Simulation on the Direct Powder Rolling Process of Cu Powder by Drucker–Prager/Cap Model and Its Experimental Verification
Abstract
:1. Introduction
2. Experiment
2.1. Powder Material
2.2. Density Test
2.3. Brazilian Disk and Uniaxial Compression Experiments
2.4. Direct Powder Rolling Test
3. Modeling
3.1. Modified DPC Model
3.2. Finite Element Modeling
4. Determination of the Modified DPC Parameters
- (1)
- (2)
- Carrying out Brazilian disk experiments on the die compacted blocks with different densities (the crack image of the green compact is shown in Figure 6a) and calculating the fracture strength σd according to the Griffiths standard, which can be expressed as [22,30]:
- (3)
- Performing uniaxial compression experiments on die compacted blocks with different densities and calculating the fracture strength σc using the following equation, as shown in Figure 5c. Here, the actual fracture mode of the cylindrical specimen (shown in Figure 6b) is in accordance with the theoretically expected axial or oblique fracture, suggesting that the experimental results are reliable.
- (4)
- Calculating the friction angle β and cohesion d by substituting the values of σd and σc into Equations (9) and (10), as shown in Figure 5d.
5. Results and Discussion
5.1. Quasi-Static Criterion
5.2. Rolling Results
6. Conclusions
- (1)
- The numerical simulation indicates that the descending order of influencing factors is particle gradation > rolling speed > rolling gap. The highest mechanical properties are achieved at particle gradation of 150 μm to 74 μm at 2:1, rolling speed of 50 rpm and rolling gap of 0.2 mm.
- (2)
- The simulation results are demonstrated to be accurate via direct powder rolling experiments, whereas the true density is slightly higher than that by the simulation. The density of the DPR green sheet is mainly 7.5~8.0 g/cm3, and reaches 80% of the theoretical density of Cu blocks, which is suitable for pressure-less sintering, and the mechanical strength can withstand the transferring process from the DPR machine to the sintering furnace.
- (3)
- The modified DPC model, experimental methods for obtaining the key physical parameters, and the modeling process of finite element simulation can be successfully used to guide the parameters optimization of direct powder rolling of metal powder for effectively preparing thin metal sheets.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Breedis, J.F.; Chia, P.Y.; Goh, Y. Electronic Packaging: Lead Frame Materials. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Zhang, J.; Lu, Z.; Jia, L.; Xie, H.; Wei, X.; Tao, S. Effect of Multiple Forging on the Microstructure and Properties of an As-Cast Cu-Ni-Si Alloy with High Ni and Si Contents. Mater. Res. Express 2021, 8, 126526. [Google Scholar] [CrossRef]
- Dölling, J.; Henle, R.; Prahl, U.; Zilly, A.; Nandi, G. Copper-Based Alloys with Optimized Hardness and High Conductivity: Research on Precipitation Hardening of Low-Alloyed Binary CuSc Alloys. Metals 2022, 12, 902. [Google Scholar] [CrossRef]
- Guo, X.F.; Jia, L.; Lu, Z.L.; Xing, Z.G.; Xie, H.; Kondoh, K. Preparation of Cu/CrB2 Composites with Well-Balanced Mechanical Properties and Electrical Conductivity by Ex-Situ Powder Metallurgy. J. Mater. Res. Technol. 2022, 17, 1605–1615. [Google Scholar] [CrossRef]
- Sousa, T.G.; de Brito Moura, I.A.; da Costa Garcia Filho, F.; Monteiro, S.N.; Brandão, L.P. Combining Severe Plastic Deformation and Precipitation to Enhance Mechanical Strength and Electrical Conductivity of Cu-0.65Cr-0.08Zr Alloy. J. Mater. Res. Technol. 2020, 9, 5953–5961. [Google Scholar] [CrossRef]
- Guo, X.; Song, K.; Xu, W.; Li, G.; Zhang, Z. Effect of TiB2 Particle Size on the Material Transfer Behaviour of Cu–TiB2 Composites. Mater. Sci. Technol. 2020, 36, 1685–1694. [Google Scholar] [CrossRef]
- Stavroulakis, P.; Toulfatzis, A.; Vazdirvanidis, A.; Pantazopoulos, G.; Papaefthymiou, S. Mechanical Behaviour and Microstructure of Heat-Treated Cu–Ni–Si Alloy. Mater. Sci. Technol. 2020, 36, 939–948. [Google Scholar] [CrossRef]
- Geng, G.; Wang, D.; Zhang, W.; Liu, L.; Laptev, A.M. Fabrication of Cu–Ni–Si Alloy by Melt Spinning and Its Mechanical and Electrical Properties. Mater. Sci. Eng. A 2020, 776, 138979. [Google Scholar] [CrossRef]
- Li, J.; Huang, G.; Mi, X.; Peng, L.; Xie, H.; Kang, Y. Relationship between the Microstructure and Properties of a Peak Aged Cu–Ni–Co–Si Alloy. Mater. Sci. Technol. 2019, 35, 606–614. [Google Scholar] [CrossRef]
- Cantin, G.M.D.; Kean, P.L.; Stone, N.A.; Wilson, R.; Gibson, M.A.; Yousuff, M.; Ritchie, D.; Rajakumar, R. Innovative Consolidation of Titanium and Titanium Alloy Powders by Direct Rolling. Powder Metall. 2011, 54, 188–192. [Google Scholar] [CrossRef]
- Wang, H.S.; Chen, H.G.; Gu, J.W.; Hsu, C.E.; Wu, C.Y. Improvement in Strength and Thermal Conductivity of Powder Metallurgy Produced Cu-Ni-Si-Cr Alloy by Adjusting Ni/Si Weight Ratio and Hot Forging. J. Alloys Compd. 2015, 633, 59–64. [Google Scholar] [CrossRef]
- Jiang, Y.B.; Zhang, T.T.; Lei, Y.; Liu, X.H.; Cap, Y.; Xie, J.X.; Zhao, B.; Li, Y.H.; Jiao, C.R. Microstructure Evolution and Mechanical Properties of Cu-0.36Be-0.46Co Alloy Fabricated by Heating-Cooling Combined Mold Horizontal Continuous Casting during Cold Rolling. Trans. Nonferrous Met. Soc. China 2020, 30, 958–971. [Google Scholar] [CrossRef]
- Sakai, M.; Kondo, Y.; Minoura, S.; Sakamoto, T.; Hirasawa, T. A New Lead Alloy Current-Collector Manufactured by a Powder Rolling Process and Its Corrosion Behavior under Lead-Acid Battery Conditions. J. Power Sources 2008, 185, 559–565. [Google Scholar] [CrossRef]
- Li, R.; Shen, Q.; Zhang, L.; Zhang, T. Magnetic Properties of High Silicon Iron Sheet Fabricated by Direct Powder Rolling. J. Magn. Magn. Mater. 2004, 281, 135–139. [Google Scholar] [CrossRef]
- Chikosha, S.; Shabalala, T.C.; Chikwanda, H.K. Effect of Particle Morphology and Size on Roll Compaction of Ti-Based Powders. Powder Technol. 2014, 264, 310–319. [Google Scholar] [CrossRef]
- Alizadeh, M.; Hassanpour, A.; Pasha, M.; Ghadiri, M.; Bayly, A. The Effect of Particle Shape on Predicted Segregation in Binary Powder Mixtures. Powder Technol. 2017, 319, 313–322. [Google Scholar] [CrossRef]
- Diarra, H.; Mazel, V.; Busignies, V.; Tchoreloff, P. Sensitivity of Elastic Parameters during the Numerical Simulation of Pharmaceutical Die Compaction Process with Drucker-Prager/Cap Model. Powder Technol. 2018, 332, 150–157. [Google Scholar] [CrossRef]
- Drucker, D.; Gibson, R.; Henkel, D. Soil Mechanics and Work-Hardening Theories of Plasticity. Trans. ASCE 1957, 122, 338–346. [Google Scholar] [CrossRef]
- Baroutaji, A.; Lenihan, S.; Bryan, K. Compaction Analysis and Optimisation of Convex-Faced Pharmaceutical Tablets Using Numerical Techniques. Particuology 2019, 47, 10–21. [Google Scholar] [CrossRef]
- Zhou, M.; Huang, S.; Lei, Y.; Liu, W.; Yan, S. Investigation on Compaction Densification Behaviors of Multicomponent Mixed Metal Powders to Manufacture Silver-Based Filler Metal Sheets. Arab. J. Sci. Eng. 2019, 44, 1321–1335. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, D.; Pan, J.; Yang, C.; Li, S.; Dong, T.; Tian, H.; Yan, X. Efficient and Green Treatment of Ultrapure Magnetite to Prepare Powder Metallurgy Iron Powders. Powder Technol. 2021, 378, 19–28. [Google Scholar] [CrossRef]
- Gutiérrez-Moizant, R.; Ramírez-Berasategui, M.; Sánchez-Sanz, S.; Santos-Cuadros, S. Experimental Verification of the Boundary Conditions in the Success of the Brazilian Test with Loading Arcs. An Uncertainty Approach Using Concrete Disks. Int. J. Rock Mech. Min. Sci. 2020, 132, 104380. [Google Scholar] [CrossRef]
- SIMULIA Inc. Abaqus 6.9.1 Theory Manual. Providence, USA: Software Corporation, 2009, 115–120. Available online: http://130.149.89.49:2080/v6.9/index.html (accessed on 30 May 2022).
- Sinha, T.; Curtis, J.S.; Hancock, B.C.; Wassgren, C. A Study on the Sensitivity of Drucker-Prager Cap Model Parameters during the Decompression Phase of Powder Compaction Simulations. Powder Technol. 2010, 198, 315–324. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, L.H.; He, B.Y.; Liu, Y.H. Numerical Simulation of Residual Stress Field in Green Power Metallurgy Compacts by Modified Drucker-Prager Cap Model. Trans. Nonferrous Met. Soc. China 2013, 23, 2374–2382. [Google Scholar] [CrossRef]
- Zhou, M.; Huang, S.; Hu, J.; Lei, Y.; Xiao, Y.; Li, B.; Yan, S.; Zou, F. A Density-Dependent Modified Drucker-Prager Cap Model for Die Compaction of Ag57.6-Cu22.4-Sn10-In10 Mixed Metal Powders. Powder Technol. 2017, 305, 183–196. [Google Scholar] [CrossRef]
- Patel, B.A.; Adams, M.J.; Turnbull, N.; Bentham, A.C.; Wu, C.Y. Predicting the Pressure Distribution during Roll Compaction from Uniaxial Compaction Measurements. Chem. Eng. J. 2010, 164, 410–417. [Google Scholar] [CrossRef]
- Meyers, M.A.; Chawla, K.K. Mechanical Behavior of Materials; Cambridge University Press: New York, NY, USA, 2009; p. 114. [Google Scholar]
- Coube, O.; Riedel, H. Numerical Simulation of Metal Powder Die Compaction with Special Consideration of Cracking. Powder Metall. 2000, 43, 123–131. [Google Scholar] [CrossRef]
- Procopio, A.T.; Zavaliangos, A.; Cunningham, J.C. Analysis of the Diametrical Compression Test and the Applicability to Plastically Deforming Materials. J. Mater. Sci. 2003, 38, 3629–3639. [Google Scholar] [CrossRef]
- Demirci, H.E.; Bhattacharya, S.; Karamitros, D.; Alexander, N.; Singh, R.M. Finite element model of buried pipelines crossing strike-slip faults by ABAQUS/EXPLICIT. In Recent Advances on Earthquake Engineering in Europe: 16th; Springer: Cham, Switzerland, 2018; p. 46. [Google Scholar]
- Tao, J.; Zhu, X.; Tian, W.; Yang, P.; Yang, H. Properties and Microstructure of Cu / Diamond Composites Prepared by Spark Plasma Sintering Method. Trans. Nonferrous Met. Soc. China 2014, 24, 3210–3214. [Google Scholar] [CrossRef]
- Park, N.K.; Lee, C.H.; Kim, J.H.; Hong, J.K. Characteristics of Powder-Rolled and Sintered Sheets Made from HDH Ti Powders. Key Eng. Mater. 2012, 520, 281–288. [Google Scholar] [CrossRef]
Number | 150 μm: 74 μm | Apparent Density/(g/cm3) |
---|---|---|
A | 3:0 | 2.712 |
B | 2:1 | 2.530 |
C | 1:2 | 2.030 |
D | 0:3 | 1.846 |
Factors | |||
---|---|---|---|
Level | Particle Gradation δ | Rotation Speed τ | Rolling Gap γ |
(150 μm:74 μm) | (r/min) | (mm) | |
1 | 3:0 | 35 | 0.1 |
2 | 2:1 | 40 | 0.15 |
3 | 1:2 | 45 | 0.2 |
4 | 0:3 | 50 | 0.25 |
Factors | |||
---|---|---|---|
Number | Particle Gradation δ | Rolling Speed τ | Rolling Gap γ |
(150 μm:74 μm) | (r/min) | (mm) | |
A1 | 3:0 | 35 | 0.1 |
A2 | 3:0 | 40 | 0.15 |
A3 | 3:0 | 45 | 0.2 |
A4 | 3:0 | 50 | 0.25 |
B1 | 2:1 | 35 | 0.15 |
B2 | 2:1 | 40 | 0.1 |
B3 | 2:1 | 45 | 0.25 |
B4 | 2:1 | 50 | 0.2 |
C1 | 1:2 | 35 | 0.2 |
C2 | 1:2 | 40 | 0.25 |
C3 | 1:2 | 45 | 0.1 |
C4 | 1:2 | 50 | 0.15 |
D1 | 0:3 | 35 | 0.25 |
D2 | 0:3 | 40 | 0.2 |
D3 | 0:3 | 45 | 0.15 |
D4 | 0:3 | 50 | 0.1 |
Factors | |||
---|---|---|---|
Number | Particle Gradation δ | Rolling Speed τ | Rolling Gap γ |
(150 μm:74 μm) | (r/min) | (mm) | |
K1 | 34.117 | 38.095 | 55.653 |
K2 | 59.903 | 40.497 | 39.055 |
K3 | 56.832 | 56.725 | 58.398 |
K4 | 43.912 | 59.448 | 41.660 |
R’ | 25.786 | 21.353 | 19.343 |
Priority factors | δ > τ > γ | ||
Optimal combination | δ2τ4γ3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Jia, L.; Xie, H.; Niu, R.; Lu, Z.; Kondoh, K. Simulation on the Direct Powder Rolling Process of Cu Powder by Drucker–Prager/Cap Model and Its Experimental Verification. Metals 2022, 12, 1145. https://doi.org/10.3390/met12071145
Zhang C, Jia L, Xie H, Niu R, Lu Z, Kondoh K. Simulation on the Direct Powder Rolling Process of Cu Powder by Drucker–Prager/Cap Model and Its Experimental Verification. Metals. 2022; 12(7):1145. https://doi.org/10.3390/met12071145
Chicago/Turabian StyleZhang, Chen, Lei Jia, Hui Xie, Ruifeng Niu, Zhenlin Lu, and Katsuyoshi Kondoh. 2022. "Simulation on the Direct Powder Rolling Process of Cu Powder by Drucker–Prager/Cap Model and Its Experimental Verification" Metals 12, no. 7: 1145. https://doi.org/10.3390/met12071145
APA StyleZhang, C., Jia, L., Xie, H., Niu, R., Lu, Z., & Kondoh, K. (2022). Simulation on the Direct Powder Rolling Process of Cu Powder by Drucker–Prager/Cap Model and Its Experimental Verification. Metals, 12(7), 1145. https://doi.org/10.3390/met12071145