Influence of Y Nano-Oxide and Its Secondary Phase on Microstructure, Mechanical Properties, and Wear Behavior of the Stainless Steel Coatings Fabricated by Plasma Transfer Arc
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. PTA Coating Preparation
2.3. Material Characterization
2.4. Mechanical Characterization
3. Results and Discussion
3.1. Subsection Microstructural Characterization
3.2. Mechanical Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, Q.Y.; Zhang, J.Q.; Mo, N.; Fan, Z.Q.; Yin, Y.; Bermingham, M.; Liu, Y.G.; Huang, H.; Zhang, M.X. A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles. Add. Manuf. 2020, 32, 101034. [Google Scholar] [CrossRef]
- Bermingham, M.J.; St. John, D.H.; Krynen, J.; Tedman-Jones, S.; Dargusch, M.S. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing. Acta. Mater. 2019, 168, 261–274. [Google Scholar] [CrossRef]
- Singla, Y.K.; Arora, N.; Dwivedi, D.K. Dry sliding adhesive wear characteristics of Fe-based hardfacing alloys with different CeO2 additives—A statistical analysis. Tribol. Int. 2017, 105, 229–240. [Google Scholar] [CrossRef]
- Hou, Q.Y.; Wang, J.T. Influence of CeO2 on the microstructure and wear resistance of iron-based alloy coating studied by Rietveld refinement method. Surf. Coat. Technol. 2010, 204, 2677–2682. [Google Scholar] [CrossRef]
- Kang, X.L.; Dong, S.Y.; Wang, H.B.; Yan, S.X.; Liu, X.T.; Xu, B.S. Effects of Y content on laser melting-deposited 24CrNiMo steel: Formability, microstructural evolution, and mechanical properties. Mater. Des. 2020, 188, 108434. [Google Scholar] [CrossRef]
- Yin, G.L.; Chen, S.Y.; Liu, Y.Y.; Liang, J.; Liu, C.S.; Kuang, Z. Effect of nano-Y2O3 on microstructure and crack formation in laser direct-deposited in situ particle-reinforced Fe-based coatings. J. Mater. Eng. Perform. 2018, 27, 1154–1167. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Sun, J.; Li, J.F. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling. Appl. Surf. Sci. 2014, 321, 387–395. [Google Scholar] [CrossRef]
- Salman, O.O.; Funk, A.; Waske, A.; Eckert, J.; Scudino, S. Additive manufacturing of a 316L steel matrix composite reinforced with CeO2 particles: Process optimization by adjusting the laser scanning speed. Technologies 2018, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.C.; Liu, R.P.; Wei, Y.H.; Cheng, Z.G. Influence of Y on microstructures and mechanical properties of high strength steel weld metal. Mater. Des. 2014, 62, 83–90. [Google Scholar] [CrossRef]
- Gong, W.; Wang, P.F.; Zhang, L.; Jiang, Z.H. Effects of Ce on microstructure and mechanical properties of LDX2101 duplex stainless steel. Metals 2020, 10, 1233. [Google Scholar] [CrossRef]
- Quazi, M.M.; Fazal, M.A.; Haseeb, A.S.M.A.; Yusof, F.; Masjuki, H.H.; Arslan, A. Effect of rare earth elements and their oxides on the tribomechanical performance of laser claddings: A review. J. Rare. Earth 2016, 34, 549–564. [Google Scholar] [CrossRef]
- Wang, K.L.; Zhang, Q.B.; Sun, M.L.; Wei, X.G. Microstructural characteristics of laser clad coatings with rare earth metal elements. J. Mater. Process. Technol. 2003, 139, 448. [Google Scholar] [CrossRef]
- Wojciechowski, Ł.; Gapinski, B.; Firlik, B.; Mathia, T.G. Characteristics of tram wheel wear: Focus on mechanism identification and surface topography. Tribol. Int. 2020, 150, 106365. [Google Scholar] [CrossRef]
- Deng, X.K.; Zhang, G.J.; Wang, T.; Ren, S.; Bai, Z.L.; Cao, Q. Investigations on microstructure and wear resistance of Fe-Mo alloy coating fabricated by plasma transferred arc cladding. Surf. Coat. Technol. 2018, 350, 480–487. [Google Scholar] [CrossRef]
- Gnyusov, S.F.; Degterev, A.S.; Tarasov, S.Y. The effect of plasma torch weaving on microstructural evolution in multiple-pass plasma-transferred arc Fe-Cr-V-Mo-C coating. Surf. Coat. Technol. 2018, 344, 75–84. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, S.; Wang, C.; Zhang, C.H.; Chen, J.; Zhang, J.B. Microstructure and fatigue behavior of a laser additive manufactured 12CrNi2 low alloy steel. Mater. Sci. Eng. A 2020, 772, 138685. [Google Scholar] [CrossRef]
- Gennari, C.; Pezzato, L.; Piva, E.; Gobbo, R.; Calliari, I. Influence of small amount and different morphology of secondary phases on impact toughness of UNS S32205 Duplex Stainless. Steel. Mater. Sci. Eng. A 2018, 729, 149–156. [Google Scholar] [CrossRef]
- Yan, F.Y.; Xiong, W.; Faierson, E.; Olson, G.B. Characterization of nano-scale oxides in austenitic stainless steel processed by powder bed fusion. Scr. Mater. 2018, 155, 104–108. [Google Scholar] [CrossRef]
- Ji, Y.P.; Li, Y.M.; Zhang, M.X.; Ren, H.P. Crystallography of the Heterogeneous nucleation of d-ferrite on Ce2O2S particles during solidification of an Fe-4Si alloy. Metall. Mater. Trans. A 2019, 50A, 1787–1794. [Google Scholar] [CrossRef]
- Liu, X.Y.; Sui, Y.; Li, J.B.; Li, Y.M.; Sun, X.H.; Liu, C.S. Laser metal deposited steel alloys with uniform microstructures and improved properties prepared by addition of small amounts of dispersed Y2O3 nanoparticles. Mater. Sci. Eng. A 2021, 806, 140827. [Google Scholar] [CrossRef]
- Ding, W.W.; Zhao, X.Y.; Chen, T.L.; Zhang, H.X.; Liu, X.X.; Cheng, Y.; Lei, D.K. Effect of rare earth Y and Al-Ti-B master alloy on the microstructure and mechanical properties of 6063 aluminum alloy. J. Alloy. Compd. 2020, 830, 154685. [Google Scholar] [CrossRef]
- Liu, X.Y.; Sui, Y.; Li, J.B.; Yue, J.Y.; Sun, X.H.; Yang, L.F.; Liu, C.S. Dimension effect of Y2O3 nanomaterial on microstructure and tensile properties of laser metal deposited stainless steel coatings. Surf. Coat. Technol. 2021, 419, 127259. [Google Scholar] [CrossRef]
- Yue, J.Y.; Liu, X.Y.; Sui, Y.; Liu, C.S.; Sun, X.H.; Chen, W.D. Combined effect of Y2O3 nanoparticles and Si second-phase oxide on microstructure and wear resistance of plasma-clad steel coating. Surf. Coat. Technol. 2020, 403, 126348. [Google Scholar] [CrossRef]
- Vasquez, E.; Giroux, P.F.; Lomello, F.; Chniouel, A.; Maskrot, H.; Schuster, F.; Castany, P. Elaboration of oxide dispersion strengthened Fe-14Cr stainless steel by selective laser melting. J. Mater. Process. Technol. 2019, 267, 403–413. [Google Scholar] [CrossRef]
- Almirall, N.; Wells, P.B.; Yamamoto, T.; Wilford, K.; Williams, T.; Riddle, N.; Odette, G.R. Precipitation and hardening in irradiated low alloy steels with a wide range of Ni and Mn compositions. Acta. Mater. 2019, 179M, 119–128. [Google Scholar] [CrossRef]
- He, Z.P.; Yang, H.Y.; He, Y.L.; Zheng, W.S.; Guan, Z.W.; Li, L. Influence of manganese on deformation behavior of lightweight steel at different strain rate. J. Mater. Res. Technol. 2020, 9, 11611–11621. [Google Scholar] [CrossRef]
- Liu, Y.F.; Ouyang, W.T.; Wu, H.C.; Xu, Z.F.; Sheng, L.Y.; Zou, Q.; Zhang, M.N.; Zhang, W.W.; Jiao, J.K. Improving surface quality and superficial microstructure of LDED Inconel 718 superalloy processed by hybrid laser polishing. J. Mater. Process. Technol. 2022, 300, 117428. [Google Scholar] [CrossRef]
- Wang, K.L.; Zhang, Q.B.; Sun, M.L.; Wei, X.G.; Zhu, Y.M. Rare earth elements modification of laser-clad nickel-based alloy coatings. Appl. Surf. Sci. 2001, 174, 191–200. [Google Scholar] [CrossRef]
- Du, B.N.; Hu, Z.Y.; Sheng, L.Y.; Xu, D.K.; Qiao, Y.X.; Wang, B.J.; Wang, J.; Zheng, Y.F.; Xi, T.F. Microstructural characteristics and mechanical properties of the hot extruded Mg-Zn-Y-Nd alloys. J. Mater. Sci. Technol. 2021, 60, 44–55. [Google Scholar] [CrossRef]
- Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E.A. Steels in additive manufacturing: A review of their microstructure and properties. Mater. Sci. Eng. 2020, 772, 138633. [Google Scholar] [CrossRef]
- Zhao, H.; Sheng, L.Y. Microstructure and mechanical properties of the Ag/316L composite plate fabricated by explosive welding. J. Manuf. Process 2021, 64, 265–275. [Google Scholar] [CrossRef]
- Tian, Y.S.; Chen, C.Z.; Chen, L.X.; Huo, Q.H. Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique. Scr. Mater. 2005, 54, 847–852. [Google Scholar] [CrossRef]
- Bao, R.L.; Yu, H.J.; Chen, C.Z.; Dong, Q. The effect of rare earth on the structure and performance of laser clad coatings. Surf. Rev. Lett. 2006, 13, 509–517. [Google Scholar] [CrossRef]
- Sun, Z.B.; Song, X.P.; Hu, Z.D.; Liang, G.Y.; Yang, S.; Cochrane, R.F. Effects of rare earth additions on GMR of melt-spun Cu-Co-Ni ribbons. J. Magn. Magn. Mate 2001, 234, 279–283. [Google Scholar] [CrossRef]
- Asgari, H.; Mohammadi, M. Microstructure and mechanical properties of stainless steel CX manufactured by Direct Metal Laser Sintering. Mater. Sci. Eng. A 2018, 709, 82–89. [Google Scholar] [CrossRef]
- Sheng, L.Y.; Yang, F.; Xi, T.F.; Guo, J.T.; Ye, H.Q. Microstructure evolution and mechanical properties of Ni3Al/Al2O3 composite during self-propagation high-temperature synthesis and hot extrusion. Mater. Sci. Eng. A 2012, 555, 131–138. [Google Scholar] [CrossRef]
- Sheng, L.Y.; Xiao, Y.N.; Jiao, C.; Du, B.N.; Li, Y.M.; Wu, Z.Z.; Shao, L.Q. Influence of layer number on microstructure, mechanical properties and wear behavior of the TiN/Ti multilayer coatings fabricated by high-power magnetron sputtering deposition. J. Manuf. Process 2021, 70, 529–542. [Google Scholar] [CrossRef]
- Sheng, L.Y.; Yang, F.; Xi, T.F.; Guo, J.T. Investigation on microstructure and wear behavior of the NiAl-TiC-Al2O3 composite fabricated by self-propagation high-temperature synthesis with extrusion. J. Alloys Compd. 2013, 554, 182–188. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Lu, X.C.; Han, B.L.; Han, J.B.; Luo, J.B. Rare earth effect on microstructure, mechanical and tribological properties of CoCrW coatings. Mater. Sci. Eng. C 2007, A444, 92–98. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Lu, X.C.; Han, B.L.; Han, J.B.; Luo, J.B. Rare earth effect on the microstructure and wear resistance of Ni-based coatings. Mater. Sci. Eng. A 2007, 454–455, 194–202. [Google Scholar] [CrossRef]
EL | Parameter |
---|---|
Arc length (mm) | 10 |
Current (A) | 170 |
Plasma gas | Argon |
Plasma gas flow (L/min) | 5 |
Protective gas flow (L/min) | 8 |
Feeding gas flow (L/min) | 5 |
Powder feeding rate (mg/s) | 400 |
Scanning velocity (mm/s) | 1 |
Overlap rate (%) | 40 |
EL | The Reciprocating Friction Test | The Wear Weight Loss Test |
---|---|---|
Wear load (N) | 10 | 18 |
Wear speed (mm/min) | 50 | 60 |
Length (mm) | 5 | 30 × 12 |
Temperature (°C) | 25 | 25 |
Relative humidity (%) | 17 | 17 |
Friction state | Dry friction | Dry friction |
Contact form | Point-surface | Line-surface |
EL | Fe/at.% | Cr/at.% | C/at.% | Al/at.% | Mn/at.% | Y/at.% | Si/at.% | O/at.% |
---|---|---|---|---|---|---|---|---|
HSC0 | 28.86 | 6.01 | 28.53 | 0.12 | 2.93 | - | 9.12 | 24.43 |
HSC02 | 3.43 | 1.08 | 52.42 | 0.30 | 2.06 | 5.33 | 3.48 | 31.90 |
HSC04 | 5.96 | 1.50 | 59.07 | 0.79 | 0.89 | 4.34 | 1.99 | 25.46 |
HSC06 | 12.19 | 3.69 | 35.18 | 1.12 | 1.97 | 7.07 | 3.95 | 34.83 |
HSC08 | 18.40 | 3.99 | 28.70 | 0.64 | 2.61 | 6.30 | 4.50 | 34.86 |
Sample | HSC0 | HSC02 | HSC04 | HSC06 | HSC08 |
---|---|---|---|---|---|
O(wt.%) | 0.016 | 0.018 | 0.020 | 0.026 | 0.026 |
Y(wt.%) | 0 | 0.014 | 0.016 | 0.019 | 0.023 |
Samples | Modulus of Elasticity (Gpa) | Tensile Strength (Mpa) | Yield Strength (Mpa) | Elongation (%) |
---|---|---|---|---|
HSC0 | 292.5 | 667.3 | 113.3 | 2.1 |
HSC02 | 263.8 | 810.0 | 82.7 | 2.8 |
HSC04 | 367.3 | 1281.0 | 148.3 | 3.2 |
HSC06 | 342.3 | 1066.9 | 99.1 | 3.0 |
HSC08 | 297.5 | 946.6 | 108.8 | 2.9 |
EL | Fe/at.% | Cr/at.% | C/at.% | Al/at.% | V/at.% | Mn/at.% | Y/at.% | Si/at.% | O/at.% |
---|---|---|---|---|---|---|---|---|---|
HSC0 | 26.46 | 5.11 | 13.57 | 0.75 | 0.20 | 0.34 | - | 5.52 | 48.05 |
HSC02 | 30.11 | 6.47 | 18.07 | 0.13 | 0.20 | 0.28 | 0.06 | 3.05 | 41.63 |
HSC04 | 72.97 | 10.32 | 7.01 | 0.28 | 0.30 | 0.60 | 0.11 | 3.93 | 4.47 |
HSC06 | 37.85 | 10.44 | 22.10 | 0.24 | 0.40 | 0.12 | 0.14 | 4.38 | 24.34 |
HSC08 | 44.69 | 7.03 | 11.55 | 0.26 | 0.23 | 0.37 | 0.13 | 6.07 | 29.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, J.; Sui, Y.; Yang, L.; Lu, F.; Chen, W.; Liu, X.; Sun, X. Influence of Y Nano-Oxide and Its Secondary Phase on Microstructure, Mechanical Properties, and Wear Behavior of the Stainless Steel Coatings Fabricated by Plasma Transfer Arc. Metals 2022, 12, 942. https://doi.org/10.3390/met12060942
Yue J, Sui Y, Yang L, Lu F, Chen W, Liu X, Sun X. Influence of Y Nano-Oxide and Its Secondary Phase on Microstructure, Mechanical Properties, and Wear Behavior of the Stainless Steel Coatings Fabricated by Plasma Transfer Arc. Metals. 2022; 12(6):942. https://doi.org/10.3390/met12060942
Chicago/Turabian StyleYue, Junyu, Yi Sui, Lifeng Yang, Fei Lu, Weidong Chen, Xiaoyu Liu, and Xiaohua Sun. 2022. "Influence of Y Nano-Oxide and Its Secondary Phase on Microstructure, Mechanical Properties, and Wear Behavior of the Stainless Steel Coatings Fabricated by Plasma Transfer Arc" Metals 12, no. 6: 942. https://doi.org/10.3390/met12060942
APA StyleYue, J., Sui, Y., Yang, L., Lu, F., Chen, W., Liu, X., & Sun, X. (2022). Influence of Y Nano-Oxide and Its Secondary Phase on Microstructure, Mechanical Properties, and Wear Behavior of the Stainless Steel Coatings Fabricated by Plasma Transfer Arc. Metals, 12(6), 942. https://doi.org/10.3390/met12060942