparatus and Procedure
3. Results and Discussion
3.1. Analysis of the Original Carbon Bricks
3.2. Experimental Results
3.3. Microscopic Analysis of Reaction Interface
3.3.1. Analysis of the Microscopic Appearance of the Original Carbon Brick
3.3.2. Analysis of the Microscopic Appearance of the Carbon Brick after Corrosion
3.4. Analysis on the Mechanism of Corrosion Resistance to Molten Iron of Carbon Brick
3.4.1. Thermodynamic Analysis
- (1)
- Carbon solubility in molten iron
- (2)
- Ceramic phases and whiskers
- (3)
- Graphitization degree of carbon brick
3.4.2. Corrosion Mechanism of Carbon Brick in Molten Iron
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.L.; Liu, Z.J.; Jiao, K.X.; Xu, R.S.; Li, K.J.; Wang, Z.Y.; Wang, C.; Wang, Y.Z.; Zhang, L. Progress of new technologies and fundamental theory about ironmaking. Chin. J. Eng. 2021, 43, 1630–1646. [Google Scholar]
- Liu, Z.J.; Zhang, J.L.; Zuo, H.B.; Yang, T.J. Recent progress on long service life design of Chinese blast furnace hearth. ISIJ Int. 2012, 52, 1713–1723. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.Y.; Zhang, J.L.; Jiao, K.X.; Gao, T.L.; Zhang, J. Research on low-carbon smelting technology of blast furnace-optimized design of blast furnace. Ironmak. Steelmak. 2021, 48, 685–692. [Google Scholar] [CrossRef]
- Zagaria, M.; Dimastromatteo, V.; Colla, V. Monitoring erosion and skull profile in blast furnace hearth. Ironmak. Steelmak. 2010, 37, 229–234. [Google Scholar] [CrossRef]
- Niu, Q.; Cheng, S.S.; Xu, W.X.; Niu, W.J. Microstructure and phase of carbon brick and protective layer of a 2800 m3 industrial blast furnace hearth. ISIJ Int. 2019, 59, 1776–1785. [Google Scholar] [CrossRef] [Green Version]
- Stec, J.; Smulski, R.; Nagy, S.; Szyszkiewicz-Warzecha, K.; Tomala, J.; Filipek, R. Permeability of carbon refractory materials used in a blast furnace hearth. Ceram. Int. 2021, 47, 16538–16546. [Google Scholar] [CrossRef]
- Ibrahim, S.H.; Skibinski, J.; Oliver, G.; Wejrzanowski, T. Microstructure effect on the permeability of the tape-cast open-porous materials. Mater. Des. 2019, 167, 107639. [Google Scholar] [CrossRef]
- Li, Y.W.; Chen, X.L.; Sang, S.B.; Li, Y.B.; Jin, S.L.; Zhao, L.; Ge, S. Microstructures and properties of carbon refractories for blast furnaces with SiO2 and Al additions. Metall. Mater. Trans. A 2010, 41, 2085–2092. [Google Scholar] [CrossRef]
- Ma, H.X.; Zhang, J.L.; Jiao, K.X.; Chang, Z.Y.; Wang, Y.J.; Zheng, P.C. Analysis of erosion characteristics and causes of blast furnace hearth. Iron Steel 2018, 53, 14–19. [Google Scholar]
- Liao, N.; Li, Y.W.; Jin, S.L.; Sang, S.B.; Harmuth, H. Enhanced mechanical performance of Al2O3-C refractories with nano carbon black and in-situ formed multi-walled carbon nanotubes (MWCNTs). J. Eur. Ceram. Soc. 2016, 36, 867–874. [Google Scholar] [CrossRef]
- Luo, M.; Li, Y.W.; Jin, S.L.; Sang, S.B.; Zhao, L.; Wang, Q.H.; Li, Y.B. Microstructure and mechanical properties of multi-walled carbon nanotubes containing Al2O3-C refractories with addition of polycarbosilane. Ceram. Int. 2013, 39, 4831–4838. [Google Scholar] [CrossRef]
- Mertke, A.; Aneziris, C.G. The influence of nanoparticles and functional metallic additions on the thermal shock resistance of carbon bonded alumina refractories. Ceram. Int. 2015, 41, 1541–1552. [Google Scholar] [CrossRef]
- Zhang, W.; Hua, F.B.; Dai, J.; Xue, Z.L.; Ma, G.J.; Li, C.Z. Isothermal kinetic mechanism of coke dissolving in hot metal. Metals 2019, 9, 470. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.; Kim, Y.; Shin, M.; Lee, J. Kinetics of carbon dissolution of coke in molten iron. Metall. Mater. Trans. B 2012, 43B, 1308–1314. [Google Scholar] [CrossRef]
- Cham, S.T.; Sakurovs, R.; Sun, H.P.; Sahajwalla, V. Influence of temperature on carbon dissolution of cokes in molten iron. ISIJ Int. 2006, 46, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.K.; Baldock, B.R. Dissolution kinetics of particulate graphite injected into iron/carbon melts. Metall. Trans. B 1988, 19, 375–382. [Google Scholar] [CrossRef]
- Mourao, M.B.; Murthy Krishna, G.G.; Elliott, J.F. Experimental investigation of dissolution rates of carbonaceous materials in liquid iron-carbon melts. Metall. Trans. B 1993, 24B, 629–637. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, J.L.; Jiao, K.X. Dissolution mechanism of carbon brick into molten iron. ISIJ Int. 2018, 58, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Liu, R.; Jiao, K.X.; Chen, Y.B. Wetting behavior and mechanism between hot metal and carbon brick. J. Eur. Ceram. Soc. 2021, 41, 5740–5749. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, R.; Jiao, K.X.; Chen, L.D.; Chen, Y.B. Evolution and Mechanism of Dissolutive Wetting between Hot Metal and Carbon Brick. Available online: https://www.sciencedirect.com/science/article/pii/S0955221922002898 (accessed on 12 April 2022).
- Stec, J.; Tarasiuk, J.; Wro ´nski, S.; Kubica, P.; Tomala, J.; Filipek, R. Investigation of molten metal infiltration into micropore carbon refractory materials using X-ray computed tomography. Metals 2021, 14, 3148. [Google Scholar] [CrossRef]
- Jiao, K.X.; Fan, X.Y.; Zhang, J.L.; Wang, K.D.; Zhao, Y.A. Corrosion behavior of alumina-carbon composite brick in typical blast furnace slag and iron. Ceram. Int. 2018, 44, 19981–19988. [Google Scholar] [CrossRef]
- Wei, Y.W.; Shao, Y.; Chen, J.F.; Li, N. Influence of carbonaceous materials on the interactions among (Al2O3-C)/Fe system with temperature and soaking time. J. Eur. Ceram. Soc. 2017, 38, 313–322. [Google Scholar] [CrossRef]
- Wu, S.L.; Wang, X.L. Iron and Steel Metallurgy, 4th ed.; Metallurgical Industry Press: Beijing, China, 2019; pp. 146–216. [Google Scholar]
- Fan, X.Y.; Jiao, K.X.; Zhang, J.L.; Wang, K.D.; Chang, Z.Y. Phase transformation of cohesive zone in a water-quenched blast furnace. ISIJ Int. 2018, 58, 1775–1780. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Sahajwalla, V.; Chaubal, P.; Youmans, T. Carbon structure of coke at high temperatures and its influence on coke fines in blast furnace dust. Metall. Mater. Trans. B 2005, 36B, 385–394. [Google Scholar] [CrossRef]
- Warren, B.E. X-Ray diffraction in random layer lattices. Phys. Rev. 1941, 59, 693–698. [Google Scholar] [CrossRef]
- Arnold, T.; Chanaa, S.; Clarke, S.M.; Cook, R.E.; Larese, J.Z. Structure of an n-butane monolayer adsorbed on magnesium oxide (100). Phys. Rev. B Condens. Matter Mater. Phys. 2006, 74, 085421. [Google Scholar] [CrossRef]
- Lu, L.; Sahajwalla, V.; Kong, C.; Harris, D. Quantitative X-ray diffraction analysis and its application to various coals. Carbon 2001, 39, 1821–1833. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; Wiley: New York, NY, USA, 1974; pp. 130–135. [Google Scholar]
- Xu, R.S.; Zhang, J.L.; Wang, W.; Zuo, H.B.; Xue, Z.L.; Song, M.M. Dissolution kinetics of solid fuels used in COREX gasifier and its influence factors. J. Iron Steel Res. Int. 2018, 25, 1–12. [Google Scholar] [CrossRef]
- Sun, M.M.; Zhang, J.L.; Li, K.J.; Li, H.T.; Wang, Z.M.; Jiang, C.H.; Ren, S.; Wang, L.; Zhang, H. The interfacial behavior between coke and liquid iron: A comparative study on the influence of coke pore, carbon structure and ash. JOM 2020, 72, 2174–2183. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Jiao, K.X.; Zhang, J.L.; Ma, H.B.; Meng, S.; Wang, Z.Y.; Zhang, J.; Zong, Y.B. Graphitization and performance of deadman coke in a large dissected blast furnace. ACS Omega 2021, 39, 25430–25439. [Google Scholar] [CrossRef]
Carbon Brick | Chemical Composition/% | |||||
---|---|---|---|---|---|---|
C | Al2O3 | SiO2 | SiC | TiO2 | Others | |
A | 76.15 | 8.74 | 7.41 | 6.91 | 0.22 | 0.57 |
B | 84.13 | 4.43 | 6.76 | 3.23 | 0.33 | 1.12 |
C | 71.68 | 0.91 | 14.34 | 10.78 | 0.42 | 1.87 |
D | 79.54 | 1.33 | 11.80 | 4.43 | 0.21 | 2.69 |
Molten iron | Chemical Composition/% | |||||
Fe | C | Si | Mn | P | S | |
95.87 | 3.50 | 0.30 | 0.15 | 0.15 | 0.03 |
Item | Unit | A | B | C | D | |
---|---|---|---|---|---|---|
Apparent porosity | % | 13.4 | 18.4 | 11 | 12 | |
Bulk density | g/cm3 | 1.81 | 1.69 | 1.76 | 1.72 | |
Compressive strength (room temperature) | MPa | 48.1 | 42.8 | 50 | 48 | |
Average pore diameter | μm | 0.034 | 0.08 | 0.05 | 0.1 | |
Pore volume (<1 μm) | % | 88.6 | 88.2 | 86 | 78 | |
Resistance to molten iron infiltration | % | 18.7 | 21.4 | 20 | 22 | |
Gas permeability | mDa | 0.39 | 0.71 | 0.8 | 3 | |
Oxidation rate | % | 0.82 | 1.67 | 6 | 8 | |
Thermal conductivity | 300 °C | W/(m·K) | 29.1 | ≥22 | ≥10 | 11 |
600 °C | 26.2 | 15.4 | ≥14 | 15 |
Carbon Brick | 2θ002/° | d002/(nm) | B002/° | LC/(nm) | NC |
---|---|---|---|---|---|
SGL | 26.48 | 0.34 | 0.287 | 28.44 | 85 |
NDK | 26.41 | 0.34 | 0.532 | 15.34 | 45 |
SM | 26.54 | 0.34 | 0.431 | 18.94 | 55 |
CM | 26.52 | 0.34 | 0.601 | 13.58 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zhang, J.; Chen, W.; Li, X.; Jiao, K.; Pang, Z.; Wang, Z.; Wang, T.; Liu, Z. Comparative Analysis on the Corrosion Resistance to Molten Iron of Four Kinds of Carbon Bricks Used in Blast Furnace Hearth. Metals 2022, 12, 871. https://doi.org/10.3390/met12050871
Wang C, Zhang J, Chen W, Li X, Jiao K, Pang Z, Wang Z, Wang T, Liu Z. Comparative Analysis on the Corrosion Resistance to Molten Iron of Four Kinds of Carbon Bricks Used in Blast Furnace Hearth. Metals. 2022; 12(5):871. https://doi.org/10.3390/met12050871
Chicago/Turabian StyleWang, Cui, Jianliang Zhang, Wen Chen, Xiaolei Li, Kexin Jiao, Zhenping Pang, Zhongyi Wang, Tongsheng Wang, and Zhengjian Liu. 2022. "Comparative Analysis on the Corrosion Resistance to Molten Iron of Four Kinds of Carbon Bricks Used in Blast Furnace Hearth" Metals 12, no. 5: 871. https://doi.org/10.3390/met12050871
APA StyleWang, C., Zhang, J., Chen, W., Li, X., Jiao, K., Pang, Z., Wang, Z., Wang, T., & Liu, Z. (2022). Comparative Analysis on the Corrosion Resistance to Molten Iron of Four Kinds of Carbon Bricks Used in Blast Furnace Hearth. Metals, 12(5), 871. https://doi.org/10.3390/met12050871