Effect of Smelting Time on Vanadium and Titanium Distribution Behavior and Slag Viscosity in HIsmelt
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthetic Ore Samples
2.3. Experimental Scheme and Procedure
2.3.1. Melting Pre–Experiments
2.3.2. Equilibrium Experiments
3. Results and Discussion
3.1. Ore Melting Behavior
3.2. Effect of Smelting Time on Element Distribution Behavior and Recovery
3.3. Effect of Smelting Time on Slag Viscosity Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tang, W.D.; Xue, X.X.; Yang, S.T.; Zhang, L.H.; Huang, Z. Influence of basicity and temperature on bonding phase strength, microstructure, and mineralogy of high–chromium vanadium–titanium magnetite. Int. J. Miner. Metall. Mater. 2018, 25, 871–880. [Google Scholar] [CrossRef]
- Zhou, M.; Jiang, T.; Ding, X.; Ma, S.; Wei, G.; Xue, X. Thermodynamic study of direct reduction of high–chromium vanadium–titanium magnetite (HCVTM) based on phase equilibrium calculation model. J. Therm. Anal. Calorim. 2019, 136, 885–892. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Liu, T.; Huang, J. Characterization and Pre–Concentration of Low–Grade Vanadium–Titanium Magnetite Ore. Minerals 2017, 7, 137. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Hu, P.; Rao, J.; Wang, Z.; Zhang, J.; Zong, Y. Comprehensive utilization status of vanadium–titanium magnetite and feasibility analysis of HIsmelt smelting. J. Cent. South Univ. (Sci. Technol.) 2021, 52, 3085–3092. [Google Scholar]
- Zhou, M.; Jiang, T.; Yang, S.; Xue, X. Vanadium–titanium magnetite ore blend optimization for sinter strength based on iron ore basic sintering characteristics. Int. J. Miner. Processing 2015, 142, 125–133. [Google Scholar] [CrossRef]
- Feng, C.; Chu, M.; Tang, J.; Tang, Y.; Liu, Z. Main metallurgical performance and phases for different types of titanium–bearing blast furnace slags. J. Cent. South Univ. (Sci. Technol.) 2016, 47, 2556–2562. [Google Scholar]
- Chang, F.; Zhao, B.; Li, L.; Geng, L.; Zhang, Z. Research status and prospect of vanadium extraction technology from vanadium–titanium magnetite. Iron Steel Vanadium Titan. 2018, 39, 71–78. [Google Scholar]
- Sun, H.; Zhu, Q.; Li, H. The technical state and development trend of the direct reduction of titanomagnetite by fluidized bed. Chin. J. Process Eng. 2018, 18, 1146–1159. [Google Scholar]
- Ziguo, H.; Hongcai, F.; Lian, L.; Turner, S. Comprehensive Utilization of Vanadium–Titanium Magnetite Deposits in China Has Come to a New Level. Acta Geol. Sin.–Engl. Ed. 2013, 87, 286–287. [Google Scholar] [CrossRef]
- Chen, S.Y.; Chu, M.S. Metalizing reduction and magnetic separation of vanadium titano–magnetite based on hot briquetting. Int. J. Miner. Metall. Mater. 2014, 21, 225–233. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, L.; Qi, T.; Chen, D.; Zhao, H.; Liu, Y. A novel method to extract iron, titanium, vanadium, and chromium from high–chromium vanadium–bearing titanomagnetite concentrates. Hydrometallurgy 2014, 149, 106–109. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Wang, L.N.; Chen, D.S.; Wang, W.J.; Liu, Y.H.; Zhao, H.X.; Qi, T. A method for recovery of iron, titanium, and vanadium from vanadium–bearing titanomagnetite. Int. J. Miner. Metall. Mater. 2018, 25, 131–144. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Z.; Hu, P.; Rao, J.; Zhang, J.; Pang, J. HIsmelt smelting vanadium titano–magnetite: The effect of composition and temperature on the distribution behavior of V, Ti, and Si and the feasibility of smelting vanadium titano–magnetite with natural basicity. Trans. Nonferrous Met. Soc. China 2022. [Google Scholar] [CrossRef]
- Zhang, J.; Li, K.; Zhang, G.; Wang, Z.; Zhang, X. Technological Innovation and Latest Production Index of HIsmelt Process in Shandong Molong. Ironmaking 2018, 37, 56–60. [Google Scholar]
- Zhang, J.; Zhang, G.; Liu, Z.; Wang, Z.; Li, K.; Zhang, X. The production operation and main characteristics of HIsmelt process in Shandong Molong. China Metall. 2018, 28, 37–41. [Google Scholar]
- Ma, H.; Jiao, K.; Zhang, J. The influence of basicity and TiO2 on the crystallization behavior of high Ti–bearing slags. CrystEngComm 2019, 22, 361–370. [Google Scholar] [CrossRef]
- Kurunov, I.F. The direct production of iron and alternatives to the blast furnace in iron metallurgy for the 21st century. Metallurgist 2010, 54, 335–342. [Google Scholar] [CrossRef]
- Schenk, J.L. Recent status of fluidized bed technologies for producing iron input materials for steelmaking. Particuology 2011, 9, 14–23. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Fruehan, R.J. Formation of Titanium Carbonitride from Hot Metal. ISIJ Int. 2001, 41, 6. [Google Scholar] [CrossRef]
- Stephens, D.; Tabib, M.; Schwarz, M.P.; Davis, M. CFD simulation of bath dynamics in the HIsmelt smelt reduction vessel for iron production. Prog. Comput. Fluid Dyn. Int. J. 2012, 12, 196. [Google Scholar] [CrossRef]
- Neil, G.; Rod, D.; Wang, D. HIsmelt ironmaking process. World Steel 2010, 10, 1–5. [Google Scholar]
- Kitagawa, T. Present Status of the Development of Smelting Reduction Technologies. Tetsu–to–Hagane 2002, 88, 430–443. [Google Scholar] [CrossRef] [Green Version]
- Jacques, P. HIsmelt technology suitable for vanadium–titanium magnetite. In Proceedings of the 2010 Annual Conference of Non–Blast Furnace Ironmaking and Seminar on Comprehensive Utilization of Vanadium–titanium Magnetite, Panzhihua, China, 27–29 October 2010; The Chinese Society for Metals 2010. pp. 233–238. [Google Scholar]
- Chu, M.; Tang, J.; Liu, Z.; Ying, Z. Present situation and progress of comprehensive utilization forhigh–chromium vanadium–bearing titanomagnetie. J. Iron Steel Res. 2017, 29, 335–344. [Google Scholar]
- Li, R.; Liu, T.; Zhang, Y.; Huang, J.; Xu, C. Efficient Extraction of Vanadium from Vanadium–Titanium Magnetite Concentrate by Potassium Salt Roasting Additives. Minerals 2018, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Ren, R.; Dong, H.; Zhang, G.; Liu, S. Latest technology of melting reduction ironmaking processand discussion of process route choice. Iron Steel 2020, 55, 145–150. [Google Scholar]
- Li, Y.-L.; Li, H.-B.; Wang, H.; Qing, S.; Hu, J.-H.; Hou, Y.-L.; Li, H.; Li, L.-Q. Smelting potential of HIsmelt technology for high–phosphorus iron ore and ilmenite. In Proceedings of the 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, China, 19–20 February 2011; pp. 1283–1286. [Google Scholar]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.H.; Kang, Y.B.; Melançon, J.; et al. Reprint of: FactSage thermochemical software and databases, 2010–2016. Calphad 2016, 55, 1–19. [Google Scholar] [CrossRef]
- Ma, S.; Li, K.; Zhang, J.; Jiang, C.; Sun, M.; Li, H.; Wang, Z.; Bi, Z. Structural Characteristics of CaO–SiO2–Al2O3–FeO Slag with Various FeO Contents Based on Molecular Dynamics Simulations. JOM 2021, 73, 1637–1645. [Google Scholar] [CrossRef]
- Ma, H.; Jiao, K.; Zhang, J.; Zong, Y.; Zhang, J.; Meng, S. Viscosity of CaO–MgO–Al2O3–SiO2–TiO2–FeO slag with varying TiO2 content: The Effect of Crystallization on Viscosity Abrupt Behavior. Ceram. Int. 2021, 47, 17445–17454. [Google Scholar] [CrossRef]
- Ma, J.; Fu, G.Q.; Li, W.; Zhu, M.Y. Influence of TiO2 on the melting property and viscosity of Cr–containing high–Ti melting slag. Int. J. Miner. Metall. Mater. 2020, 27, 310–318. [Google Scholar] [CrossRef]
Composition | Total Iron | SiO2 | CaO | V2O5 | TiO2 | MgO | Al2O3 | S | P |
---|---|---|---|---|---|---|---|---|---|
Content | 56.03 | 2.98 | 0.89 | 0.62 | 10.87 | 2.84 | 2.83 | 0.61 | 0.01 |
Material Proportion (wt%) | Mineralogical Composition (wt%) | Graphite (g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Raw Ore | CaO | Graphite | Total Iron | CaO | SiO2 | Al2O3 | MgO | V2O5 | TiO2 | |
93.95 | 2.56 | 3.49 | 55.76 | 3.56 | 2.97 | 2.82 | 2.83 | 0.62 | 10.82 | 3.65 |
No. | Chemicals | Purity/% | Supplier |
---|---|---|---|
1 | CaO | 98 | Sinopharm |
2 | SiO2 | 99 | Sinopharm |
3 | Al2O3 | 99 | Sinopharm |
4 | MgO | 98.5 | Sinopharm |
5 | TiO2 | 98 | Sinopharm |
6 | V2O5 | 99 | Energy |
7 | Fe | 98 | Aladdin |
8 | Graphite | 99.9 | Macklin |
Smelting Time | Slag (wt%) | Hot Metal (wt%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
FeO | CaO | MgO | Al2O3 | SiO2 | V2O3 | TiO2 | Si | Ti | V | |
1 h | 1.86 | 16.77 | 13.33 | 11.05 | 19.20 | 0.53 | 37.24 | 0.07 | 0.18 | 0.81 |
2 h | 2.71 | 15.55 | 12.36 | 10.16 | 17.53 | 1.59 | 40.10 | 0.14 | 0.31 | 0.53 |
3 h | 2.93 | 15.55 | 12.37 | 9.94 | 16.05 | 1.81 | 41.35 | 0.36 | 0.36 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Hu, P.; Rao, J.; Wang, Z.; Zong, Y.; Zhang, J. Effect of Smelting Time on Vanadium and Titanium Distribution Behavior and Slag Viscosity in HIsmelt. Metals 2022, 12, 1019. https://doi.org/10.3390/met12061019
Zhang S, Hu P, Rao J, Wang Z, Zong Y, Zhang J. Effect of Smelting Time on Vanadium and Titanium Distribution Behavior and Slag Viscosity in HIsmelt. Metals. 2022; 12(6):1019. https://doi.org/10.3390/met12061019
Chicago/Turabian StyleZhang, Shushi, Peng Hu, Jiating Rao, Zhenyang Wang, Yanbing Zong, and Jianliang Zhang. 2022. "Effect of Smelting Time on Vanadium and Titanium Distribution Behavior and Slag Viscosity in HIsmelt" Metals 12, no. 6: 1019. https://doi.org/10.3390/met12061019
APA StyleZhang, S., Hu, P., Rao, J., Wang, Z., Zong, Y., & Zhang, J. (2022). Effect of Smelting Time on Vanadium and Titanium Distribution Behavior and Slag Viscosity in HIsmelt. Metals, 12(6), 1019. https://doi.org/10.3390/met12061019