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Abstract: In this study, a series of optically transparent metallized acrylics containing Gd and Pb were
synthesized by the bulk polymerization of Gd(MAA)3, Pb(MAA)2 and AM according to different
polymerization procedures. The variation of their optic transmittance and mechanical performance
with Gd contents was investigated. Then, quasi-static uniaxial tensile tests under different strain
rates and temperatures were performed to study the influence of strain rate and temperature on
the mechanical properties of radiation-shielding metallized acrylic containing both Gd and Pb. The
tensile responses of this material distinctly exhibit nonlinear characteristics and strongly depend on
both temperature and strain rate. Based on the experimental results, a modified Zhu–Wang–Tang
(ZWT) constitutive model, in which the standard elastic component was replaced by the Mooney–
Rivlin hyperelastic model, was implemented to characterize the observed both hyperelastic and
viscoelastic behaviors. The constitutive parameters were expressed as functions of temperature and
determined by experimental data. The model fitting results indicate that the selected constitutive
model can accurately describe the nonlinear tensile stress–strain responses of metallized acrylic
containing Gd and Pb. Furthermore, the great difference in constitutive parameters implies that the
viscoelastic behavior of the as-prepared metallized acrylic affects the response to quasi-static tensile
loading the most.

Keywords: metallized acrylic; ionizing radiation; gadolinium; ZWT constitutive model; uniaxial
tension; temperature dependence; viscoelastic

1. Introduction

Gadolinium, which is a rare-earth metal of the lanthanide series, is widely used in
nuclear power plants as the control rod for thermal neutron absorption [1,2] because its
two isotopes Gd 155 [3] and Gd 157 [4] possess the largest neutron-capture cross-sections
among all the natural isotopes of any element. Therefore, gadolinium is considered the
best radiation shielding element. Based on that fact, Gd and its chemical compounds are
essential components of radiation shielding silicate glass for the observation windows in
nuclear power plants or the radiology examination rooms of hospitals [5,6], where ionizing
radiation such as neutron radiation and X-ray is spreading in the environment. However,
when neutrons are absorbed by Gd atoms, it excites secondary gamma rays [7], although the
hazards of radiating energy are significantly reduced. Hence, lead is commonly used as a
co-shielding element with Gd because of its excellent absorbing capacity for gamma ray [8].
Regrettably, the mechanical performance of inorganic transparent radiation-shielding
materials such as Gd and Pb silicate glass is unsatisfied because of their high fragility and
undesirable formability.
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By contrast, optically transparent organic materials, especially the polymeric materials,
such as acrylics and polycarbonates are of lower density and brittleness, and they could be
formed into complex shapes. The metallized derivatives of those polymers containing Gd
and Pb could combine the shielding properties of those two metals with the mechanical
performance of the organics. There are great expectations for consequent metallized poly-
mers to replace inorganic shielding materials in medical, atomic energy, military and many
other industrial sectors [9,10]. Thus, significant investment was made into the fabrication of
those transparent metallized organic materials. Lin et al. [11] prepared radiation-shielding
polymer according to the ternary copolymerization of lead methacrylate, styrene and
methacrylic acid, which possess good optical properties. Chen et al. [12] synthesized acrylic
glass containing Pb by means of microemulsion polymerization. This material exhibits
better physical performance than those synthesized by bulk polymerization. However,
compared with ordinary acrylics, its mechanical properties are significantly degraded. For
instance, the impact strength of this Pb-containing acrylic is only 3 KJ/m2. Therefore,
to fabricate a new metallized polymeric material with excellent mechanical performance
is of great significance to promote the practical use of this kind of material. Aiming to
ameliorate both mechanical performance and radiation-shielding property, our research
group improved the reaction ingredients and successfully prepared a metallized acrylic
containing both Gd and Pb, and the impact strength of the metallized acrylic was greater
than 20 KJ/m2.

Equally important, establishing an accurate constitutive model for this radiation-
shielding material is quite essential for understanding its usability and formability. Presently,
the Zhu–Wang–Tang (ZWT) [13–17] nonlinear viscoelastic constitutive model is a well-
accepted representation for describing the mechanical properties of various materials under
different strain rates. This model has shown its validity in modelling the rate-dependent
nonlinear viscoelastic behavior of numerous materials such as polymethyl methacrylate
(PMMA) [18,19], concrete [20], soil [21], etc. Especially, the polymeric materials under a
strain rate range between 10−4 s−1 and 103 s−1 can be well described by the ZWT consti-
tutive model within the deformation limit [22]. Regrettably, the typical ZWT model can
only describe the mechanical properties within a deformation limit of 8% [23] and not
suit the materials that exhibit hyperelastic behaviors. Nevertheless, this model require
too many parameters which are not suitable for engineering applications [24]. Therefore,
Jiang et al. [25] developed an improved ZWT nonlinear visco-hyperelastic constitutive
model, in which a Mooney–Rivlin hyperelastic model is introduced to replace the nonlinear
elastic equilibrium response element for effectively modeling the complex behaviors of
polymeric materials under quasi-static and dynamic loadings. Considering the hyperelastic
behavior observed during the uniaxial tension tests of metallized acrylic containing Gd
and Pb, the modified ZWT constitutive model is more reliable to describe both hyperelastic
and viscoelastic properties of this material simultaneously.

In this study, a kind of transparent metallized acrylic containing both Gd and Pb was
successfully synthesized by the bulk polymerization of organometallic acrylic monomers.
This radiation-shielding metallized acrylic exhibits good optical transparency and accept-
able thermal stability. Furthermore, this study investigates the mechanical properties of
metallized acrylic containing Gd and Pb. Quasi-static uniaxial tension experiments were
performed to study the influence of strain rate. Because the metallized acrylic has both
hyperelasticity and viscoelasticity responses to tensile loadings, the modified ZWT model
was then conducted to describe the behavior of this material. After that, this model was
employed to research the stress–strain behavior at different temperature by fitting the
constitutive parameters to the experimental data. Subsequently, the tendency of those
parameters was expressed as functions of temperature and determined by interpolation
fitting. The fitting results were further researched with the aim of confirming the main
factor that affects the response of metallized acrylic containing Gd and Pb.
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2. Materials and Methods
2.1. Chemicals and Materials

All reagents and solvents were of at least analytical grade and purchased from commer-
cial suppliers. Gadolinium oxide (Gd2O3) was purchased from Shandong Liang Zheng New
Material Technology Co., Ltd. (Zibo, Shandong, China). Diethyl-bisphenol A dimethacry-
late (BPA(EO)2DA), lead oxide (PbO), azodiisobutyronitrile (AIBN), acrylamide (AM),
ethanol, and octanoic acid (OA) were obtained from Sinopharm Chemical Reagent Co., Ltd.
(Beijing, China). MMA was washed by sodium hydroxide solution and distilled water to
eliminate the inhibitors. AIBN was recrystallized before use. Gadolinium methacrylate
(Gd(MAA)3) and lead methacrylate (Pb(MAA)2) were prepared by the method mentioned
in the reference [26].

2.2. Preparation of Metallized Acrylic Containing Gd and Pb

Desired amounts of Gd(MAA)3, Pb(MAA)2, AM, BPA(EO)2DA and OA were added
into a 10 L reactor and stirred at 75 ◦C for at least 20 min until all powder was dissolved. The
consequent solution was pre-polymerized with the initiation of AIBN under continuous
stirring for 15 min. The prepolymer was then poured into a planar mold made of two
pieces of tempered silica glass, and it was cured according to a designed polymerization
procedure which contained a series of periods under different temperatures. Finally, the
metallized acrylic sheet containing both Gd and Pb was obtained after removal of the mold.

2.3. Characterizations and Shielding Performance Analysis

Light transmittance was measured on a 722 visible spectrophotometer (Shanghai
Jinghua Technology Instrument Co., Ltd., Shanghai, China) at the wavelength of 550 nm.
Fourier transform infrared (FTIR) spectroscopy was conducted using a Thermo Nicolet
IS 50 spectrometer (Thermo Fisher Scientific (China) Co., Ltd., Shanghai, China). The
ultraviolet-visible (UV-Vis) spectra were obtained by a PerkinElmer Lambda 1050+ UV/Vis
Spectrophotometer (Perkinelmer Management (Shanghai) Co., Ltd., Shanghai, China) in
the range of 200–800 nm.

The shielding performance were measured on a TW32002 spherical ionization chamber
(PTW Freiburg GmbH., Freiburg, Germany), the energy selected for neutron-shielding
performance is 0.025 eV, and the energy selected for X-ray shielding performance is 100 keV.

2.4. Mechanical Properties Tests

The specimens for unnotched impact, bending and uniaxial test were obtained by ma-
chining the metallized acrylic containing Gd and Pb, according to the standards ISO 180:2000,
ISO 178:2001, and DIN EN ISO 527-1:2012, respectively. The CNC lath we used was a
FEELER VMP-23A (Fair Friend Ent. Co., Ltd., Taipei, Taiwan, China) in the factory of Beijing
Hangda Yijie Technology Co., Ltd. Particularly, the uniaxial tension test was firstly con-
ducted on a ZWICK Z020 universal testing machine (ZwickRoell Testing Systems Co., Ltd.,
Taicang, China) with three strain rates of 2 mm/min, 5 mm/min and 10 mm/min under
100 ◦C to investigate the mechanical properties of the metallized acrylic containing Gd
and Pb and to characterize the strain rate dependence of this material. The corresponding
tensile strain rates were 6.67 × 10−4 s−1, 1.67 × 10−3 s−1, and 3.33 × 10−3 s−1, respectively.
Then, the stress–strain response to temperature was tested under 60 ◦C, 80 ◦C, 90 ◦C, 95 ◦C,
and 100 ◦C at the strain rate of 1.67 × 10−4 s−1. The nominal stress and strain data are
converted into true stress and true strain data by using incompressibility assumption. The
impact strength test was conducted on a MZ-2056B digital impact testing machine (Jiangsu
Mingzhu Testing Co., Ltd., Yangzhou, China).

3. Results and Discussion
3.1. The Properties of Metallized Acrylic under Different Formulations

The metallized acrylic prepared according to different formulations were first made
into 4 mm thickness sheets, in which the content of Pb(MAA)2 was 30% and the content of
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Gd(MAA)3 was 5%. Although Gd(MAA)3 and Pb(MAA)2 are solid powders, they show
excellent dispersion in other monomers selected in the formulas. The basic performance
of metallized acrylic is shown in Table 1. As can be seen from the results, the bending
strength of the material gradually increases with the rising level of AM content. Commonly,
the addition of polar monomers, such as AM, would form more hydrogen bonds, which
will strengthen the cohesive force between polymeric molecules and additionally improve
the mechanical performance of the bulk material. However, both AM and organometallic
monomers are solid state; excessive charge will cause incomplete dissolution. Thus, the
amount of AM cannot continually increase. BPA(EO)2DA has a high optical refractive
index of 1.542, which is good for improving the light transmittance of the material. That
is why when the content of the BPA(EO)2DA monomer decreases, the light transmittance
decreases, too. By comparing the overall properties of the materials, when the ratio of
BPA(EO)2DA/AM/MAA is 20/27.5/2.5, the metallized acrylic obtains the best mechanical
performance, of which the impact strength and bending strength reaches 21.91 KJ/m2

and 93.45 MPa, respectively. Meanwhile, the light transmittance under this formulation
is adequate.

Table 1. The properties of metallized acrylic containing both Gd and Pb.

Sample Code BPA(EO)2DA
/AM/MAA Transmittance/% Impact

Strength/KJ/m2
Bending

Strength/MPa

A-1 25/20/5 89.2 20.43 60.97
A-2 25/22.5/2.5 89.1 17.86 78.21
A-3 20/25/5 87.6 13.46 89.32
A-4 20/27.5/2.5 87.0 21.91 93.45

3.2. Polymerization Results of the Metallized Acrylic under Different Polymerization Procedure

In order to obtain adequate shielding performance, the metallized acrylic should
have a certain thickness. Thus, on the basis of the previous formula, a 12 mm thick plate
polymerization process was studied. The bulk polymerization of metallized acrylic is
divided into three stages, which successively are prepolymerization, low-temperature poly-
merization and high-temperature post-treatment. Commonly, the polymeric reactions of
acrylate monomers are accompanied by volume contraction. In order to reduce the volume
shrinkage effect, prepolymerization should be carried out first. When the polymeric system
attains a certain viscosity, the resulting solution is poured into the planar mold to proceed
the low-temperature polymerization. In this stage, considerable heat is generated as the re-
action is exothermic. Consequently, the reacting system will implode if the excess heat is not
timely removed from the solution, which possess poor thermal conductivity. Based on that
fact, water, which has a high specific thermal capacity, was selected as the heating medium
for this low-temperature polymerization stage. Afterwards, the high-temperature polymer-
ization proceeded in an oven, because the heat release is weak at this stage. Table 2 presents
the comparation of optical and mechanical properties of metallized acrylic prepared by
different polymerization procedures. Those procedures were composed of several poly-
merization stages under different temperatures and reaction times. It can be seen that the
sample B-1 has the minimum impact and bending strength among the resultant polymers of
the three polymerization procedures. That result could be explained as the polymerization
proceeding too long under a relatively low temperature of 55 ◦C, which led to an excessive
consumption of initiator. The remaining initiator could not promote the extent of reaction
at the high temperature stage and reduce the polymerization degree of the consequent
acrylic. Compared with B-2, B-3 increases the heating program of 80 ◦C and prolongs the
reaction time; it further improves the bending strength according to the increase of the
reaction degree. Through a comprehensive performance comparison of materials, the poly-
merization procedure is determined as 55 ◦C/12 h + 60 ◦C/4 h + 80 ◦C/2 h + 100 ◦C/2 h
for the preparation of a 12 mm thick plate. The material has better mechanical properties
compared to other brittle radiation shielding metallized acrylics [12].
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Table 2. The properties of metallized acrylic containing both Gd and Pb.

Sample Code Polymerization Procedure Transmittance/% Impact
Strength/KJ/m2

Bending
Strength/MPa

B-1 55 ◦C/22 h + 60 ◦C/4 h + 100 ◦C/2 h 76.3 22.33 55.46
B-2 55 ◦C/12 h + 60 ◦C/4 h + 100 ◦C/2 h 79.9 30.46 82.59
B-3 55 ◦C/12 h + 60 ◦C/4 h + 80 ◦C/2 h + 100 ◦C/2 h 80.9 28.34 101.36

3.3. Infrared Spectrogram of Metallized Acrylic Containing Gd and Pb

The preparation of metallized acrylic undergoes a reaction process of free radical
polymerization. That is mainly the addition reaction of carbon double bonds of monomers
with propagating chain radicals. During the polymerization period, the C=C double bond
is gradually consumed and turns into a C–C chain. All chemical changes can be detected by
the variation in infrared response. Figure 1 shows the FTIR spectrum of metallized acrylic.
It can be seen that the peaks at 2925 cm−1 and 2854 cm−1 belong to the stretching vibration
of the C–H bond of –CH3 and –CH2 group. The diffuse peak covers the wavelength range
from 3700 to 3030 cm−1 and can be assigned to the –NH2 and –COOH groups of AM and
MAA units in the polymer chain. The broadened peak width indicates the existence of
intermolecular hydrogen bonds. The stretching vibration peak of the C=C double bond at
1710 cm−1 in the metallized acrylic containing both Gd and Pb basically disappeared. This
phenomena has proved that Gd and Pb elements are chemically bonded into the acrylic
copolymers by the co-polymerization of Gd (MAA)3, Pb(MAA)2 and other monomers [27].
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Figure 1. The FTIR spectrum of metallized acrylic. Figure 1. The FTIR spectrum of metallized acrylic.

3.4. The Variation of Transmittance of Metallized Acrylic with Contents of Gd

A transparent material should possess a desirable optical transmittance. Figure 2
shows the transmittance of metallized acrylic with different Gd(MAA)3 content; the thick-
ness of metallized acrylic is 12 mm, and it was prepared by the polymerization process
mentioned above. Obviously, with the increase in Gd(MAA)3 content, the transmittance
of the metallized acrylic decreases gradually. This phenomenon is due to the dispersity
of Gd(MAA)3 oligomer decrease with the raising of Gd(MAA)3 monomer concentration,
resulting in the discontinuity or irregular enhancement of optical property form the internal
to the surface of the material [28]. In detail, because the Gd(MAA)3 has higher polymeriza-
tion activity than other monomers, according to the kinetics of polymerization [26], this
metallized monomer is more likely to self-polymerize while the concentration rises up.
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Consequently, the Gd(MAA)3 oligomer, which has higher molecular wight and density,
precipitates to the bottom to the flatwise set flat mold [29]. Therefore, the fluctuation of
molecular density in the material leads to the fluctuation of refractive index, which en-
hances the scattering of light through the material macroscopically and leads to the decrease
in transmittance. When the content of Gd(MAA)3 is less than 7%, the transmittance of the
glass is greater than 80%, so in practical application, the content of Gd(MAA)3 should be
less than 7%.
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3.5. The Mechanical Property of Metallized Acrylic Containing Both Gd and Pb

Based on the basic prescription of monomers, the content of Pb(MAA)2 was fixed.
Therefore, the concentration of Pb became a control variable in the study of the effects of
metal element Gd on the mechanical properties of acrylic. It can be seen from Figure 3
that the bending strength was increased with the elevating content of Gd(MAA)3, and the
impact strength went the other way. It is because the organometallic monomer contains
multiple double bonds, resulting in a crosslinked as-prepared copolymer. This thermoset
copolymer constructs a three-dimensional network, which strengthens the bulk material as
the polymerization goes on. The greater the content of Gd(MAA)3, the greater the degree of
crosslinking. Moreover, the enlarging molecular weight also contributes to the increasing
of bending strength. However, whereas the strong polarity of Gd(MAA)3 increases the
intermolecular force, the large side groups make the main chain of the as-polymerized
acrylic difficult to adjust conformation by asymmetrical rotation. The steric effect restrains
the mobility of the molecular chain and thereby reduces impact strength [30].

3.6. The Shielding Performance of Metallized Acrylic Containing Both Gd and Pb

The metallized acrylic containing both Gd and Pb possesses the X-ray and neutron
proof ability. The neutron protection function is mainly achieved by the Gd atoms. Mean-
while, the X-ray protection function is gained form Pb. The higher the content of the metal
elements, the better its shielding performance. Through the above research on the optical
and mechanical properties of this material, the content of Gd(MAA)3 was determined to
be 5 wt % and the content of Pb(MAA)2 was determined to be 30%. Furthermore, the
radiation shielding properties of materials are also affected by thickness. Figure 4 shows
the shielding properties of metallized acrylic with different thicknesses. It can be seen
that with the increase in thickness, the shielding performance of the material is gradually
enhanced. When the thickness reaches 12 mm, the shielding rate for neutrons is 93.6%,
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and the shielding efficiency for X-rays is 0.47 mmPb. When the metal element content
is constant, increasing the thickness of the metallized acrylic can also obtain excellent
radiation shielding performance.
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shielding properties of metallized acrylic with different thicknesses. It can be seen that 
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hanced. When the thickness reaches 12 mm, the shielding rate for neutrons is 93.6%, and 
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stant, increasing the thickness of the metallized acrylic can also obtain excellent radiation 
shielding performance. 
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equivalent thickness.

3.7. Quasi-Static Uniaxial Tensile Test Results and Model Fitting
3.7.1. The Modified ZWT Constitutive Model

The complex nonlinear viscoelastic behavior of the polymeric materials under a strain
rate range between 10−4 s−1 and 103 s−1 can be well described by the ZWT constitutive
model within the deformation limit [22]. However, considering the hyperelastic behavior
observed during the uniaxial tension tests of organic glass containing Gd and Pb, the modi-
fied ZWT constitutive model, in which Mooney–Rivlin hyperelastic model is introduced to
replace the nonlinear elastic equilibrium response element, is more reliable to describe both
the hyperelastic and viscoelastic properties simultaneously.



Metals 2022, 12, 990 8 of 14

• ZWT nonlinear viscoelastic constitutive model

The ZWT constitutive model has shown its validity in modeling the rate dependent
nonlinear viscoelastic behavior of numerous materials. The equation of the ZWT constitu-
tive model [31] can be expressed as:

σ = E0ε + aε2 + βε3 + E1

∫ t

0

.
ε(τ)exp

(
− t − τ

θ1

)
dτ + E2

∫ t

0

.
ε(τ) exp

(
− t − τ

θ2

)
dτ (1)

where σ and ε are the true stress and true strain, respectively. E0, α and β are the parameters
describing the nonlinear elastic response. The first and second integration terms describe
the viscoelastic response under low and high strain rates, respectively. E1 and θ1 are the
elastic constant and relaxation time constant of the first Maxwell viscoelastic response.
E2 and θ2 are the elastic constant and relaxation time constant of the second Maxwell
viscoelastic response, and

.
ε is the strain rate.

Under conditions of quasi-static tension, the high-frequency Maxwell element relaxes
at the beginning of loading, such that the high strain rate integral term can be neglected,
and Equation (1) reduces to

σ = E0ε + αε2 + βε3 + E1

∫ t

0

.
ε(τ)exp

(
− t − τ

θ1

)
dτ (2)

Assuming that the strain rate keeps constant (
.
ε = const, ε =

.
εt), therefore, Equation (2)

can be reformed as

σ = E0ε + αε2 + βε3 + E1θ1
.
ε

[
1 − exp

(
− ε

θ1
.
ε

)]
(3)

• Mooney–Rivlin hyperelastic model

Generally, hyperelastic models demonstrate the disproportion between stress and
strain under the strain levels that exceed the simple Hookean spring condition. The consti-
tutive models for rubber-like materials have been proposed based on a phenomenological
approach or on the intricacies of the micromechanics [32–34]. The Mooney–Rivlin hyper-
elastic model is widely used by many theoretical investigators and analysts to solve the
large elastic deformations of rubber-like materials [35–37].

With the assumption that the as-prepared organic glass is incompressible and isotropic,
the hyperelastic constitutive model under one-dimensional stress based on uniaxial loading
conditions and the Mooney–Rivlin strain energy function (W) [38] is given as follows:

W = C10(I1 − 3) + C01(I2 − 3) (4)

where C10, C01 are empirically determined material parameters, and I1, I2 are the principal
strain invariants.

With the assumption of full incompressibility (i.e., λ1 = λ, λ2 = λ3 = λˆ(−1/2), where
λi is the stretch ratio in the i-th direction and λ is the principal stretch ratio), the constitutive
relation for uniaxial tension becomes

σT = 2C10

(
λ2 − 1

λ

)
+ 2C01

(
λ − 1

λ2

)
(5)

where σT is the true stress of uniaxial tension.

• Modified ZWT constitutive model for organic glass containing Gd and Pb

Aiming to describe both hyperelasticity and viscoelasticity behavior under quasi-static
tension of the organic glass containing Gd and Pb at the same time, the elastic equilibrium
response element in the simplified ZWT model Equation (3) was replaced by the Mooney–
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Rivlin hyperelastic model Equation (5) according to Jiang’s research to build the following
new constitutive model:

σ = 2C10

(
λ2 − 1

λ

)
+ 2C01

(
λ − 1

λ2

)
+ E1θ1

.
ε

[
1 − exp

(
− ε

θ1
.
ε

)]
(6)

Because λ = 1 − ε, the mechanical behavior of organic glass containing Gd and Pb
under different strain rate loading will be represented by

σ = 2C10

(
(1 − ε)2 − 1

(1 − ε)

)
+ 2C01

(
(1 − ε)− 1

(1 − ε)2

)
+ E1θ1

.
ε

[
1 − exp

(
− ε

θ1
.
ε

)]
(7)

3.7.2. Tension Responses of Metallized Acrylic Containing Gd and Pb

The uniaxial tensile test results and relevant modified ZWT model fitted curves of the
as-prepared metallized acrylic under the strain rates of 6.67 × 10−4 s−1, 1.67 × 10−3 s−1,
and 3.33 × 10−3 s−1 are shown in Figure 5 (the contents of Gd(MAA)3 and Pb(MAA)2
are 5 wt % and 30%, respectively). It is conspicuous that the mechanical responses of this
material exhibit nonlinear behavior and are sensitive to strain rate, and the elastic modulus
obviously increases with the increasing of strain rate. Notably, the stress continuously
raises with the increasing tensile strain until the specimen breaks at a relatively large
deformation scale, and no distinct yielding point and strain softening stage can be observed.
However, the stress–strain curves do bend at a certain strain that proves the existence
of yielding behavior. The slope of the quasi-linear stage before yield gradually raises
up with the increasing of strain rate. All the phenomena indicate that the metallized
acrylic containing Gd and Pb has a hyperelastic response and demonstrates a strain-rate
dependence. Therefore, we conducted the modified ZWT model to describe the complex
mechanical behavior of this material by fitting the constitutive equation to the tensile test
results. The fitted curves for each strain rate were generated using Origin software, and
they match well with the experimental data. The fitting results show satisfactory accuracy,
indicating that the modified ZWT constitutive model is valid for describing the tension
responses of metallized acrylic containing Gd and Pb.
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Figure 5. The uniaxial tensile test results of the metallized acrylic containing 5 wt % Gd(MAA)3 and
30 wt % Pb(MAA)2 at 100 ◦C. (a) The true stress–strain curves under different strain rates. (b) The
fractured metallized acrylic specimens after tensile test at 100 ◦C.
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According to the modified ZWT equation, the third element of E1θ1
.
ε
[
1 − exp

(
− ε

θ1
.
ε

)]
is obviously affected by the strain rate

.
ε in a positive correlation. Thus, the slope of the

fitted curves becomes strain rate dependent.

3.7.3. Temperature Dependence of the Constitutive Parameters of Modified ZWT Model
for the Metallized Acrylic

Although the modified ZWT constitutive model has effectively described the rate-
dependent nonlinear viscoelastic behavior of the metallized acrylic containing Gd and Pb,
the temperature effect, however, is not included in this model. In fact, the experimental
tests indicate that the influence of environmental temperature on the mechanical behavior
cannot be neglected. Figure 6 shows the stress–strain relations of metallized acrylic with
the identical Gd and Pb contents to Figure 5 at 60 ◦C, 80 ◦C, 90 ◦C, 95 ◦C and 100 ◦C under
the same strain rate of 1.667 × 10−4 s−1. As presented in Figure 5, the uniaxial tension
stress shifts dramatically with temperature. It can be seen from Figure 6 that with the
elevating temperature level, the slope of the elastic stage declines significantly, implying
the reduction in elastic modulus.
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ture remarkably, which makes the Maxwell viscoelastic element of the modified ZWT 
constitutive model play the decisive role in affecting the material’s responses to loadings. 
In addition, θ1 is seemingly not affected by temperature, suggesting that θ1 might be only 
a function of strain rate. 

Figure 6. Stress–strain curve of Gb/Pb acrylic under different temperature at the same extension rate
of 1.667 × 10−4 s−1.

The parameters of the modified ZWT constitutive model are determined at the tem-
peratures from 60 to 100 ◦C, as presented in Table 3. Obviously, C10, C01, and E1 vary
gradually with temperature. To describe the stress–strain responses considering the effects
of temperature dependence, those model parameters are expressed as functions of temper-
ature. The three functions are determined by cubic and line polynomial interpolating. The
interpolation curves and the parameters determined by experimental data are shown in
Figure 7a–c. The dimensionless expressions of the interpolation functions are presented in
Table 4 with coefficient of determination. It can be observed that the interpolation functions
can accurately fit the parameters with temperature variation. When C10 rises up with
temperature, C01 exhibits an opposite tendency. Additionally, E1 decreases with temper-
ature remarkably, which makes the Maxwell viscoelastic element of the modified ZWT
constitutive model play the decisive role in affecting the material’s responses to loadings.
In addition, θ1 is seemingly not affected by temperature, suggesting that θ1 might be only a
function of strain rate.
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Table 3. Values of the parameters in modified ZWT model at environmental temperature from
60 to 100 ◦C.

T (◦C) C10 (MPa) C01 (MPa) E1 (MPa) θ1 (s)

60 47.46 −42.95 1689.83 82.74
80 35.27 −32.72 1051.50 85.50
90 22.80 −21.91 819.35 85.50
95 3.34 −6.68 532.99 84.14

100 −8.36 3.10 476.94 79.98
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Figure 7. The model parameters’ variations with temperature and the interpolation curves: (a) C10;
(b) C01; (c) E1.

Table 4. Interpolation functions of the parameters in modified ZWT model.

Expressions of the Interpolation Functions R2

C10 = −7.0722 × 10−4 T3 + 0.1269 T2 − 7.8710 T + 215.4718 0.9881
C01 = 5.0550 × 10−4 T3 − 0.0868 T2 + 5.151 T − 148.7003 0.9908

E1 = −30.9225 T + 3542.5324 0.9899

Based on the interpolation functions of the constitutive parameters, E1 possesses the
maximum absolute-value coefficient of temperature, which means the apparent modulus
will significantly decrease with temperature. As a consequence, the fitted ZWT curve
strongly depends on temperature in a negative relationship.
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4. Conclusions

In this paper, the optimized polymerization procedure of acrylic containing Gd and Pb
was selected by the comparison of the optical and mechanical performance of the products.
The test results indicated that excess initiator consumption under relatively low reaction
temperature will lead to weakness in impact and bending strength. In addition, with the
increase in Gd(MAA)3 content, the optic transmittance at 550 nm wavelength decreases
gradually, which is due to the inhomogeneous dispersion of Gd(MAA)3 monomer. The
increased amount of Gd(MAA)3 enhances the crosslinking of the metallized acrylic and
raises the bending strength. Oppositely, increased Gd(MAA)3 weakens the impact strength,
which makes this material become fragile. Ultimately, the content of Gd(MAA)3 was de-
termined to be 5% considering the comprehensive performance. Then, the proportional
relation between neutron and X-ray shielding properties and material thickness was ana-
lyzed. Moreover, the quasi-static uniaxial tensile stress–stain responses of metallized acrylic
containing Gd and Pb under strain rates ranging from 1.67 × 10−4 s−1 to 3.33 × 10−3 s−1

and temperatures ranging from 60 to 100 ◦C were studied. It is observed that the viscoelas-
tic tensile responses of the as-prepared metallized acrylic are dependent on strain rate and
also temperature. With decline of strain rate or increase of temperature, the modulus of
this material obviously decreases. Moreover, the stress–strain responses of this material
exhibit hyperelastic and viscoelastic characteristics at the same time. Therefore, the rate
and temperature-dependent properties were investigated by fitting the modified ZWT
constitutive model, in which the standard elastic component is replaced by the Mooney–
Rivlin hyperelastic model, to the experimental test data. The constitutive parameters were
determined by nonlinear fitting and interpolated with a function of temperature. The
interpolation functions can accurately fit the parameters with temperature change. The
great difference in constitutive parameters implies that the viscoelastic response of the
as-prepared metallized acrylic affects the apparent behavior to quasi-static tensile loading
the most. In conclusion, all results indicate that the constitutive model used herein can accu-
rately describe the tensile nonlinear viscoelastic responses of metallized acrylic containing
Gd and Pb under quasi-static loading over a range of strain rate and temperature.
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