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Abstract: The CO2 emissions of electric arc furnaces (EAFs) can be reduced by decreasing the electrical
energy consumed in the melting of iron scraps by utilizing chemical energy. In general, the chemical
energy efficiency of the EAF process can be improved using oxidation reaction heat and carbon
combustion. When carbon is added to molten steel, it is not completely dissolved because of its
high melting point, and it floats to the slag layer, owing to its low density. Al dross is a byproduct
of aluminum smelting, and it contains over 27 mass% metallic aluminum. As the exothermic heat
of aluminum oxidation is larger than that of carbon oxidation, the Al dross is a useful source of
exothermic heat in the EAF process. In this study, to utilize the mixtures of cokes and Al dross
as chemical energy sources in the EAF process, we investigated the dissolution concentrations,
dissolution ratios, and dissolution rate constants of carbon and aluminum in molten steel. The
improvement in the molten steel temperature was investigated by blowing dry air into the melt after
the dissolution of the mixtures of cokes and Al dross.
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1. Introduction

It is important to reduce CO2 emissions in order to achieve a sustainable society. Nu-
merous studies have investigated eco-friendly energy resources to reduce the consumption
of fossil fuels [1,2]. Among domestic industries in Korea, the steel industry generated
approximately 23% of CO2 emissions in 2017 [3]. In the global steel industry, ~65% of steel
is produced using blast furnaces and converters, and blast furnaces account for ~70% of
CO2 emissions. A process that uses hydrogen resources and direct reduced iron (DRI) has
been proposed to reduce CO2 emissions in the steel industry. The electric arc furnace (EAF)
process is required to produce high-grade steel products using DRI [4].

The CO2 emissions of the EAF process can be decreased by reducing the use of electric
energy and improving the efficiency of chemical energy. In Korea, domestic EAF companies
produce steel products using ~63% electrical energy, ~30% chemical energy, and ~3%
burner combustion heat. Electrical energy is primarily consumed for melting the scrap in
the EAF process, and over 50% of it is produced using coal and oil in Korea, which causes
CO2 emissions [5]. Therefore, it is necessary to improve the efficiency of chemical energy
consumption by utilizing raw materials that contain high thermal energy and oxidation
reaction heat by blowing oxygen.

Generally, coke added to the EAF process contains more than ~80% carbon, which is
used as a slag-forming material through its reaction with oxygen. Carbon generates more
energy in the second combustion compared to the first combustion. However, most of the
carbon material floats in a slag layer, owing to its low density. In addition, carbon cannot
be dissolved over a relatively short operation time, owing to its high melting point.

Over the past several decades, the dissolution behaviors and thermodynamic data
of carbon-based materials have been extensively investigated to improve the steelmaking
technology using carbon materials. Matoba et al. investigated the equilibrium of carbon and
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oxygen in a liquid Fe-C alloy using a graphite crucible and CO gas at 1573–1873 K. Based on
the Boudouard equilibrium, they obtained an empirical formula for the activity coefficients
of C and O in molten steel [6]. Kim et al. investigated the carbon solubility in various liquid
iron alloys, including V, Mo, and Ni, under an Ar atmosphere at 1873 K. They determined
the effect of the interaction parameters of V, Mo, and Ni on the activity coefficient of
carbon in carbon-saturated iron alloys [7]. Furthermore, the effect of the sulfur content in
molten iron alloys on the solubility of graphite was investigated at 1473–1973 K [8,9]. As
temperature increased, the solubility of carbon in steel increased and the sulfur content
decreased. Cham et al. investigated the dissolution behaviors of two Australian cokes in
molten steel at 1723–1823 K. They found that temperature had a significant effect on the
dissolution rates of cokes. In addition, the difference between the dissolution rates of cokes
was attributed to the different compositions of mineral matter in the coke, which limited
the interfacial contact area between the carbon source and molten iron [10]. Jang et al.
found that an ash layer that accumulated on the surface of cokes considerably reduced the
contact area between cokes and molten steel, thereby decreasing the dissolution rates of
carbon [11]. Even though the use of the carbon technology in the steel industry provides
superior results, the considerable amounts of carbon materials used in the steelmaking
process cause CO2 emissions. Thus, it is necessary to find appropriate materials to partly
replace carbon and reduce CO2 emissions in the steel industry.

Al dross, which is a by-product of Al smelting, contains approximately 27 mass%
metallic aluminum, whose oxidation heat is approximately 3 times higher than that of car-
bon. Approximately 60,000 tons of Al dross is produced annually in Korea and 800,000 tons
in the United States [12–14]. Al dross is almost entirely landfilled because practical recy-
cling methods have not been established [15]. One of the recycling methods for Al dross is
the use of additives for reduction and heating resources in the steelmaking process because
of the metallic aluminum content in Al dross. Kim et al. investigated the effect of a mixture
of Al dross and graphite powder on iron reduction in EAF slag. When Al dross was added
at 5% of the slag weight, the reduction rate of iron in the slag was 2.5 times higher than
that obtained using only the graphite powder [16]. Even though the Al dross is useful for
the reduction of FeO from slag, the sources of oxidation heat in the dissolution of Al dross
in molten steel have not been investigated.

In this study, the dissolution of Al dross was investigated in order to improve the
molten steel temperature using the oxidation heat of metallic aluminum to utilize an Al
dross as a chemical energy source in the EAF process. The coke and the Al dross were
mixed, and the effect of the mixing ratio and molten steel temperature on the concentration,
dissolution ratio, and dissolution rate constants of carbon and aluminum in molten steel
were investigated. Furthermore, the temperature changes in molten steel due to blowing
dry air into the melt were examined after the dissolution of the mixture of coke and the
Al dross.

2. Experimental Method
2.1. Dissolution of Al Dross and Cokes in Molten Steel

The components of coke particles and Al dross were obtained using proximate and
ICP analyses. Tables 1 and 2 list the compositions of the cokes and Al dross, respectively.
The metallurgical cokes contained 86.06 mass% C and 10.91 mass% ash. The Al dross
contained approximately 27 mass% metallic Al, 7 mass% SiO2, and 65 mass% Al2O3. As the
amount of the coke and Al dross mixture increases, the ash, SiO2, and Al2O3 can affect the
slag composition. This effect was reduced by setting the amount of the mixture as 5 mass%
of the total iron mass. The particle sizes of the coke and Al dross were less than 150 µm,
and the total weight of iron was approximately 90 g.
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Table 1. Coke components obtained using proximate analysis (mass%).

Fixed Carbon Volatile Moisture Ash

86.06 2.1 0.93 10.91

Table 2. Composition of Al dross obtained using ICP analysis (mass%).

Al Fe Sn Zn SiO2 Al2O3

27.02 0.16 0.01 0.03 7.00 65.78

Figure 1 shows a schematic of the induction furnace used for the dissolution of Al
dross and cokes in molten steel. First, flake-type electrolytic iron was charged into an Al2O3
crucible with a diameter of 35 mm. The mixture of the coke and Al dross was charged into
an iron crucible with a diameter of 20 mm, and then, electrolytic iron was placed in the
prepared iron crucible. Table 3 shows the mass ratio of the coke and Al dross mixtures.
C/Al represents the ratio of carbon to aluminum in the mixture. The prepared Al2O3
crucible with the samples was covered with a graphite crucible and protection crucible. The
oxidation of iron, carbon, and aluminum during the dissolution experiments was prevented
through deoxidized Ar gas flow at 500 mL/min. The deoxidation treatment with Ar gas
was carried out at 773 K using Mg chips.
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Figure 1. Schematic of induction furnace.

Table 3. Mass ratio of coke and Al dross mixtures.

Mixture Coke: Al Dross

Ratio (%) 80:20 60:40 40:60
C/Al 0.4 0.2 0.1

The temperature of the molten steel was measured using a B-type thermocouple, and
the reaction temperatures were 1823 K, 1873 K, and 1973 K. The time required to achieve
the target temperature was maintained as constant at 1 h. The initial time immediately
after achieving the target temperature was set as “0”. The reaction times were 600 s, 1800 s,
3600 s, and 7200 s, and the crucible with the sample was removed and water quenched at
each time stamp. The concentrations of carbon and aluminum in the obtained metal were
measured using C/S analysis (CS-2000, ELTRA, Haan, Germany) and ICP-OES (Inductively
Coupled Plasma Optical Emission Spectroscopy, since here, regarding as ICP) analysis
(Optima 5300 DV, Perkin Elmer Ltd., Waltham, MA, USA), respectively. The pretreatment
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for ICP analysis was as follows: First, 2 g of metal specimens were obtained from the upper,
middle, and lower portions of the metal sample. Subsequently, the metal specimens were
dissolved using nitric acid, hydrochloric acid, and perchloric acid. Iron was separated from
the sample solution using MIBK (Methyl isobutyl ketone). The separation process was
performed five times because the concentration of aluminum in the metal was significantly
lower than that of Fe. The concentrations of carbon and aluminum obtained in each analysis
were used to calculate the dissolution ratio.

2.2. Measurement of Molten Steel Temperature by Blowing Dry Air

After the complete dissolution of the Al dross and coke mixtures, the temperature
change in the molten steel was measured by blowing dry air. The mixture ratio of the Al
dross and coke mixtures was 0.2, according to the dissolution experiments. Figure 2 and
Table 4 show the schematic of the experimental method and the experimental conditions,
respectively. The temperature of the melt and the atmosphere in the furnace was maintained
at 1873 K under N2 gas (500 mL/min). Subsequently, the Al dross and coke mixture was
dissolved for 1 h. Thereafter, dry air was blown into the melt. The concentrations of
aluminum and carbon in the metal sample before and after blowing dry air were measured
using the methods described in Section 2.1.
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Table 4. Experimental conditions.

Temperature (K) 1873

Atmosphere (mL/min) Ar (500)

Blowing gas (mL/min) Dry Air (100)

Dissolution time (s) 3600

Blowing time (s) 3600

3. Results and Discussion
3.1. Dissolution of Al Dross and Coke in Molten Steel

Figures 3–5 show the change in the dissolution concentrations of carbon and aluminum
in molten steel according to the mixing ratio (C/Al) and reaction time at 1823 K, 1873 K, and
1973 K. At 1823 K and 1873 K, the dissolution concentrations of C and Al were constant at
3600 s and 1800 s or more, respectively. At 1973 K, the dissolution concentrations of carbon
and aluminum were constant over 1800 s. At a constant molten steel temperature, the effect
of the mixing ratio on the time required to reach the maximum dissolution concentrations
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was not significant. The maximum dissolution concentrations increased with the molten
steel temperature. In addition, as the mixing ratio increased, the maximum dissolution
concentration of carbon increased and that of aluminum decreased.
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Figure 6 shows the theoretical oxidation reaction heat, as calculated using the maxi-
mum dissolution concentrations of carbon and aluminum at each molten steel temperature
and the concentration of impurities generated in molten steel by changing the mixing ratio.
The impurities were ash, SiO2, and Al2O3. The oxidation heat of aluminum was assumed
to be ~30,868 J/g, which is the heat of combustion of aluminum [17], and the oxidation heat
of carbon was assumed to be ~9211 J/g, which is the enthalpy of formation of CO gas [18].
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steel as function of mass ratio of C/Al.

At a constant molten steel temperature, the theoretical oxidation reaction heat and con-
centration of impurities decreased as the mixing ratio increased. The theoretical oxidation
reaction heat was calculated using the following equation:

Theorical oxidation heats (J/g)
= (wt.%C×weight of Fe×9211)+(wt.%Al×weight of Fe×30868)

weight of Fe .
(1)

In Equation (1), wt.% C and wt.% Al denote the maximum dissolution concentrations
of carbon and aluminum in molten steel, respectively, as shown in Figures 4–6. The mass
of iron is assumed to be the initial mass of Fe. As shown in Figure 6, the theoretical
oxidation heats of the Al dross and coke mixture decreased with the mixing ratio because
the maximum concentration of aluminum in molten steel decreased. At 1823 K and
1873 K, the oxidation reaction heats at mixing ratios of 0.1 and 0.2 were not significantly
different. However, the concentration of impurities in molten steel increased as the mass
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ratio decreased. High concentrations of impurities, including Al2O3 and SiO2, decrease
slag basicity. Therefore, on the basis of the theoretical oxidation reaction heats and the
concentration of impurities in the Al dross and coke mixture, the appropriate mixing ratio
was assumed to be 0.2.

Figures 7 and 8 show the effect of the molten steel temperature on the maximum
dissolution ratios of carbon and aluminum in molten steel. The maximum dissolution
ratios were calculated using Equation (2). wt.% M is the dissolution concentration of carbon
or aluminum in molten steel. The weight of iron and the initial weight of M are the initial
mass of iron and the weight of carbon or aluminum, as calculated before the dissolution
experiments, respectively.

Dissolution ratio of M(%) =
(wt.% M × weight of Fe)

Initial weight of M
× 100. (2)
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At a constant mixing ratio, the maximum dissolution ratios increased with the molten
steel temperature. This indicates that the dissolution of aluminum and carbon in the
mixture can be improved when the molten steel temperature is increased because of the
oxidation heat of the dissolved aluminum and carbon by blowing oxygen. However, the
influence of the mixing ratio on the maximum dissolution ratios was not significant, as
shown in Figures 7 and 8. The relationship between the molten steel temperature and the
maximum dissolution ratios is expressed as follows:

Dis.rat.of [C] = −536.38 + 0.2839 × T(K). (3)

Dis.rat.of [Al] = −227.63 + 0.1363 × T(K). (4)

Figures 9 and 10 show the influence of the mixing ratio on the maximum dissolution
ratios at a constant molten steel temperature. The average values of the maximum dissolu-
tion ratios at a constant molten steel temperature are represented by each line in Figures 9
and 10. At a molten steel temperature of 1973 K, the maximum dissolution ratios were
~90% and ~40%, respectively. However, at a given temperature, the maximum dissolution
ratios were similar at mixing ratios of 0.1–0.4. Therefore, the molten steel temperature had
a stronger effect on the dissolution behaviors of carbon and aluminum compared to the
mixing ratio.
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3.2. Kinetics for Dissolution of Al and C from Al Dross and Coke Mixture in Molten Steel

Based on the data shown in Figures 4–6, the dissolution rate constants of carbon and
aluminum were obtained using the following equations:

d[%M]

dt
=

Ak
V

× ([%M]Sat. − [%M]). (5)

α = ln
([%M]Sat. − [%M]Init.)

([%M]Sat. − [%M]time)
= −Kt. (6)



Metals 2022, 12, 1170 9 of 15

Metals 2022, 12, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 9. Changes in the maximum dissolution ratio of C in molten steel as a function of mixing 
ratio of C/Al in the Al dross and coke mixtures. 

 
Figure 10. Changes in the maximum dissolution ratio of Al in molten steel as a function of mixing 
ratio of C/Al in the Al dross and coke mixtures. 

3.2. Kinetics for Dissolution of Al and C from Al Dross and Coke Mixture in Molten Steel 
Based on the data shown in Figures 4–6, the dissolution rate constants of carbon and 

aluminum were obtained using the following equations:  𝑑ሾ%𝑀ሿ𝑑𝑡 = 𝐴𝑘𝑉 × (ሾ%𝑀ሿௌ௔௧. − ሾ%𝑀ሿ). (5)

𝛼 = 𝑙𝑛 (ሾ%𝑀ሿௌ௔௧. − ሾ%𝑀ሿூ௡௜௧.)(ሾ%𝑀ሿௌ௔௧. − ሾ%𝑀ሿ௧௜௠௘) = −𝐾𝑡.  (6)

In Equation (5), ‘A’ is the interface area (m2) between the molten steel and the Al 
dross and coke mixture charged in the iron crucible. ‘k’ is the dissolution rate constant 
(m/s), and ‘V’ is the volume of molten steel (m3). Equation (6) can be obtained from Equa-
tion (5), and ‘K’ denotes the apparent dissolution rate constant (K = Ak/V). In Equation 
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In Equation (5), ‘A’ is the interface area (m2) between the molten steel and the Al dross
and coke mixture charged in the iron crucible. ‘k’ is the dissolution rate constant (m/s), and
‘V’ is the volume of molten steel (m3). Equation (6) can be obtained from Equation (5), and
‘K’ denotes the apparent dissolution rate constant (K = Ak/V). In Equation (6), ‘[%M]sat.’ and
‘[%M]Init.’ are the maximum and initial dissolution concentrations of carbon or aluminum
in molten steel, respectively. ‘[%M]time’ is the dissolution concentration of carbon or
aluminum in molten steel at each reaction time.

Figures 11 and 12 show the change in ‘αC‘ and ‘αAl‘ obtained using Equation (6)
and the present experimental results as a function of reaction time. The slope between
the ‘α’ and the reaction time is ‘K’. As shown in Figure 11, the apparent dissolution rate
constant of carbon (αC) increased with the molten steel temperature, even though the
maximum dissolution concentration of carbon at 1973 K was saturated for 1800 s, as shown
in Figure 5. In contrast, the apparent dissolution rate constant of aluminum (αAl) was
weakly influenced by the molten steel temperature, as shown in Figure 12. Therefore, the
influence of the molten steel temperature on the dissolution rate constant of carbon was
stronger than that on the dissolution rate constant of aluminum.
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Figure 13 shows the influence of the molten steel temperature on the apparent disso-
lution rate constant of the Al dross and coke mixtures, obtained in the present study, and
the dissolution rate constant of carbon, obtained in a previous study [11]. The dissolution
rate constant of carbon obtained in the present study was lower than that obtained in
the previous study. The previous study used carbon-saturated conditions with a com-
pressed board of coke on the surface of molten steel. Conversely, in the present study,
the mixture was prepared by charging Al dross powder and coke in an iron crucible. As
the reaction area could not be accurately determined in the present study, the apparent
dissolution rate constant of carbon was assumed to be different from that of the previous
study. Furthermore, it was assumed that the shape of the carbon source was related to
the dissolution behavior of carbon. As shown in Figure 13, the apparent dissolution rate
constant of aluminum in the mixture increased slightly with the molten steel temperature,
compared to carbon.
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Figures 14–16 show the experimental and calculated values of the changes in the
dissolution concentrations of carbon and aluminum in molten steel. The dissolution rate
constants of carbon and aluminum shown in Figure 13 were used to calculate the dissolution
concentrations at different molten steel temperatures and mixing ratios. At 1823 K, 1873 K,
and 1973 K, the calculated dissolution concentrations showed good agreement with the
experimental data. The dissolution concentration and dissolution efficiency of the Al dross
and coke mixtures could be predicted using the equations proposed this study.
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3.3. Changes in Molten Steel Temperature by Blowing Dry Air after Dissolution of Al Dross and
Coke Mixture

The improvement in the molten steel temperature due to the Al dross and coke mixture
was verified by measuring the molten steel temperature by blowing dry air gas after the
dissolution of the mixture. The mixing ratio was 0.2 and the mixture was completely
dissolved at 1873 K for 1 h. Then, dry air was blown for 1 h at a starting temperature of
1873 K. Furthermore, the coupled reaction model of the BOF process was used to simulate
the changes in molten steel temperature. The details of this model have been reported
elsewhere [19]. The model can simulate the changes in the temperature and composition
of molten steel and slag during top and bottom blowing. The mass transfer coefficient of
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the components in the metal phase was calculated using the stirring energies of top and
bottom blowing. In the present study, the stirring energy of bottom blowing was fixed
at unity, and the mass transfer coefficient of the components in the metal phase (km) was
calculated using the stirring energies of top blowing, as follows:

ε∗Top =
0.632 × 10−6

W
cosϑ

Q3
T M

n2
Ld3

e h
. (7)

log km = 1.98 + 0.5log

(
(ε∗ × 1000)

(
h2

V
dv

))
− 125000

2.3RT
. (8)

In Equation (7), ‘ε∗Top’ is the stirring energy of top blowing (Watt/ton) and ‘QT’ is the
flow rate of the top blowing gas (Nm3/min). ‘nL’ and ‘de’ are the number and diameter (m)
of nozzles, respectively. ‘h’ is the height of the nozzle tip from the surface of the molten
steel (m). ‘M’ and ‘W’ are the molecular weight of the top blowing gas and the total weight
of the metal, respectively. In Equation (8), ‘hV’ and ‘dV’ are the height and diameter of
the vessel (m), respectively. The mass transfer coefficients of the components in the slag
phase were 10 times lower than those in the metal phase. Table 5 presents the input data
for the simulations.
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Table 5. Input data for simulations.

Starting Temperature (K) 1873

Gas flow rate (Nm3/min)
0.0001

(dried air, M = 29 g/mol)

Weight of metal (g) 90

Inner diameter of nozzle (m) 0.008
(single nozzle)

Height of the nozzle tip (m) 0.01

Inner diameter of crucible (m) 0.035

Blowing time (s) 2400

Figure 17 shows the images of molten steel with the dissolved Al dross and coke
mixtures and after blowing dried air. In Figure 17a, residue particles from the dissolved
mixtures were observed on the surface of the molten steel. As shown in Figure 17b, a slag
film was formed on the surface of the molten steel after approximately 1600 s blowing of
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dried air. The slag film became thicker during blowing and the temperature decreased, as
shown in Figure 17c.

Metals 2022, 12, x FOR PEER REVIEW 13 of 16 
 

 

log𝑘௠ = 1.98 + 0.5𝑙𝑜𝑔 ൭(𝜀∗ × 1000) ቆℎ௏ଶ𝑑௩ቇ൱ − 1250002.3𝑅𝑇 .  (8)

In Equation (7), ‘𝜀்௢௣∗ ‘ is the stirring energy of top blowing (Watt/ton) and ‘𝑄் ‘ is the 
flow rate of the top blowing gas (Nm3/min). ‘𝑛௅‘ and ’𝑑௘‘ are the number and diameter (m) 
of nozzles, respectively. ‘h’ is the height of the nozzle tip from the surface of the molten 
steel (m). ‘M’ and ‘W’ are the molecular weight of the top blowing gas and the total weight 
of the metal, respectively. In Equation (8), ‘hV’ and ‘dV’ are the height and diameter of the 
vessel (m), respectively. The mass transfer coefficients of the components in the slag phase 
were 10 times lower than those in the metal phase. Table 5 presents the input data for the 
simulations. 

Table 5. Input data for simulations. 

Starting Temperature (K) 1873 

Gas flow rate (Nm3/min) 0.0001  
(dried air, M = 29 g/mol) 

Weight of metal (g) 90 

Inner diameter of nozzle (m) 0.008  
(single nozzle) 

Height of the nozzle tip (m) 0.01 
Inner diameter of crucible (m) 0.035 

Blowing time (s) 2400 

Figure 17 shows the images of molten steel with the dissolved Al dross and coke 
mixtures and after blowing dried air. In Figure 17a, residue particles from the dissolved 
mixtures were observed on the surface of the molten steel. As shown in Figure 17b, a slag 
film was formed on the surface of the molten steel after approximately 1600 s blowing of 
dried air. The slag film became thicker during blowing and the temperature decreased, as 
shown in Figure 17c. 

 
Figure 17. Images of molten steel with dissolution of the Al dross and coke mixtures and blowing 
of dry air: (a) Before blowing; (b) Blowing at 1600 s; (c) After blowing. 

Figure 18 shows the changes in the composition and temperature of molten steel 
caused by blowing dry air and the simulation results. The black and red lines represent 
the measured and simulated temperatures of molten steel, respectively. The blue symbols 
and line indicate the measured and simulated compositions of carbon in molten steel, re-
spectively. The green symbols and line denote the measured and simulated compositions 
of aluminum in molten steel, respectively. The measured temperature increased signifi-
cantly for approximately 700 s when the aluminum in molten steel was primarily oxi-
dized, and the aluminum content decreased. The molten steel temperature gradually in-
creased as the carbon content in the molten steel gradually decreased. At approximately 
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Figure 17. Images of molten steel with dissolution of the Al dross and coke mixtures and blowing of
dry air: (a) Before blowing; (b) Blowing at 1600 s; (c) After blowing.

Figure 18 shows the changes in the composition and temperature of molten steel
caused by blowing dry air and the simulation results. The black and red lines represent the
measured and simulated temperatures of molten steel, respectively. The blue symbols and
line indicate the measured and simulated compositions of carbon in molten steel, respec-
tively. The green symbols and line denote the measured and simulated compositions of
aluminum in molten steel, respectively. The measured temperature increased significantly
for approximately 700 s when the aluminum in molten steel was primarily oxidized, and
the aluminum content decreased. The molten steel temperature gradually increased as the
carbon content in the molten steel gradually decreased. At approximately 1600 s, the mea-
sured temperature decreased slightly because a thin film of slag was formed. Finally, as the
slag phase became thicker with the blowing of dry air, the measured temperature decreased
after 2200 s. Figure 19 shows the results of the X-ray diffraction (XRD) analysis of the slag.
The slag phase was composed of Fe3O4 and Al2O3, and it was generated by the oxidation
of aluminum and iron caused by blowing air. The simulated and measured results of the
changes in the molten steel temperature and the aluminum and carbon contents of molten
steel were in good agreement. In conclusion, the molten steel temperature can be improved
by the oxidation of the aluminum dissolved from the Al dross. In the future, the electrical
energy consumed in the EAF process may be reduced using Al dross and coke mixtures.
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4. Conclusions

We investigated the dissolution concentrations, dissolution ratios, and dissolution rate
constants of carbon and aluminum in molten steel to utilize coke and Al dross mixed fuels
as chemical energy sources in the EAF process. Furthermore, the changes in the molten
steel temperature were investigated by blowing dry air into the melt after the dissolution
of the coke and Al dross mixtures. The following results were obtained:

(1) The dissolution experiments of the coke and Al dross mixtures were conducted at
1823–1973 K. The dissolution concentrations of carbon and aluminum in molten
steel increased with the reaction time and molten steel temperature. The dissolution
concentration of aluminum in molten steel was constant after 1800 s. At 1823 K
and 1873 K, the dissolution concentration of carbon in molten steel was constant
after 3600 s. At 1973 K, and the dissolution concentration of carbon in molten steel
remained constant after 1800 s. The theoretical oxidation heat was calculated using
the maximum dissolution concentrations of carbon and aluminum in molten steel.

(2) At a constant mixing ratio of coke and Al dross, the maximum dissolution ratio of
carbon and aluminum in molten steel increased with the molten steel temperature. At
a constant molten steel temperature, the effect of the mixing ratio on the maximum
dissolution ratio of carbon and aluminum was not significant. The relationship
between the maximum dissolution ratio of carbon and aluminum in molten steel and
the molten steel temperature was obtained.

(3) The dissolution rate constants of carbon and aluminum increased with the molten
steel temperature. The dissolution concentrations of the coke and Al dross were
calculated using the dissolution rate constants of carbon and aluminum, and the
calculated values were in good agreement with the experimental data.

(4) After the dissolution of the coke and Al dross mixtures, the molten steel temperature
was measured and simulated by blowing dry air into the melt at a starting temperature
of 1873 K. The molten steel temperature increased significantly immediately after
the blowing of dry air started, owing to the oxidation of aluminum. Subsequently,
the molten steel temperature increased gradually, due to the combustion of carbon.
A slag phase was formed at approximately 1600 s after the start of the blowing of
dry air, and it became thicker with the continued blowing of dry air. The slag phase
was composed of Fe3O4 and Al2O3, as determined using XRD. The simulation results
for the changes in the temperature and composition of molten steel showed good
agreement with the measured results.
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