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Abstract: The structures, hydrogen storage behaviors and electrochemical properties of Y0.75La0.25

Ni3.5−xMnx (x = 0–0.3) alloys were analyzed by X-ray diffraction, Neutron powder diffraction,
pressure–composition isotherms and electrochemical tests. All alloys have a multiphase structure.
With the increase in Mn content, the Gd2Co7-type phase of the alloys gradually transforms into the
Ce2Ni7-type phase; the Mn atom mainly occupies the Ni sites in the [AB5] subunit and the interface
between the [AB5] and [A2B4] subunits; the V[A2B4]/V[AB5] continuously decreases from 1.045 (x = 0)
to 1.019 (x = 0.3), which reduces the volume mismatch between [A2B4] and [AB5] subunits. The
maximum hydrogen absorption of the series alloys increases first and then decreases, and the addition
of Mn effectively promotes the hydrogen absorption/desorption performance of the alloys. The
maximum discharge capacity of the alloy electrodes is closely related to their hydrogen storage
capacity at 0.1 MPa and hydrogen absorption/desorption plateau pressure. The cyclic stability of all
the Mn-containing alloy electrodes is improved clearly compared to that of Mn-free alloy electrodes,
because the volume mismatch between the [AB5] and [A2B4] subunits of the alloys becomes smaller
after the addition of Mn, which can improve the structural stability and reduce the corrosion of
alloys during hydrogen absorption/desorption cycles. When the Mn content is between 0.1 and 0.15,
the Ce2Ni7-type phase of the alloys has high abundance and the alloy electrodes exhibit excellent
overall performance.

Keywords: structures and properties; A2B7-type; La–Y–Ni-based; hydrogen storage alloys

1. Introduction

The proposal of the goal of “carbon peak and carbon neutrality” will promote the
rapid development of green energy vehicles. The large-scale application of new energy
vehicles, such as pure electric vehicles (EVs), hybrid electric vehicles (HEVs) and fuel cell
vehicles (FCVs), has put forward new requirements for power batteries [1–4]. Among the
large number of rechargeable batteries, the nickel-metal hydride (Ni-MH) battery plays an
important role in the battery-powered electric vehicle market, especially in hybrid electric
vehicles, because of its excellent high-rate and low-temperature discharge capabilities,
resistance to overcharge/discharge ability and significant safety [5–7].

Hydrogen storage alloys are used as Ni-MH anode materials, and their structure and
properties affect the performance of batteries. Compared with traditional AB5-type (A is a
rare earth; B is a transition metal) hydrogen storage alloys, La–Mg–Ni-based superlattice
hydrogen storage alloys have the advantages of easy activation, high discharge capacity
and high kinetic performance, so they have received considerable attention as negative
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electrode materials for advanced nickel-metal hydride (Ni-MH) batteries [5,8–13]. However,
the key element, Mg, in La–Mg–Ni system alloys is volatile at high temperatures. Therefore,
it is not only difficult to control the composition but also has potential safety hazards during
the preparation of La–Mg–Ni alloys [14,15].

The superlattice structure alloys are formed by stacking the [A2B4] subunit (Laves-
type structure) and [AB5] (CaCu5-type structure) subunit along the c-axis [16]. La2Ni7
alloy is prone to hydrogen-induced amorphization, hydrogen-induced phase transforma-
tion and disproportionation during the hydrogen absorption/desorption process [17–19].
This is mainly due to the large volume mismatch between the [La2Ni4] and [LaNi5] sub-
units, and hydrogen only enters into the [La2Ni4] subunit and not into the [LaNi5] sub-
unit, which causes the “anisotropic expansion” of the alloy during hydrogenation. After
adding Mg to La2Ni7 alloy, since the atomic radius of Mg (RMg = 1.72 Å) is smaller than
that of La (RLa = 2.74 Å), and Mg only occupies the La sites in the [A2B4] subunit, with
the addition of Mg, the volume mismatch between the [A2B4] and [AB5] subunits re-
duces, which effectively improves the hydrogen absorption/desorption properties of the
alloys [20,21]. Unlike La2Ni7, Latroche et al. [22] found that the hydrogen storage capacity
of Y2Ni7 alloy did not decay after several hydrogen absorption/desorption cycles at 0.1
and 0.7 MPa, and the alloy structure remained unchanged, but there were three hydro-
gen absorption/desorption plateaus at 10 MPa and the plateau pressures were higher
(0.055 MPa, 0.5 MPa, 2.9 MPa); therefore, Y2Ni7 alloy was not properly used as an alloy
electrode material. Paul-Boncour et al. [23] studied the La2−xYxNi7 (x = 0–2) alloy and
found that Y preferentially occupies La sites in the [A2B4] subunit and the atomic radius of
Y (RY = 2.27 Å) is smaller than that of La (RLa = 2.74 Å); the addition of Y in La–Y–Ni alloys
helps to adjust the volume mismatch between the [A2B4] and [AB5] subunits. Therefore,
the effect of Y in La–Y–Ni alloys is similar to the Mg in La–Mg–Ni alloys. In addition, Yuan
et al. [14] studied the La3−xYxNi9.7Mn0.5Al0.3 (x = 1, 1.5, 1.75, 2, 2.25, 2.5) alloys and found
that the alloy electrodes had better overall electrochemical performance when x = 1.75–2.25.

In traditional AB5-type hydrogen storage alloys, Mn is an essential and key element,
which occupies the 3g and 2c positions in the CaCu5 structure, and is more effective in
adjusting the hydrogen absorption/desorption plateau pressure than Al for AB5-type
alloys [24]. In La–Mg–Ni alloys, the substitution of Mn for Ni can not only decrease the
plateau equilibrium pressure and increase the discharge capacity [25], but also increase the
catalytic activity of the alloy electrode [26,27]. At the same time, the A2B7-type superlattice
hydrogen storage alloys have attracted much attention as new-generation nickel-metal
hydride battery anode materials [28–30].

In this study, we selected Y0.75La0.25Ni3.5 alloy as the original alloy, and the effect of
the Mn element on the structures and properties of A2B7-type La–Y–Ni-based hydrogen
storage alloys was investigated systematically. This study will offer a guide for further
developing the La–Y–Ni system hydrogen storage alloys.

2. Materials and Methods
2.1. Sample Preparation

Y0.75La0.25Ni3.5−xMnx(x = 0, 0.05, 0.1, 0.15, 0.2, 0.3) hydrogen storage alloys were
prepared by arc melting under a 0.05 MPa argon (Ar) atmosphere, and as-cast alloys were
melted three times to obtain a homogeneous ingot. Subsequent annealing was performed
for 24 h at 1173 K in a 0.2 MPa argon (Ar) atmosphere. The purity of all component elements
was above 99 wt.%. In order to compensate for the evaporative loss, an appropriate excess
of some component metals (5 wt.% for La, Y and 8% for Mn) was added, respectively.

2.2. Structure Characterization

The annealed alloys were crushed mechanically by hand in an agate mortar, and
sieved through a 200–300 size mesh for X-ray diffraction (XRD) measurements, 50 size
mesh for neutron powder diffraction (NPD) measurements and 200–300 size mesh for
alloy electrodes. XRD measurements were performed on a Bruker D8 Advance diffrac-
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tometer (Bruker Corporation, Karlsruhe, Germany) with Cu radiation and a power of
40 kV × 40 mA. The patterns were recorded over the range from 8◦ to 120◦ in 2θ by steps
of 0.02◦. NPD was analyzed with λ = 1.8846 Å by a step size of 0.02◦ in the range 12–150◦ at
room temperature. Then, the XRD and NPD collected data were analyzed by the Rietveld
method [31] using the Fullprof program (March 2021, Institut Laue-Langevin, Grenoble,
France) [32].

2.3. Hydrogen Absorption and Desorption Measurements

Pressure–composition isotherm (P-C-T) tests were performed using a Sieverts-type
apparatus (Beijing Nonferrous Metal Research Institute, Beijing, China) at 298 K. Prior to
formal measurements, powder samples were evacuated at 373 K and 1 × 10−4 Pa for at
least 2 h in a resistance furnace to remove the impurities. In order to ensure that the sample
was completely activated, the sample was hydrided under 8 MPa for 2 h and dehydrided
at 0.001 MPa for approximately 2 h, several times.

2.4. Electrochemical Measurements

Alloy electrodes were prepared by cold pressing the mixture of alloy power and
carbonyl nickel powder with the weight ratio of 1:3 under 20 MPa pressure to form a
pellet of 10 mm in diameter. Electrochemical measurements were performed at 298 K
in a standard open tri-electrode electrolysis cell, in which the alloy electrode was used
as the working electrode, the Ni(OH)2/NiOOH electrode as the counter electrode, the
Hg/HgO electrode as the reference electrode and KOH solution (6 M) as the electrolyte.
Each electrode was discharged to cut-off potential −0.6 V Vs. Hg/HgO reference electrode.

Alloy electrodes were charged/discharged at 100 mA g−1 when activated and exam-
ined for cyclic stability. The cyclic stability was identified by the capacity retention after the
100th cycle with the following equation [33]:

S100 =
C100

Cmax
×100% (1)

where C100 and Cmax were the discharge capacity at the 100th cycle and the maximum
discharge capacity, respectively.

To analyze the corrosion behaviors of the alloy electrodes, a corrosion polarization
curve (Tafel polarization curve) was acquired on a CHI660A electrochemical work station
(Shanghai Chenhua Instrument Co., Ltd., Shanghai, China) after the alloy electrodes were
activated. The Tafel polarization curves were measured by scanning the electrode potential
at a rate of 1 mV s−1 from −250 to 250 mV (vs. open circuit potential) at 50% depth of
discharge (DOD).

3. Results and Discussion
3.1. Crystal Structure

Figures 1 and 2 show the XRD and the Rietveld refinement pattern of Y0.75La0.25Ni3.5−x
Mnx (x = 0, 0.05, 0.1, 0.15, 0.2, 0.3) annealed alloys; crystallographic parameters obtained
by the Rietveld whole pattern fitting method are tabulated in Table 1. It can be seen that
Y0.75La0.25Ni3.5 alloy consists of complex phases, which can be identified as PuNi3-type
(SG: R-3m), Ce2Ni7-type (Space group: P63/mmc), Gd2Co7-type (Space group: R-3m),
Ce5Co19-type (Space group: R-3m) and CaCu5-type phase (Space group: P6/mmm). When
x = 0.05, a small amount of Mn substitution for Ni does not change the phase structure
of the alloys, but the Gd2Co7-type phase decreases while the Ce2Ni7- and CaCu5-type
phases increase. With further increasing Mn content, the Gd2Co7-type phase transforms
to the Ce2Ni7-type phase gradually, the Gd2Co7-type phase continues to decrease and
the Ce2Ni7-type phase becomes the main phase of the alloys, which is mainly ascribed to
the atomic radius of Mn (RMn = 1.79 Å) being larger than that of Ni (RNi = 1.62 Å). R2Ni7
compounds are polymorphic; they crystallize either in the P63/mmc (2H) or R-3m (3R)
space group. Buschow et al. [34] found that the crystal structure of rare-earth nickel-based
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R2Ni7-type alloys depended on their R atomic radius: when the R atomic radius is large,
the R2Ni7 alloy can easily form a 2H-Ce2Ni7 structure, while, when the R atomic radius is
small, the R2Ni7 alloy is prone to form a 3R-Gd2Co7 structure. When Mn = 0.1 and 0.15,
the abundance of Ce2Ni7-type phase in the alloy reaches 84% and 93%, respectively. As
Mn further increases, the PuNi3-type phase increases and Ce2Ni7-type phase abundance
decreases again. Therefore, if the content of Mn is too low, the Gd2Co7-type phase exists
in the alloy; on the contrary, if the Mn content is too high, the PuNi3-type phase increases.
When the content of Mn is between 0.1 and 0.15, the alloys have an approximately single-
phase structure, where the abundance of the Ce2Ni7-type phase reaches more than 80%. The
variation trend of phase abundance as a function of the Mn content of alloys is presented in
Figure 3.

Metals 2021, 11, x FOR PEER REVIEW 4 of 14 
 

 

increasing Mn content, the Gd2Co7-type phase transforms to the Ce2Ni7-type phase gradual-
ly, the Gd2Co7-type phase continues to decrease and the Ce2Ni7-type phase becomes the main 
phase of the alloys, which is mainly ascribed to the atomic radius of Mn (RMn = 1.79 Å) being 
larger than that of Ni (RNi = 1.62 Å). R2Ni7 compounds are polymorphic; they crystallize either 
in the P63/mmc (2H) or R-3m (3R) space group. Buschow et al. [34] found that the crystal 
structure of rare-earth nickel-based R2Ni7-type alloys depended on their R atomic radius: 
when the R atomic radius is large, the R2Ni7 alloy can easily form a 2H-Ce2Ni7 structure, 
while, when the R atomic radius is small, the R2Ni7 alloy is prone to form a 3R-Gd2Co7 
structure. When Mn = 0.1 and 0.15, the abundance of Ce2Ni7-type phase in the alloy reaches 
84% and 93%, respectively. As Mn further increases, the PuNi3-type phase increases and 
Ce2Ni7-type phase abundance decreases again. Therefore, if the content of Mn is too low, the 
Gd2Co7-type phase exists in the alloy; on the contrary, if the Mn content is too high, the 
PuNi3-type phase increases. When the content of Mn is between 0.1 and 0.15, the alloys have 
an approximately single-phase structure, where the abundance of the Ce2Ni7-type phase 
reaches more than 80%. The variation trend of phase abundance as a function of the Mn 
content of alloys is presented in Figure 3.  

Table 1. Crystallographic data of Y0.75La0.25Ni3.5−xMnx (x = 0–0.3) annealed alloys. 

Sample Phase Space Group Phase Abundance Lattice Constant 
(x)   (%) a (Å) c (Å) V (Å3) c/a 

x = 0 PuNi3 R-3m 24(1)  4.934(3)  24.755(2)  521.86(4)  5.017 
 Ce2Ni7 P63/mmc 19(1)  4.978(1)  24.166(1)  518.97(10)  4.853 
 Gd2Co7 R-3m 37(1)  4.975(1)  36.446(2)  781.23(6)  7.326 
 Ce5Co19 R-3m 17(1)  4.977(1)  48.327(4)  1036.8(2)  9.710 
 CaCu5 P6/mmm 3(1)  4.922(1)  3.9756(1)  83.407(1)  0.808 

x = 0.05 PuNi3 R-3m 11(1)  4.956(1)  24.736 (1)  526.07(18)  4.992 
 Ce2Ni7 P63/mmc 28(1)  4.986(1)  24.202(1)  521.08(6)  4.854 
 Gd2Co7 R-3m 14(1)  4.986(1)  36.425(1)  784.09(6)  7.306 
 Ce5Co19 R-3m 18(1)  4.968(2)  48.230(3)  1031.0 (1)  9.708 
 CaCu5 P6/mmm 29(1)  4.927(2)  3.9722(1)  83.523(1)  0.806 

x = 0.1 PuNi3 R-3m 6(1)  4.974(1)  24.682(2)  528.83(7)  4.962 
 Ce2Ni7 P63/mmc 84(1)  4.993(1)  24.241(5)  523.42(2)  4.855 
 Gd2Co7 R-3m 10(1)  4.993(1)  36.418(29)  786.22(10)  7.294 

x = 0.15 PuNi3 R-3m 7(1)  5.008(1)  24.581(14)  533.88(4)  4.908 
 Ce2Ni7 P63/mmc 93(1)  4.997(1)  24.287(3)  525.15(1)  4.861 

x = 0.2 PuNi3 R-3m 30(1)  5.018(1)  24.532(1)  534.93(2)  4.889 
 Ce2Ni7 P63/mmc 70(1)  5.003(1)  24.328(1)  527.33(2)  4.863 

x = 0.3 PuNi3 R-3m 38(1)  5.020(1)  24.500(6)  534.71(2)  4.880 
 Ce2Ni7 P63/mmc 62(1)  5.010(1)  24.369(1)  529.65(1)  4.864 

 
Figure 1. XRD pattern of Y0.75La0.25Ni3.5−xMnx (x = 0–0.3) annealed alloys: (a) whole pattern; (b) local 
pattern. 

Figure 1. XRD pattern of Y0.75La0.25Ni3.5−xMnx (x = 0–0.3) annealed alloys: (a) whole pattern;
(b) local pattern.

Table 1. Crystallographic data of Y0.75La0.25Ni3.5−xMnx (x = 0–0.3) annealed alloys.

Sample Phase Space Group Phase Abundance Lattice Constant

(x) (%) a (Å) c (Å) V (Å3) c/a

x = 0 PuNi3 R-3m 24(1) 4.934(3) 24.755(2) 521.86(4) 5.017
Ce2Ni7 P63/mmc 19(1) 4.978(1) 24.166(1) 518.97(10) 4.853
Gd2Co7 R-3m 37(1) 4.975(1) 36.446(2) 781.23(6) 7.326
Ce5Co19 R-3m 17(1) 4.977(1) 48.327(4) 1036.8(2) 9.710
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Figure 4 shows the lattice constant variation of each phase as a function of the Mn
content of the Y0.75La0.25Ni3.5−xMnx (x = 0, 0.05, 0.1, 0.15, 0.2, 0.3) annealed alloys. The
atomic radius of Mn (RMn = 1.79 Å) is larger than that of Ni (RNi = 1.62 Å), so the unit cell
volume of each phase becomes larger after Mn is added. The PuNi3-type phase increases
from 521.86 Å3 (x = 0) to 534.71 Å3 (x = 0.3), Ce2Ni7-type phase increases from 518.97 Å3

(x = 0) to 529.65 Å3 at (x = 0.3), and Gd2Co7-type phase increases from 781.23 Å3 (x = 0) to
786.22 Å3 at (x = 0.1), respectively. It is worth nothing that the lattice constant a of the three
phases increases, whereas the lattice constant c changes differently; the c value increases in
the Ce2Ni7-type type phase, and it remains basically unchanged in the Gd2Co7-type phase,
but decreases in the PuNi3-type phase. This may be related to the selective occupation in
the space lattice of Mn atoms in each phase.
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Mn content for Y0.75La0.25Ni3.5−xMnx (x = 0–0.3) annealed alloys.

Because the atomic numbers of Ni (25) and Mn (28) are relatively close, it is difficult
to accurately distinguish the atomic occupancy of the two elements by XRD. The neutron
scattering length of Mn is negative (−0.373 × 10−12 cm) while that of Ni is positive
(+1.03 × 10−12 cm) [35]; there is a large difference between them. Therefore, neutron
diffraction can easily characterize the occupancy of Ni and Mn in B-site elements of La-
Y-Ni-Mn hydrogen storage alloys. Figure 5 shows the Rietveld refinement of the NPD
pattern for Y0.75La0.25Ni3.2Mn0.3 alloys, Table 2 lists the crystal structure data of the PuNi3-
type (Table 2(a)) and Ce2Ni7-type phases (Table 2(b)), and Figure 6 presents the schematic
diagram of the atomic stacking along the c-axis of the two phases. The results show that
Mn occupies the 6c site in the [AB5] subunit and a small amount of Mn occupies the 18h
site of the interface between the [A2B4] and [AB5] subunits of the PuNi3-type phase, while
Mn only occupies the 4e and 6h sites in the [AB5] subunit of the Ce2Ni7-type phase.

The superlattice structure is described as stacking structures made of [A2B4] and [AB5]
subunits piled along the c-axis. Their general formula, summarized by Khan [36], can
be defined as y = (5n + 4)/(n + 2) (where n is the number of [AB5] subunits). For A2B7
alloy, n is equal to 2 and, consequently, the basic period can be defined as [A2B4] + 2[AB5].
These phases are polymorphs as they crystallize either in hexagonal (2H, Ce2Ni7-type)
or rhombohedral (3R, Gd2Co7-type) symmetry. As long as the volume of the [A2B4]
subunit is larger than that of the [AB5] subunit, the [A2B4] subunit remains more active
with respect to hydrogenation [37]. In other words, for superlattice structure hydrogen
storage alloys, the larger the volume mismatch of V[A2B4]/V[AB5] is, the more obvious
the “anisotropic” expansion of the lattice will be during hydrogen absorption/desorption.
The structural evolution of the hydrogen absorption/desorption of La2Ni7 [17] alloy is
the most typical example. Figure 7 shows the variation of the [A2B4] and [AB5] subunits
as a function of the Mn content of the Ce2Ni7-type phase. It is clear that the volume of
the [AB5] subunit increases almost linearly with increasing Mn content, from 85.22 Å3

(x = 0) to 87.72 Å3 (x = 0.3), while the volume of the [A2B4] subunit is almost unchanged;
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the results also indicate that Mn mainly occupies Ni sites in the [AB5] subunit, and this is in
good agreement with the atomic occupancy (Table 2) obtained from NPD data. In addition,
V[A2B4]/V[AB5] decreases gradually, from 1.045 (x = 0) to 1.019 (x = 0.3). This is mainly due
to the atomic radius of Mn being larger than that of Ni, and its selective occupation in the
superlattice structure. The smaller the volume mismatch in V[A2B4]/V[AB5] is, the better the
structural stability of the alloys will be during hydrogen absorption/desorption [38,39].
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Table 2. a. Crystal structure data of PuNi3-type phase for Y0.75La0.25Ni3.2Mn0.3 annealed alloys.
b. Crystal structure data of Ce2Ni7-type phase for Y0.75La0.25Ni3.2Mn0.3 annealed alloys.

(a)

Site Atom x y z Biso(Å2) Occupancy

3a La 0 0 0 1.9(2) 0.28(4)
Y 0 0 0 1.9(2) 0.72(4)

6c La 0 0 0.1418(7) 0.4(1) 0.11(2)
Y 0 0 0.1418(7) 0.4(1) 0.89(2)

3b Ni 0 0 0.5 0.6(1) 1
6c Ni 0 0 0.3317(9) 2.5(2) 0.75(3)

Mn 0 0 0.3317(9) 2.5(2) 0.25(3)
18h Ni 0.4999(12) −0.4999(12) 0.0830(4) 0.3(1) 0.96(1)

Mn 0.4999(12) −0.4999(12) 0.0830(4) 0.3(1) 0.04(1)

(b)

Site Atom x y z Biso(Å2) Occupancy

4f 1 Y 0 0 0.0282(6) 2.7(2) 1
4f 2 La 0 0 0.1717(6) 1.7(2) 0.58(5)

Y 0 0 0.1717(6) 1.7(2) 0.42(5)
2a Ni 0 0 0 1.9(2) 1
4e Ni 0 0 0.1671(8) 1.1(2) 0.77(6)

Mn 0 0 0.1671(8) 1.1(2) 0.23(6)
4f Ni 0.6667 0.3333 0.1666(6) 0.2(2) 1
6h Ni 0.1621(6) 0.3241(12) 0.75 1.6(1) 0.68(5)

Mn 0.1621(6) 0.3241(12) 0.75 1.6(1) 0.32(5)
12k Ni 0.1689(7) 0.3377(14) 0.9156(3) 1.2(1) 1

Biso: Temperature factor; Occupancy: Atomic occupation.
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3.2. Hydrogen Storage Characteristics

Figure 8 shows the P-C isotherm curves (gaseous hydrogen absorption/desorption) of
Y0.75La0.25Ni3.5−xMnx (x = 0, 0.05, 0.1, 0.15, 0.2, 0.3) annealed alloy at 298 K. The basic data in
the process of the hydrogen absorption/desorption of alloys are presented in Table 3. It can
be found that all alloys are activated within three times; with the increase in Mn content, the
hydrogen capacity and plateau pressure during hydrogen absorption/desorption change,
which may be closely related to the phase structures and the corresponding unit cell volume
of the alloys. This will be discussed in detail below.
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Figure 8. P-C isotherm curves (absorption and desorption) of Y0.75La0.25Ni3.5−xMnx (x = 0–0.3)
annealed alloys at 298 K.

Table 3. Hydrogen absorption/desorption characteristics of Y0.75La0.25Ni3.5−xMnx (x = 0–0.3) an-
nealed alloy.

Sample (x)
Activation Plateau Pressure Hydrogen

Capacity
Hydrogen
Capacity

Time (MPa) 8 MPa 0.1 MPa

Na Abs. Des. (wt.%) (wt.%)

x = 0.00 3 0.05/0.67 0.01/0.39 1.34 0.44
x = 0.05 3 0.25/0.69 0.04/0.42 1.26 0.38
x = 0.10 3 0.03/0.02 0.01/0.13 1.42 0.79
x = 0.15 3 0.03/0.13 0.02/0.10 1.44 0.87
x = 0.20 3 0.03 0.02 1.40 1.16
x = 0.30 3 0.02 0.01 1.40 1.21

Abs: Absorption; Des: Desorption.

With the increase in Mn content, the unit cell volumes of all phases of La-Y-Ni-Mn
alloys increase, which leads to a decrease in the plateau pressure during hydrogen ab-
sorption/desorption [10,40]. The hydrogen absorption plateau pressure decreased from
0.67 MPa (x = 0) to 0.02 (x = 0.3), and the hydrogen desorption plateau pressure decreased
from 0.39 MPa (x = 0) to 0.01 MPa (x = 0.3). This shows that Mn can effectively reduce
the plateau pressure of the hydrogen absorption/desorption of La-Y-Ni system hydrogen
storage alloys, which is consistent with the current research [15,41]. At the same time, with
the rise of x, the hydrogen absorption/desorption plateau of the alloy becomes flatter and
wider, indicating that the addition of Mn can effectively promote the hydrogen absorption
and desorption properties of La-Y-Ni system alloys.

The maximum hydrogen absorption capacity of series alloys is 1.26 wt.%–1.44 wt.%
under 8 MPa. When the Mn content increases, the maximum hydrogen absorption of the
alloy increases first and then decreases, but the overall trend is increasing. It increases
from 1.34 wt.% (x = 0) to 1.44 wt.% (x = 0.15) and then decreases to 1.40 wt.% (x = 0.3); the
increase in the maximum hydrogen absorption capacity (x = 0–0.15) may be mainly due to
the Mn effectively reducing the hydrogen absorption/desorption plateau pressure of the
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alloys, while the decrease in the maximum hydrogen absorption capacity (x = 0.15–0.3) is
related to the fact that the hydrogen absorption/desorption plateau pressure of the alloy is
so low that the hydrogen cannot be released. All alloys have relatively obvious hydrogen
absorption/desorption plateaus, indicating that there is no serious hydrogen-induced
amorphization during the hydrogen absorption/desorption process of the alloys. When
the Mn content is low (x < 0.2), the alloys have multiple hydrogen absorption/desorption
plateaus, which is mainly ascribed to the alloys having a multiphase structure, and the unit
cell volume of each phase is different. When the Mn content is high (x ≥ 0.2), the alloys
have only two types of phases, PuNi3-type and Ce2Ni7-type, and the unit cell volumes
of the two types of phases are almost the same, so the alloys have only one hydrogen
absorption/desorption plateau.

3.3. Discharge and Cyclic Properties

Figure 9 shows the electrochemical P-C isotherm curves (desorption) of Y0.75La0.25
Ni3.5−xMnx (x = 0–0.3) annealed alloy electrodes at 298 K. It is found that the variation law of
the electrochemical P-C isotherm curves of the alloy electrodes is in good agreement with the
P-C isotherm curves of the alloy gaseous hydrogen desorption between 10−3 and 10−1 MPa.
Except for x = 0.05, the hydrogen desorption plateau pressure of the alloy gradually
decreases with the increase in Mn content. Figure 10 shows the 100 charge/discharge
cycles curve of the alloy electrode at a charge/discharge current density of 100 mA·g−1.
Figure 11 presents the relationship between the maximum discharge capacity and cyclic
stability of the Y0.75La0.25Ni3.5−xMnx (x = 0–0.3) alloy electrode as a function of Mn content.
Table 4 summarizes the electrochemical performance of the alloy electrodes. It can be
seen that all of the alloy electrodes exhibit good activation properties; except for x = 0 and
0.05, the alloy electrodes were fully activated within five times, and the activation times of
x = 0.05 and 0.1 alloy electrodes exceeded three times, but all reached 90% of the maximum
discharge capacity within three times. With the increase in x, the maximum discharge
capacity of the alloy electrodes first increases and then decreases, from 231.9 mAh·g−1

(x = 0) to 367.4 mAh·g−1 (x = 0.15), and then decreases to 334.4 mAh·g−1 (x = 0.3).
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From the gaseous P-C-T curves of the alloys previously discussed, it can be seen that
with the increase in x, the maximum discharge capacity of the alloy electrodes first increases
and then decreases. When x = 0–0.15, the gradual increase in discharge capacity is due to
the increasing unit cell volume of each phase after the addition of Mn, which effectively
reduces the hydrogen absorption and desorption plateau pressure of the alloy electrodes;
when x = 0.15–0.3, the gradual decrease in discharge capacity may be mainly due to the
fact that the hydrogen absorption/desorption plateau pressure of the alloy was too low,
which made it difficult to release hydrogen. The hydrogen absorption/desorption plateau
pressure between 0.01 and 0.1 MPa is most suitable for the alloy electrodes to absorb and
desorb hydrogen. When the plateau pressure is too high, the hydrogen atoms will not be
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absorbed by the alloys, and hydrogen will be released; on the other hand, when the plateau
pressure is too low, the form of hydrogen in the hydride will change, and the discharge
voltage and battery capacity will be reduced.

Table 4. Electrochemical properties of Y0.75La0.25Ni3.5−xMnx (x = 0–0.3) alloy electrodes.

Sample (x) Na
Cmax S100 icorr Ecorr

(mAh · g−1) (%) (mA · cm−2) (V)

x = 0 3 231.9 67.1 10.1 −0.934
x = 0.05 9 245.8 84.0
x = 0.1 9 315.4 75.5 9.53 −0.93

x = 0.15 3 367.4 74.9
x = 0.2 3 336.3 74.1
x = 0.3 5 334.4 77.4 3.85 −0.925

The capacity degradation of alloy electrodes is mainly ascribed to structural failure
(hydrogen-induced amorphization, hydrogen-induced phase transformation, hydrogen-
induced defects, stress-strain, etc.) and the electrochemical corrosion of active materials
during cycling. Since Mn is mainly distributed in the [AB5] subunit, with the increase in Mn
content, the mismatch between the [A2B4] and [AB5] subunits is reduced; meanwhile, the
structural stability of the alloy electrodes during electrochemical cycling is enhanced. At the
same time, in general, the micro-strain resulting from the lattice expansion/contraction can
lead to the pulverization of the alloy particles during the hydrogenation/dehydrogenation
cycles; as a result, more and more fresh surfaces of alloy particles are directly exposed
to alkaline electrolytes, which will accelerate the corrosion of the alloy electrodes [42].
According to this study, with the increase in Mn, the mismatch between the [A2B4] and
[AB5] subunits, micro-strain, and pulverization of alloys will all decrease, which reduces
the corrosion of the alloys and improves the cycle stability of the alloy electrodes. Figure 12
shows the Tafel polarization curves of the alloy electrodes. It can be seen that with the
increase in Mn content, the corrosion current density (icorr) decreased from 10.1 mA·cm−2

(x = 0) to 3.85 mA·cm−2 (x = 0.3) and the corrosion potential (Ecorr) decreased from −0.934 V
(x = 0) to −0.925 V (x = 0.3), respectively. These results show that the addition of the Mn
element reduces the corrosion behavior of alloy electrodes; this is consistent with the
previous discussion. Hence, Mn-containing alloys will promote the cyclic stability of the
alloy electrodes. From x = 0.1 to x = 0.3, the cyclic stability S100 of the alloy electrodes did
not change significantly, all between 74.88% and 77.42%, which indicates that the crystalline
structure of the alloy has been maintained well in the electrochemical charge/discharge
process since x = 0.1.
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4. Conclusions

In this paper, the structures and properties of Y0.75La0.25Ni3.5−xMnx (x = 0–0.3) alloys
were systematically investigated. Some conclusions can be summarized as follows:

(1) Y0.75La0.25Ni3.5 alloy consisted of complex phases: PuNi3-type, Ce2Ni7-type, Gd2Co7-
type, Ce5Co19-type and CaCu5-type phase. A small amount of Mn substitution for Ni
does not change the phase structure of the alloys. With the increase in Mn content,
the Gd2Co7-type phase turns into the Ce2Ni7-type phase. When the value of Mn is
between 0.1 and 0.15, the single-phase property of the alloys is better, and the phase
abundance of Ce2Ni7-type reaches more than 80%. Mn mainly occupies Ni sites in
the [AB5] subunit and the interface between the [AB5] and [A2B4] subunits.

(2) The maximum hydrogen absorption capacity of series alloys is 1.260 wt.%–1.444 wt.%
under 8 MPa. When the Mn content increases, the maximum hydrogen absorption
of the alloy increases first and then decreases. It increases from 1.339 wt.% (x = 0)
to 1.444 wt.% (x = 0.15) and then decreases to 1.404 wt.% (x = 0.3). The hydrogen
desorption plateau pressure of the alloys gradually decreases, and the hydrogen
absorption/desorption plateau pressure of the alloy becomes flatter and wider. The
addition of Mn effectively improves the hydrogen absorption/desorption perfor-
mance of the series alloys.

(3) With the increase in Mn content, the maximum discharge capacity of the alloy elec-
trodes first increased and then decreased, from 231.9 mAh·g−1 (x = 0) to 367.4 mAh·g−1

(x = 0), and then decreased to 334.4 mAh·g−1 (x = 0). The maximum discharge ca-
pacity of the alloy electrodes is closely related to its hydrogen storage capacity at
0.1 MPa and its hydrogen absorption/desorption plateau pressure. The cyclic stability
of all the Mn-containing alloy electrodes was improved distinctly compared to that
of Mn-free alloy electrodes, because the volume mismatch between the [A2B4] and
[AB5] subunits of each phase for series alloys became smaller after the addition of
Mn, which improved the structural stability and reduced the corrosion of the alloys
during the hydrogen absorption/desorption cycles.

In summary, for Y0.75La0.25Ni3.5−xMnx (x = 0–0.3) alloys, there is an optimum Mn
substitution (x = 0.1–0.15) for Ni in terms of the structures, hydrogen storage behaviors,
as well as the electrochemical properties of the alloys, in which the Ce2Ni7-type phase
abundance is higher and the overall performance is better.
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