Influence of Oxygen and Zirconium Contents on The Mechanical Properties of Ti-23Nb-0.7Ta-Zr-O Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effects of O and Zr on Thermal Forgeability
3.2. Effects of O and Zr on Microstructures
3.3. Effect of Temperature on Tensile Properties of 2Zr-1.2O Alloy
3.4. Effects of O and Zr on Mechanical Properties
4. Discussion
5. Conclusions
- (1)
- Ti-23Nb-0.7Ta-2Zr-1.2O alloy shows wonderful forgeability. Along with the O content increasing, the thermal forgeability of the alloys decreases. Zr has a negative effect on thermal forgeability.
- (2)
- For Ti-23Nb-0.7Ta-2Zr-1.2O alloy, the UTS decreases, and the ductility increases with the temperature increasing. At 750 °C the alloy shows a tensile superplasticity with an elongation of ~168%.
- (3)
- All of the alloys exhibit perfect ductility at 750 °C with the elongation above 34% and reductions in area above 80%. Room-temperature HV and 750 °C UTS increase as O and Zr contents increase. HV will be increased by ~0.24 GPa on average for 2Zr-xO alloys and ~0.21 GPa on average for 0Zr-xO alloys as O content is increased 1%. UTS will be increased ~46.00 MPa on average for 2Zr-xO alloys and ~19.54 MPa on average for 0Zr-xO alloys as O content is increased by 1%. Zr enhances the strengthening effect of O and Zr has better strengthening effects in the condition of higher O content.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, J.C.; Starke, E.A. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Rack, H.J.; Qazi, J.I. Titanium alloys for biomedical applications. Mater. Sci. Eng. C 2006, 26, 1269–1277. [Google Scholar] [CrossRef]
- Niinomi, M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci. Technol. Adv. Mat. 2003, 4, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Boyer, R. Titanium Airframe Applications: Brief History, Present Applications and Future Trends. Mater. Sci. Forum. 2003, 426–432, 643–648. [Google Scholar] [CrossRef]
- Bania, P.J. Next generation titanium alloys for elevated temperature service. ISIJ Int. 1991, 31, 840–847. [Google Scholar] [CrossRef] [Green Version]
- Walker, I.R. Considerations on the selection of alloys for use in pressure cells at low temperatures. Cryogenics 2005, 45, 87–108. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Niinomi, M.; Akahori, T. Effects of Ta content on Young’s modulus and tensile properties of binary Ti–Ta alloys for biomedical applications. Mater. Sci. Eng. A 2004, 371, 283–290. [Google Scholar] [CrossRef]
- Masumoto, K.; Horiuchi, Y.; Inamura, T.; Hosoda, H.; Wakashima, K.; Kim, H.Y.; Miyazaki, S. Effects of Si addition on superelastic properties of Ti–Nb–Al biomedical shape memory alloys. Mater. Sci. Eng. A 2006, 438–440, 835–838. [Google Scholar] [CrossRef]
- Lutjering, G. Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys. Mater. Sci. Eng. A 1998, 243, 32–45. [Google Scholar] [CrossRef]
- Kawabe, Y.; Muneki, S. Strengthening and Toughening of Titanium Alloys. ISIJ Int. 1991, 31, 785–791. [Google Scholar] [CrossRef] [Green Version]
- Martin, P.L. Effects of hot working on the microstructure of Ti-base alloys. Mater. Sci. Eng. A 1998, 243, 25–31. [Google Scholar] [CrossRef]
- Lutjering, G. Property optimization through microstructural control in titanium and aluminum alloys. Mater. Sci. Eng. A 1999, 263, 117–126. [Google Scholar] [CrossRef]
- Varlioglu, M.; Nash, P.; Xu, F.; Li, G.P. The effect of increased zirconium content on the microstructure and mechanical properties of Ti-1100 alloy. Light Met. Age 2004, 62, 32–35. [Google Scholar]
- Shimagami, K.; Ito, T.; Toda, Y.; Yumoto, A.; Yamabe-Mitarai, Y. Effects of Zr and Si addition on high-temperature mechanical properties and microstructure in Ti-10Al-2Nb-based alloys. Mater. Sci. Eng. A 2019, 756, 46–53. [Google Scholar] [CrossRef]
- Jiao, Z.; Ma, C.; Fu, J.; Cheng, X.; Tang, H.; Liu, D.; Zhang, J. The effects of Zr contents on microstructure and properties of laser additive manufactured Ti-6.5Al-3.5Mo-0.3Si-xZr alloys. J. Alloy. Compd. 2018, 745, 592–598. [Google Scholar] [CrossRef]
- Jing, R.; Liang, S.X.; Liu, C.Y.; Ma, M.Z.; Zhang, X.Y.; Liu, R.P. Structure and mechanical properties of Ti–6Al–4V alloy after zirconium addition. Mater. Sci. Eng. A 2012, 552, 295–300. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, Y.; Xin, S.; Zhou, W.; Li, Q.; Zeng, W. Effect of microstructure on tensile properties of Ti–5Al–5Mo–5V–3Cr–1Zr alloy. J. Alloy. Compd. 2017, 693, 582–591. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Yang, X.; Cui, Z.; Zhu, S. Influence of Zr content on phase transformation, microstructure and mechanical properties of Ti75−xNb25Zrx (x = 0–6) alloys. J. Alloy. Compd. 2009, 486, 628–632. [Google Scholar] [CrossRef]
- Ba, H.; Dong, L.; Zhang, Z.; Xu, D.; Yang, R. Effects of Zr Content on the Microstructures and Tensile Properties of Ti–3Al–8V–6Cr–4Mo–xZr Alloys. Acta. Metall. Sin. Engl. Lett. 2016, 29, 722–726. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhao, Y.Q.; Bai, C.G. Titanium Alloys and Their Applications, 3rd ed.; Chemical Industry Press: Beijing, China, 2005; p. 60. [Google Scholar]
- Abdel-Hady, M.; Fuwa, H.; Hinoshita, K.; Kimura, H.; Shinzato, Y.; Morinaga, M. Phase stability change with Zr content in β-type Ti–Nb alloys. Scr. Mater. 2007, 57, 1000–1003. [Google Scholar] [CrossRef]
- Min, X.H.; Emura, S.; Zhang, L.; Tsuzaki, K. Effect of Fe and Zr additions on ω phase formation in β-type Ti–Mo alloys. Mater. Sci. Eng. A 2008, 497, 74–78. [Google Scholar] [CrossRef]
- Ikeda, M.; Komatsu, S.-Y.; Nakamura, Y. Effects of Sn and Zr additions on phase constitution and aging behavior of Ti-50 mass%Ta alloys quenched from β single phase region. Mater. Trans. 2004, 45, 1106–1112. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.I.; Kim, H.Y.; Hosoda, H.; Miyazaki, S. Shape memory behavior of Ti-22Nb-(0.5–2.0)O(at%) biomedical alloys. Mater. Trans. 2005, 46, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Furuhara, T.; Annaka, S.; Tomio, Y.; Maki, T. Superelasticity in Ti–10V–2Fe–3Al alloys with nitrogen addition. Mater. Sci. Eng. A 2006, 438–440, 825–829. [Google Scholar] [CrossRef]
- Hou, F.Q.; Li, S.J.; Hao, Y.L.; Yang, R. Nonlinear elastic deformation behaviour of Ti–30Nb–12Zr alloys. Scr. Mater. 2010, 63, 54–57. [Google Scholar] [CrossRef]
- Li, S.J.; Jia, M.T.; Prima, F.; Hao, Y.L.; Yang, R. Improvements in nonlinear elasticity and strength by grain refinement in a titanium alloy with high oxygen content. Scr. Mater. 2011, 64, 1015–1018. [Google Scholar] [CrossRef]
- Qazi, J.I.; Marquardt, B.; Allard, L.F.; Rack, H.J. Phase transformations in Ti–35Nb–7Zr–5Ta–(0.06–0.68)O alloys. Mater. Sci. Eng. C 2005, 25, 389–397. [Google Scholar] [CrossRef]
- Qazi, J.I.; Tsakiris, V.; Marquardt, B.; Rack, H.J. Effect of Aging Treatments on the Tensile Properties of Ti-35Nb-7Zr-5Ta-(0.06–0.7)O Alloys; ASTM International: West Conshohocken, PA, USA, 2005; Volume 2. [Google Scholar]
- Saito, T.; Furuta, T.; Hwang, J.H.; Kuramoto, S.; Nishino, K.; Suzuki, N.; Chen, R.; Yamada, A.; Ito, K.; Seno, Y.; et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 2003, 300, 464–467. [Google Scholar]
- Furuta, T.; Nishino, K.; Hwang, J.H.; Yamada, A.; Ito, K.; Osawa, S.; Kuramoto, S.; Suzuki, N.; Chen, R.; Saito, T. Development of multi functional titanium alloy, “GUM METAL”, Ti-2003 Science and Technology. In Proceedings of the 10th World Conference on Titanium, Hamburg, Germany, 13 July 2003. [Google Scholar]
- Gutkin, M.Y.; Ishizaki, T.; Kuramoto, S.; Ovid’ko, I.A. Nanodisturbances in deformed Gum Metal. Acta Mater. 2006, 54, 2489–2499. [Google Scholar] [CrossRef]
- Saito, T.; Furuta, T.; Hwang, J.H.; Kuramoto, S.; Nishino, K.; Suzuki, N.; Chen, R.; Yamada, A.; Ito, K.; Seno, Y.; et al. Multi Functional Titanium Alloy “GUM METAL”. Mater. Sci. Forum. 2003, 426–432, 681–688. [Google Scholar] [CrossRef]
- Kuramoto, S.; Furuta, T.; Hwang, J.; Nishino, K.; Saito, T. Elastic properties of Gum Metal. Mater. Sci. Eng. A 2006, 442, 454–457. [Google Scholar] [CrossRef]
- Kuramoto, S.; Furuta, T.; Hwang, J.H.; Nishino, K.; Saito, T. Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy. Metall. Mater. Trans. A 2006, 37, 657–662. [Google Scholar] [CrossRef]
- Ikehata, H.; Nagasako, N.; Kuramoto, S.; Saito, T. Designing new structural materials using density functional theory: The example of Gum Metal. MRS Bull. 2006, 31, 688–692. [Google Scholar] [CrossRef]
- Li, T.; Morris, J.W., Jr.; Nagasako, N.; Kuramoto, S.; Chrzan, D.C. “Ideal” engineering alloys. Phys. Rev. Lett. 2007, 98, 105503. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.P.; Cheng, G.M.; Li, Y.L.; Yang, K. Multiple deformation mechanisms of Ti–22.4Nb–0.73Ta–2.0Zr–1.34O alloy. Appl. Phys. Lett. 2009, 94, 061901. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.P.; Cheng, G.M.; Wang, H.; Zhang, M.; Xu, F.; Yang, K. Stress-introduced α” martensite and twinning in a multifunctional titanium alloy. Scr. Mater. 2008, 58, 9–12. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.P.; Wang, H.; Wu, S.Q.; Zhang, L.C.; Li, Y.L.; Yang, K. Formation of zigzag-shaped {112}<111>β mechanical twins in Ti–24.5 Nb–0.7 Ta–2 Zr–1.4 O alloy. Scr. Mater. 2012, 66, 211–214. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, S.Q.; Li, G.P.; Li, Y.L.; Lu, Y.F.; Yang, K.; Ge, P. Evolution of deformation mechanisms of Ti–22.4Nb–0.73Ta–2Zr–1.34O alloy during straining. Acta Mater. 2010, 58, 2778–2787. [Google Scholar] [CrossRef]
- Qu, L.; Yang, Y.; Lu, Y.F.; Feng, L.; Ju, J.H.; Ge, P.; Zhou, W.; Han, D.; Ping, D.H. A detwinning process of {332}<113> twins in beta titanium alloys. Scr. Mater. 2013, 69, 389–392. [Google Scholar] [CrossRef]
- Xing, H.; Sun, J. Mechanical twinning and omega transition by <111>{112} shear in a metastable β titanium alloy. Appl. Phys. Lett. 2008, 93, 93–95. [Google Scholar] [CrossRef]
- Talling, R.J.; Dashwood, R.J.; Jackson, M.; Dye, D. On the mechanism of superelasticity in Gum metal. Acta Mater. 2009, 57, 1188–1198. [Google Scholar] [CrossRef] [Green Version]
- Talling, R.; Dashwood, R.; Jackson, M.; Kuramoto, S.; Dye, D. Determination of (C11-C12) in Ti–36Nb–2Ta–3Zr–0.3O (wt.%) (Gum metal). Scr. Mater. 2008, 59, 669–672. [Google Scholar] [CrossRef]
- Furuta, T.; Kuramoto, S.; Rong, C.; Hwang, J.; Nishino, K.; Saito, T.; Ikeda, M. Effect of oxygen on phase stability and elastic deformation behavior in Gum Metal. J. Jpn. Inst. Met. 2006, 70, 579–585. [Google Scholar] [CrossRef] [Green Version]
- Furuta, T.; Kuramoto, S.; Hwang, J.; Nishino, K.; Saito, T.; Niinomi, M. Mechanical Properties and Phase Stability of Ti-Nb-Ta-Zr-O Alloys. Mater. Trans. 2007, 48, 1124–1130. [Google Scholar] [CrossRef] [Green Version]
- Besse, M.; Castany, P.; Gloriant, T. Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys: A comparative study on the oxygen influence. Acta Mater. 2011, 59, 5982–5988. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Wang, L.; Fu, Y.; Qin, J.; Lu, W.; Zhang, D. Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy. Mater. Des. 2011, 32, 2934–2939. [Google Scholar] [CrossRef]
- Sun, S.Y.; Deng, C. Accurate calculation of α + β/β phase transition of titanium alloys based on binary phase diagrams. Titan. Ind. Prog. 2011, 28, 21–25. [Google Scholar]
- Abdel-Hady, M.; Hinoshita, K.; Morinaga, M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr. Mater. 2006, 55, 477–480. [Google Scholar] [CrossRef]
- Lütjering, G.; Williams, J.C. Titanium, 2nd ed.; Springer: Berlin, Germany, 2007; p. 46. [Google Scholar]
- Ando, T.; Nakashima, K.; Tsuchiyama, T.; Takaki, S. Microstructure and mechanical properties of a high nitrogen titanium alloy. Mater. Sci. Eng. A 2008, 486, 228–234. [Google Scholar] [CrossRef]
- Xu, F. The Effect of Zr Addition on 650 °C Deformation and Fracture Mechanisms in Ti-1100 Alloy. Ph.D. Thesis, Chinese Academy of Sciences, Shenyang, China, 2007. [Google Scholar]
Alloy Name | Nominal Composition, at.% | Calculated β Transus, °C | Ingot Weight, g | Open Forging Temperature, °C | Post Treatment |
---|---|---|---|---|---|
2Zr-1.2O | Ti-23Nb-0.7Ta-2Zr-1.2O | 574 | 1300 | 1080 and 750 | 1010 °C, 30 min, WQ, 77% compression |
2Zr-4O | Ti-23Nb-0.7Ta-2Zr-4O | 695 | 60 | 1220 | 900 °C, 1 h, FC |
2Zr-6O | Ti-23Nb-0.7Ta-2Zr-6O | 827 | 60 | 1220 | 950 °C, 1 h, FC |
2Zr-10O | Ti-23Nb-0.7Ta-2Zr-10O | 1234 | 60 | 1220 | 1050 °C, 1 h, FC |
0Zr-4O | Ti-23Nb-0.7Ta-4O | 707 | 60 | 1220 | 900 °C, 1 h, FC |
0Zr-6O | Ti-23Nb-0.7Ta-6O | 842 | 60 | 1220 | 950 °C, 1 h, FC |
0Zr-10O | Ti-23Nb-0.7Ta-10O | 1264 | 60 | 1220 | 1050 °C, 1 h, FC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, K.; Wang, X.; Yin, Z.; Yang, Y.; Wu, S.; Li, G.; Zhang, K.; Wang, H.; Huang, A. Influence of Oxygen and Zirconium Contents on The Mechanical Properties of Ti-23Nb-0.7Ta-Zr-O Alloys. Metals 2022, 12, 1018. https://doi.org/10.3390/met12061018
Si K, Wang X, Yin Z, Yang Y, Wu S, Li G, Zhang K, Wang H, Huang A. Influence of Oxygen and Zirconium Contents on The Mechanical Properties of Ti-23Nb-0.7Ta-Zr-O Alloys. Metals. 2022; 12(6):1018. https://doi.org/10.3390/met12061018
Chicago/Turabian StyleSi, Kunlun, Xu Wang, Zhaolong Yin, Yi Yang, Songquan Wu, Geping Li, Kai Zhang, Hao Wang, and Aijun Huang. 2022. "Influence of Oxygen and Zirconium Contents on The Mechanical Properties of Ti-23Nb-0.7Ta-Zr-O Alloys" Metals 12, no. 6: 1018. https://doi.org/10.3390/met12061018
APA StyleSi, K., Wang, X., Yin, Z., Yang, Y., Wu, S., Li, G., Zhang, K., Wang, H., & Huang, A. (2022). Influence of Oxygen and Zirconium Contents on The Mechanical Properties of Ti-23Nb-0.7Ta-Zr-O Alloys. Metals, 12(6), 1018. https://doi.org/10.3390/met12061018