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Abstract: In this work, the influence of thermal pre-processing upon the microstructure and hard-
ness of Al 6061 feedstock powder is considered through the lens of cold spray processing and
additive manufacturing. Since solid-state cold spray processes refine and retain microstructural
constituents following impact-driven and high-strain rate severe plastic deformation and bonding,
thermal pre-processing enables application-driven tuning of the resultant consolidation achieved via
microstructural and, therefore, mechanical manipulation of the feedstock prior to use. Microstructural
analysis was achieved via X-ray diffraction, scanning electron microscopy, transmission electron
microscopy, electron backscatter diffraction, energy dispersive spectroscopy, and differential thermal
calorimetry. On the other hand, nanoindentation testing and analysis were relied upon to quantify pre-
processing effects and microstructural evolution influences on the resultant hardness as a function of
time at 540 ◦C. In the case of the as-atomized powder, β-Mg2Si-, Al-Fe-, and Mg-Si-type phases were
observed along polycrystalline grain boundaries. Furthermore, after a 60 min hold time at 540 ◦C,
Al-Fe-Si-Cr-Mn- and Mg-Si-type intermetallic phases were also observed along grain boundaries. Fur-
thermore, the as-atomized hardness at 250 nm of indentation depth was 1.26 GPa and continuously
decreased as a function of hold time until reaching 0.88 GPa after 240 min at 540 ◦C. Finally, contextu-
alization of the observations with tuning cold spray additive manufacturing part performance via
powder pre-processing is presented for through-process and application-minded design.

Keywords: cold spray; rapid solidification; heat treatments; gas-atomization; microscopy;
nanoindentation; powder

1. Introduction

Traditional metal additive manufacturing techniques, such as selective laser sintering,
electron beam melting, and laser engineered net shaping, notably depend on powder-
centric variables such as the particle size distribution, morphology, and flowability of
powders used in said processes. As reported previously, the powders’ sphericity and
morphology—which captures two powder-centric variables for traditional powder-based
metal additive manufacturing methods—will affect the powder’s flow through the powder
feeder in such systems [1]. These variables matter in laser-engineered net shaping because
a specific size range of powder, 36–150 µm in diameter, must be continuously injected onto
the powder bed in a controlled fashion as the laser passes over it [2]. In contrast, the size
distribution and morphology matter to a lesser degree (although they remain significant
and non-negligible, as discussed by Valente et al. in [3] and pointed out by Hussain et al.
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in [4]) for the cold spray additive manufacturing (CSAM) process. Nevertheless, in CSAM
processing, small particles may not bond to the respective target substrate under a given
set of processing conditions for one or both of the following reasons: (i) fine particles can
suffer from an inability to sufficiently plastically deform (due to increased yield strengths
being associated with smaller atomized particles, as they experience higher solidification
rates) and therefore bond with the substrate; and (ii) from the bow shock effect [5,6].

One should note that successful attempts at utilizing sub-10 µm diameter feedstock
particles have been reported in the literature [7]. When particles are too large, they will not
reach the critical impact velocity due to their relatively increased mass on a per-particle
basis [8]. However, for those particles belonging to the appropriate range of feedstock
powder particulate sizes, one of the essential powders for CSAM is the microstructure
(including microstructural crystallinity and intermetallic constituents and phases). The
microstructure matters so much for CSAM because CSAM is an entirely solid-state process;
therefore, the initial properties and phases within the microstructure of an alloyed metallic
powder greatly influence the final properties of the CSAM consolidated material. Most of
the literature suggests that the phases present in the powder remain in the CSAM material.

To date, gas-atomized aluminum powder undergoes thermal pre-processing to degas
the powder prior to consumption during manufacturing or modify the as-atomized internal
microstructures. While powder degassing remains a common industrial practice prior to
introducing the feedstock into powder-based manufacturing systems of relevance [9,10],
thermal pre-processing for microstructural modification of gas-atomized powder has his-
torically been of limited interest to the materials processing sector because conventional
powder metallurgy methods remain, at least in large part, dependent on complete or partial
melting; thus, generally nullifying the need for understanding the as-atomized microstruc-
ture, since particulate melting remains intrinsic to the respective methods themselves [11].
That said, thermal processing of heat-treatable alloyed aluminum systems, including Al
6061, remains sensitive to the solutionizing temperature, heating rate, quench rate, aging
temperature (if precipitation hardening is sought after), and hold time. At the same time,
wrought- or bulk-inspired heat-treating parameters are non-transferrable to rapidly solidi-
fied, highly non-equilibrium, and gas-atomized alloyed aluminum particulates [12]. Such
non-direct transference follows from the fact that the size of the particles and the resultant
solidification structure enable much more rapid atomic diffusion along sub-granular and
granular boundaries, as detailed in [13]. As a result, one must formulate and identify
appropriate thermal pre-processing parameters and their significant influences on the
internal microstructures of gas-atomized Al 6061 to properly understand and approach the
implementation of thermal pre-processing of Al 6061 feedstock for optimized and tunable
CSAM processing and consolidated material performance. In turn, such matters were
considered herein.

The aim of heat treating particulate CSAM feedstock significantly deviates from those
traditionally affiliated with classical thermal or thermomechanical processing. More specifi-
cally, thermal pre-processing of CSAM feedstock stems from the desire to tune the resultant
consolidated components’ performance and enhance the particulate deformability and,
therefore, suitability for CSAM [14]. Increasing the deformability of the feedstock mi-
croparticles lowers the critical impact velocity required for particle–substrate bonding. At
the same time, one may consider that the previous work has highlighted that powder
particles of variable diameters for a single batch of bulk powder may very well maintain
microstructural intermetallic constituents that are notably variable as a function of mi-
croparticle diameter [15]. Hence, heat-treating or thermally pre-processing feedstock for
CSAM can also enable greater quality assurance and normalization of the internal phase
compositions, concentrations, and the like, across the range of particle sizes able to be
processed via CSAM, especially when compared with the aforenoted variability of the
as-atomized condition.

When applying heat treatments, two main microstructural effects are those related to
grain size and the phases present. Firstly, holding an alloy at elevated temperatures for a



Metals 2022, 12, 1214 3 of 23

considerable time will cause grain coarsening. Grain growth is an important consideration
when heat treating any metal because of the Hall–Petch relationship, where the strength
of the alloy is inversely proportional to the square root of the grain size. The second
consideration when heat treating aluminum alloys centers upon the phase transformations
at elevated temperatures. Two strengthening mechanisms in aluminum alloys are solid so-
lution strengthening and precipitation hardening. During a solutionization heat treatment
step, alloying elements will partially or wholly dissolve into the aluminum matrix, causing
a supersaturated solid solution (SSS) to form. This causes local distortion in the aluminum
lattice and will thus increase the material’s strength by obstructing dislocation motion. An
appropriate solutionization temperature is 5 ◦C below the solidus temperature. The alloy
is then quenched to room temperature to preserve the high-temperature composition of
the SSS [16]. Unfortunately, it is difficult to simply apply heat treatment schedules from
literature to the powder for cold spray, as it has been shown that powders will not respond
to heat treatments in the same fashion as rods, sheets, plates, for example [12,17]. Therefore,
powders have no universally accepted and specific heat treatment schedule to date.

It has not yet been determined which thermally processed condition and processing
parameters are the most suitable for gas-atomized Al 6061 feedstock-based CSAM. Accord-
ingly, the present work presents experimentally observed thermal pre-processing effects
that will enable continued research and development throughout the CSAM community
in identifying a thermal processing window for alloyed Al 6061 powders. Furthermore,
the present work focused on homogenizing or solutionization of the gas-atomized Al 6061
powder microstructures, as there has been an initial success in cold spraying the powder in
this condition. An as-atomized powder can be considered a cast structure where the rapid
cooling or solidification rate causes intermetallic secondary phases to nucleate along inter-
dendritic regions or grain boundaries. However, a homogenous solid solution is a more
desirable microstructure for many applications. Sheppard and Raghunathan conducted
several different homogenization treatments on Al 5056 samples to study the effects on
the microstructure [18]. The homogenization treatment aims to put the segregated solute
atoms into the solution. It is hypothesized that homogenization times for the powder will
be less than what is seen in the literature because the grain sizes are much smaller than the
cast materials studied. Therefore, there is less distance for the atoms to diffuse.

As discussed in the aforementioned introductory remarks, the microstructural and
mechanical properties of non-equilibrium, rapidly solidified, and gas-atomized aluminum
alloys are of interest to the CSAM materials consolidation research and engineering com-
munities [19]. As previously mentioned, such interest arises from the fact that CSAM
processing is microstructurally retentive (although refined), and the mechanical properties
of particulate feedstock directly affect the critical parameter known as the critical impact
velocity required to achieve mechanical interlocking as well as intimate metallurgical
bonding between the powder particles and a target substrate material together with the
particle–particle bonding too [20]. Given the well-established fact that the mechanical
properties of a metallic material are directly dependent upon the metal’s microstructure
and processing history [21], one can pre-process polycrystalline, rapidly solidified, CSAM
feedstock powders prior to use in the CSAM process to finely-tune and control the resultant
consolidated materials performance, behavior, and properties [22].

Rapidly solidified, gas-atomized alloyed aluminum (and other matrix materials) pow-
ders can be preprocessed before consumption during the CSAM materials consolidation
process. Preprocessing methods include milling [23], vacuum degassing [9], thermally as-
sisted degassing [24], thermal heat treating [25], plasma spheroidized [26], granulation [27],
spray drying [28], plating [29], and more [30]. Degassing, milling, and thermal heat-treating
capture most preprocessing methods that have been researched and developed in the CSAM
literature. However, degassing, milling, and thermal heat treatments are not universally
applicable across gas-atomized aluminum alloys. For example, degassing preprocessing
parameters must be optimized according to a trial-and-error approach, even when two
powders are of the same nominal composition [31]. At the same time, thermal preprocess-
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ing requires knowledge of the powders’ composition and classification to target desired
secondary phase formation and deleterious phase dissolution or achieve a homogenized
and solutionized state [32].

Growing interest exists surrounding the industrial implementation of thermal pre-
processing of CSAM particulate feedstock materials [33]. Therefore, this work considers
how experimental characterization, coupled with a previously developed through-process
framework for aluminum alloy CSAM [34], can be invoked to control CSAM particulate
feedstock mechanical properties and microstructures for improved CSAM consolidations
performance in service and optimal processing parameter selection. Beyond influencing
the critical velocity required for bonding, among other noteworthy CSAM parameters,
thermal pre-processing of CSAM alloyed aluminum feedstock systems can be utilized to
address CSAM component ductility and toughness without further post-processing. Thus,
one way to improve ductility is to thermally pre-process powder before CSAM deposition.
This is carried out for two reasons: hydroxides are removed from the surface of the powder,
which is a typical degassing step for powder processing, and secondly, the microstructure
is modified from the as-atomized condition to a more “sprayable” condition.

2. Materials and Methods

The gas-atomized Al 6061 powder utilized during this research was procured from
F. J. Bromann & Co. (Harvey, LA, USA). By direct current plasma emission spectroscopy-
based analysis, performed per ASTM E 1097-12 and outsourced to Luvak Laboratories,
Inc. (Boylston, MA, USA), the chemical composition of the gas-atomized Al 6061 powder
was unveiled. More specifically, the measured chemical composition of the gas-atomized
Al 6061 CSAM feedstock was as follows: 0.11 wt.% Cr, 0.26 wt.% Cu, 0.28 wt.% Fe, 0.922
wt.% Mg, 0.078 wt.% Mn, 0.024 wt.% Ti, 0.02 wt.% Zn, 0.591 wt.% Si, and 97.7 wt.% Al.
Said chemical composition falls within the standard Al 6061 compositional tolerances and
ranges specified for each alloying element [16].

Rapidly solidified, gas-atomized aluminum alloy powder particle properties have
previously been shown to depend on particle diameters [35]. Accordingly, the powder
was sieved before characterization was performed. Concerning the powder sieving, fine
particles of less than 20 µm in diameter were removed by introducing a stream of nitrogen
gas through a modified fluidized bed wherein the fine particles were ejected from the bulk
batch of powder and the fluidized bed’s gas stream. The removal of said fine particulates
ensured that the sieve meshes employed would not clog and also ensured that amorphous
powder particles were removed from the analysis in light of prior reports that made
mention of amorphous particulates forming from the very rapid cooling rates associated
with sub-10 µm sized microparticles manufactured via gas atomization [36]. Using a
mechanical sieve, which was equipped with interwoven stainless-steel wire-based meshes,
resulted in sieve size categories ranging from 25–32 µm, 32–38 µm, 38–45 µm, 45–53 µm,
and 53–63 µm in particulate diameter. Particle size distributions of the sieved gas-atomized
Al 6061 powder—that is, particle size distributions for each of the size categories—were
determined by way of laser diffraction-based analysis at the United Technologies Research
Center (now part of Raytheon Technologies Corporation and located in East Hartford, CT,
USA), as shown in Figure 1.

For studying the heat-treated powders, small samples of powder (approximately
30 mg) were thermally processed in a TA Instruments, Inc., (part of Waters Corp. and
located in New Castle, DE, USA) Q20 differential scanning calorimeter (DSC). As needed,
heat treatment times, temperatures, and heating rates are stated hereafter for each respective
sample in the Results and Discussion sections. Still, in DSC analysis, the DSC data were
collected with a heating rate of 5 ◦C min−1 and scanned from 20–530 ◦C. The DSC testing
atmosphere comprised nitrogen with a flow rate of 50 mL min−1. A Tzero Al pan and
lid were used, with an empty Tzero Al pan and lid for the reference sample. While the
generally favorable and hermetically sealable Tzero Al lid option was not used herein, as
has been performed in similar studies, to ensure that degassed oxygen-rich and hydroxide-



Metals 2022, 12, 1214 5 of 23

rich volatilized outgassing species could potentially escape the pan housing the powder,
the hypothetical risk of nitriding the particle surfaces was shown to have been avoided
during heat treating via electron microscopy and localized EDS-based elemental analysis
of the DSC-processed powders.
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Figure 1. Particle size distribution of the sieved, gas-atomized Al 6061 powder was conducted by
laser diffraction analysis.

Nevertheless, the powder was removed from the DSC immediately after the allotted
time and rapid quenching in the DSC sample reservoir. Feedstock powders were cold
mounted in epoxy, ground with 800-grit silicon carbide paper, and then mechanically
polished using a Struers (part of Roper Technologies and located in Ballerup, Denmark)
Tegramin-20 auto-polisher to a final 0.05 µm silica polish. For microstructural examination,
the gas-atomized Al 6061 powders were etched with a 0.5% hydrofluoric acid solution
for 60 s.

The microstructural examination was performed with a NIKON Epiphot 200 light
optical microscope (Nikon Corporation, Minato City, Tokyo, Japan), and a JEOL, Ltd.
(Akishima, Tokyo, Japan), JSM-7000F field emission scanning electron microscopy (FESEM)
with an Oxford (Oxford Instruments, Abingdon, Oxfordshire, UK) X-MAXN silicon drift
detector for energy dispersive spectrometry (EDS). For further examination, a TEM lamella
was cross-sectioned and prepared by a Thermo Fisher Scientific (Waltham, MA, USA) Helios
NanoLab G3 UC DualBeam scanning electron microscope and focused ion beam (SEM/FIB)
at the Institute of Materials Science (IMS) at the University of Connecticut (Mansfield, CT,
USA). The lamellas were imaged in a Thermo Fisher Scientific FEI Talos F200X scanning
electron microscope (STEM), also housed at UConn’s IMS. Copper was not included in the
EDS analysis because the sample was mounted on a copper grid. This would cause more
copper to appear on the EDS map than in the material. The limitations imposed by using
such a grid were considered as detailed hereafter in the Discussion section of the present
manuscript. Transmission electron backscatter diffraction (t-EBSD) was conducted in a
JEOL JSM-7000F field emission SEM at a voltage of 30 V. Phase fraction and precipitate size
measurements were performed in the image analysis software Olympus Stream Essentials
(Olympus Corporation, Japan). Automatic thresholds were employed. Area fraction results
from image analysis were converted to volume fractions using a method described by
Corti et al. in [37].

Conventionally static nanoindentation hardness measurements of the gas-atomized
Al 6061 feedstock particulates, as a function of processing condition and even size, were
performed using a Keysight Nano Indenter G200 (Keysight Technologies, Santa Rosa, CA,
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USA). However, one ought to note that the G200 nanoindentation system has since been
acquired by the KLA Corporation and rebranded as The Nano Indenter® G200 system
under the umbrella of KLA Instruments (part of the KLA Corporation, Milpitas, CA,
USA, and has incorporated Nanomechanics, Inc. (Oak Ridge, TN, USA), too). In any
case, the Keysight model of the nanoindentation system, formally known as the Keysight
Nano Indenter G200, was equipped with a Berkovich diamond pyramidal nanoindenter
tip from Micro Star Technologies (Huntsville, TX, USA). Nanoindentation measurements
were made at an indentation depth of 250 nm, which compliments the recommended
depth limits for proper indentation testing of metallurgical powder particles mounted in
compliant matrix materials by Sousa et al. [36]. For each of the processed gas-atomized Al
6061 powder conditions, at least 30 nanoindentation measurements were recorded. The
displacement resolution of the Keysight Nano Indenter G200 was less than 0.01 nm, and a
passive antivibration isolation mount below the G200 nanoindenter ensured well-controlled
testing conditions.

3. Results and Discussion

One of the most critical features of powder feedstock for CSAM processing is the
microstructure [38]. CSAM is an entirely solid-state process, so feedstock powder parti-
cles’ initial properties and microstructural constituents dramatically influence the CSAM
consolidated material [39]. Stated another way, the phases present in the powder remain
in the CSAM material. This was evident by formulating Figure 2a,b. One may readily
note that the XRD patterns in Figure 2c suggest that no significant phase transformations
occurred during CSAM-based processing of the as-atomized Al 6061 studied during the
present work. Accordingly, when SEM analysis was considered alongside the XRD analysis
presented in Figure 2c, the same two phases, which were indicated by the arrows in the
micrograph of the powder presented in Figure 2a, can also be found in the corresponding
CSAM sample presented in Figure 2b.

As already mentioned, Al 6061 has been highly regarded and considered within the
CSAM community since the 2000s and remains as such [40]. Still, consideration of the
current state of the literature surrounding the use of rapidly solidified and gas-atomized
Al 6061 particulate feedstock within CSAM processing unveils an ongoing discrepancy
surrounding the microstructural solidification type or class such rapidly solidified alloyed
aluminum microparticulate powders belong. Stated otherwise, researchers have claimed
that gas-atomized metallic droplets’ rapidly solidified, non-equilibrium, and undercooled
nature may vary between dendritic, mixed dendritic/cellular (also known as compound),
and cellular, as evidenced by the work of Behulova et al. in [41]. Considering such mi-
crostructural variability and sensitivity to processing conditions, etc., during atomization
suggests that care must be taken when attempting to directly compare one reported mi-
crostructure with another for the same nominal alloy system. Nevertheless, one ought to
still consider the claims reported within the academic literature of relevance.

Per the need for continued consideration of the literature reported to date surrounding
gas-atomized Al 6061 powder particle microstructures, Bedard et al. was considered first
herein. More to the point, Bedard et al. claimed to have observed “cell-like solidification
microstructures” in their Al 6061 feedstock [42]. Beyond the work of Bedard et al., Ernst
et al. purported that “cellular-dendritic”, i.e., compound-like, solidification microstructures
were observable in another gas-atomized Al 6061 powder [43]. However, according to
Vijayan et al., gas-atomized Al 6061 powder particles reportedly maintained a pronounced
cellular solidification microstructure that was identified as being more cellular than the
cellular/dendritic or cell-like microstructures reported by Bedard et al. and Ernst et al. [44].
At the same time, Sabard et al. reportedly noted a dendritic microstructure during their
research concerned with gas-atomized Al 6061, even though they state that a compound-
like or “cellular/dendritic microstructure” follows from the high cooling rates achieved
during the solidification of the particles in the introduction to [45]. Work by Evans et al. also
asserted that a “cellular rapid solidification structure” could be found within gas-atomized
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Al 6061 [46]. Nevertheless, contemporary work by Wei et al. focused on identifying
equiaxed grains within their as-atomized Al 6061 feedstock rather than compound or
cellular grains, which offers an alternative example of the rapidly solidified structures
reported upon to date within the scholarly literature of relevance [47].
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In keeping with the consideration of alternative interpretations of the resultant mi-
crostructural classification of gas-atomized Al 6061 and observed microstructural solidifica-
tion types reported upon as of late, the recent work of Sousa et al. may be considered next.
Interestingly, Sousa et al. demonstrated how secondary/primary dendritic solidification
modeling can accurately predict the resultant grain size of gas-atomized Al 6061 particles
as a function of the atomization gas utilized, molten droplet/particle diameter, cooling
rate [12]. The notable agreement between the computed and measured effective grain sizes
attests to dendritic or compound-based solidification of rapidly solidified gas-atomized
Al 6061. One may also note that Sousa et al. not only substantiated the dendritic solid-
ification class of gas-atomized Al 6061 in [12]; rather, Sousa et al. also substantiated the
dendritic nature of the non-equilibrium microstructure associated with gas-atomized Al
6061 in [48] and [36] as well. Additional works of relevance also serve to either substantiate
or detract from the suitability of a dendritic solidification frame of reference, as put forth by
Sousa et al. (and Belsito in [49]), for gas-atomized Al 6061. For example, Rokni et al. identi-
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fied the polycrystalline microstructure in Al 6061 particulates gas-atomized as equiaxed
with low-angled sub-grains comprising high-angled grains [50]. However, as a counter
example, work by Tsaknopoulos et al. and Walde et al. identified the possibility of cellular
precipitation or granular nucleation in [51] and [52], respectively.

With the discussion above in mind, it stands to reason that it is still unclear from the
literature’s interpretations if commonly gas-atomized aluminum powder microstructures
are primarily comprised of dendrites, a cellular structure, or a compound microstructural
constituent. For example, dendritic solidification microstructures were also observed in a
non-6061 alloyed aluminum powder [53]. Thus, for the present work, a preliminary EBSD
study was conducted on the as-atomized Al 6061 powder studied herein to give more
information about the grain structure in the powders. Recall that the powder particles
were polished, etched, and viewed as cross-sections of the respective particulates via SEM
and optical light microscopy. The Materials and Methods section noted that the mounted
and polished gas-atomized Al 6061 cross-sections were etched with a 0.5% hydrofluoric
acid solution. Grain size parameters were measured from SEM and optical microscopy
micrographs using the ASTM E112-13 intercept method [54]. It was revealed that smaller
particles contain smaller grains while larger particles contain larger grains. Such an obser-
vation may be relatively intuitive because larger particles have been shown to solidify with
lower cooling rates, whereas smaller particles solidified with greater cooling rates during
the gas-atomization production process [55].

For the present work, a preliminary EBSD study was conducted on the as-atomized
Al 6061 powder studied herein to yield more information about the internal polycrystalline
grain structure associated with the powders. As shown in the inverse pole sub-image of
Figure 3, larger, high-angled grains contain smaller sub-grains, or low-angled grains, with
the same orientation. Other individual grains with different orientations are not contained
within larger grains. Herein, the term “grains” essentially encapsulates sub-granular low-
angled grains since (i) high-angled grains were found to house multiple low-angled and
similarly oriented grains, (ii) have previously been shown to act as the adequate grain size
that dictates mechanical properties, and (iii) matches modeled secondary dendrite arm
spacing (SDAS) as a function of cooling rate and therefore gas-atomized powder particle
size [12,34,36]. Since sample preparation was considered essential for EBSD analysis, the
sample associated with Figure 3 was thinned through focused ion beam milling.
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Figure 3. EBSD analysis of an as-atomized Al 6061 powder particle. The grayscale micrograph
presents a band contrast image of the analyzed cross-sectional region considered the scanning area
for EBSD-based characterization. The colored micrograph presents the inverse pole figure color map
from the EBSD analysis. The Miller indices (001, 101, and 111) are also identified next to the inverse
pole figure.
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Beyond the isolated realm of microstructural polycrystalline solidification class identi-
fication and grain size/orientation analysis, STEM has also emerged as a beneficial and
experimentally rooted characterization tool for the study of gas-atomized, rapidly solidified
microparticles in general, as was highlighted by Srinivasan in [56], and Al 6061 powders in
particular herein. More to the point, STEM is suitable or adequate to unveil the possible
identities and approximate compositions of secondary intermetallic precipitates along the
sub-grain and high-angled grain boundaries within the gas-atomized feedstock. Moreover,
McNally previously demonstrated the well-suited nature of STEM to compare gas-atomized
aluminum alloyed intermetallic phases with the equilibrium and non-equilibrium predic-
tions via computational thermodynamics and computational kinetics of the secondary
phases for the experimentally determined chemical composition of the powder. Stated
otherwise, the respective chemical composition of the bulk powder had been utilized as
an input for computational thermodynamic and kinetic predictive analysis of prospective
phases and their potential volume fractions [57]. In any case, Figure 4a captures fine pre-
cipitates along the grain boundaries, around 100 nm to 200 nm in size. The white arrow
within Figure 4 points to what was labeled as the “white phase”. Similarly, the dotted white
arrow in Figure 4 points to what was labeled as the “gray phase”, and the black arrow
identifies what was labeled as the “dark phase”. Figure 4b presents a higher magnification
micrograph of the phases along the grain boundaries affiliated with a region captured in
Figure 4a.
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Figure 4. (a) presents a STEM micrograph of an as-atomized Al 6061 powder particle showing
different precipitates, intermetallic phases, secondary phases, or dispersoids along the rapidly
solidified polycrystalline sub-granular boundaries, as identified by the solid black, dotted white,
and solid white arrows embedded within the micrograph. (b) presents a STEM micrograph of the
as-atomized Al 6061 microparticle at a greater magnification such that the proximity between the sub-
grain boundaries and the secondary intermetallics located along said sub-granular boundaries. Note
that the scale bars affiliated with (a,b) are 500 nm. Therefore, the precipitates along the polycrystalline
boundaries are 100 nm to 200 nm in size.

The average composition, in atomic percent, was assessed for each of the phases
associated with Figure 4 and was provided in Table 1. The dark phase was identified as
a form of β-Mg2Si; however, a measured diffraction pattern did not identify the β-Mg2Si
intermetallic as the stable Mg2Si phase. Said non-stable β-Mg2Si was identified as a
metastable β-Mg2Si precursor precipitate phase formed during gas-atomization of the Al
6061 CSAM feedstock powder. The identification of a metastable form of β-Mg2Si, rather



Metals 2022, 12, 1214 10 of 23

than an equilibrium or stable β-Mg2Si phase, was also consistent with another original
research article by Sousa et al., wherein the authors noted the fact that the cooling rates
achieved during gas-atomization of Al 6061 will not intersect the stable β-Mg2Si cooling
curves computed and presented in a plot of a computationally derived graphical depiction
of the respective continuous cooling transformation (CCT) curves in [34].

Table 1. The average composition, in atomic percent, was assessed for each of the phases associated
with Figure 4.

Element “White Phase” “Gray Phase” “Dark Phase”

Mg 2.19 at. % 2.56 at. % 27.18 at. %
Al 79.4 at. % 89.3 at. % 61.13 at. %
Si 8.42 at. % 3.71 at. % 11.69 at. %
Fe 9.67 at. % 3.54 at. % –
Cr 0.15 at. % 0.04 at. % –
Zn 0.1 at. % – –
Mn 0.08 at. % 0.03 at. % –

In any case, the identity of the white and gray phases was difficult to pinpoint in exact
terms because of their respective similarity in chemical compositions and the stoichiometric
similarity of the phases predicted by computational thermodynamic analysis, as detailed
in [49,57]. Moreover, the lack of copper-EDS data associated with Figure 4 and Table 1
limited the ability to confidently assess copper’s presence within two of the non-(β-Mg2Si)
intermetallic phases. Therefore, further TEM analysis was applied to another gas-atomized
Al 6061 CSAM feedstock powder particle, approximately 47 µm in diameter, as shown
in Figure 5. Again, equiaxed dendritic grains were found within the respective powder
particle, with discrete smaller phases along the grain boundaries.
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Figure 5. STEM micrograph of an as-atomized Al 6061 powder particle (with an approximately
47 µm diameter), prepared for STEM-based characterization via FIB milling.
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The micrograph presented in Figure 5 highlighted how an equiaxed or compound
dendrite-like microstructure within gas-atomized Al 6061 feedstock could be observed.
Said solidification structure observed within the particulate captured in Figure 5 was
consistent with the work of Molnárová et al. for another gas-atomized aluminum alloy [58].
As alluded to, the micrograph presented in Figure 5 also captured the location of secondary
intermetallic phases along the grain boundaries in the gas-atomized Al 6061 powder.
However, the need for a more sensitively quantitative analysis of regional and site-specific
compositions remained. To address such a need, EDS mapping of various regions of
interest within the gas-atomized Al 6061 FIB lamella shown in Figure 5 was performed.
The EDS maps of said regions of relevance are shown in Figures 6–8. Once again, one
ought to note that copper was not included in the EDS maps because of the influence that
would follow from the copper grid upon which the lamellae was seated. Figure 6 showed
interesting precipitate structures along grain boundaries. An Mg-Si precipitate appeared to
be a “backbone” type structure, which was identified as a Chinese script eutectic non-stable
form of β-Mg2Si, with primarily Al-Fe intermetallic particles within the spaces between
the “spines” of the non-stable form of a β-Mg-Si precipitate.
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Figure 6. The subfigure labeled with “HAADF” presents a HAADF-STEM micrograph affiliated
with a subset of subgrains and sub-granular boundary regions for an as-atomized Al 6061 powder
particle. The colored micrographs labeled with Al, Mg, Si, and Fe present the respective EDS-derived
elemental maps for the area presented in the HAADF micrograph. Note that the scale bars are all
1 µm.
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an approximately 2.25% +/− 0.01% area fraction. Following the observable solidification 
structures documented for gas-atomized aluminum alloys, the interesting Chinese script-
like eutectic structure of the non-stable form of β-Mg2Si precipitates ought to be consid-
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SDA values suggest that nanostructured regions exist within the gas-atomized Al 6061 
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Figure 7. The subfigure labeled with “HAADF” presents a HAADF-STEM micrograph affiliated
with a collection of subgrains and sub-granular boundary regions (emphasizing the discrete particles
along the boundaries) for an as-atomized Al 6061 powder particle. The colored micrographs labeled
with Al, Mg, Si, and Fe present the respective EDS-derived elemental maps for the area presented in
the HAADF micrograph. Note that the scale bars are all 1 µm.

An inclined grain boundary was observed and recorded in Figure 8 and contains
the same interesting “backbone” structured Mg-Si precipitates noted in Figure 6, i.e., the
Chinese script eutectic non-stable form of β-Mg2Si. The Mg-Si precipitate structure at said
grain boundaries was dendritic, with the Al-Fe particles located in between the secondary
dendrite arms. This was not found in the first STEM sample shown in Figure 4; however,
it was evident across the sample introduced initially in Figure 5. Notably, the recorded
microstructural intermetallic arrangements and morphologies were like the structure of
the precipitates presented by Chakrabarti et al. in [16]. In addition, though there were still
similarly dendritic Mg-Si precipitates captured within Figure 7, there were also observable
and discrete Al-Fe particles that did not reside between the secondary dendrite arms but
were still contained along the polycrystalline grain boundaries.
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Figure 8. The subfigure labeled “HAADF” presents a HAADF-STEM micrograph affiliated with two
larger polycrystalline boundary regions for an as-atomized Al 6061 powder particle. The colored
micrographs labeled with Al, Mg, Si, and Fe present the respective EDS-derived elemental maps for
the area presented in the HAADF micrograph. Note that the scale bars are all 1 µm.

Image analysis was performed upon the EDS mapping areas, i.e., locations captured
in Figures 6–8, and their respective micrographs taken at several locations within the TEM
sample presented in Figure 5. A histogram of the intermetallic size results of the Mg-Si
and Al-Fe particles is presented in Figure 9. It was shown that most Mg-Si particles were
around 40 nm to 80 nm in size. The Mg-Si phase was also found to yield an approximately
2.7% +/− 0.7% area fraction from the images analyzed. The Al-Fe intermetallic phases
seemed to range widely in size, from 20 nm to over 140 nm, and were also found to yield
an approximately 2.25% +/− 0.01% area fraction. Following the observable solidification
structures documented for gas-atomized aluminum alloys, the interesting Chinese script-
like eutectic structure of the non-stable form of β-Mg2Si precipitates ought to be considered
dendritic; consequently, a secondary dendrite arm width and spacing were able to be
reported within the regions of relevance as well. The secondary dendrite arm widths were
measured and found to be approximately 53 nm +/− 16 nm, while the dendritic SDAS
within said regions was measured as 78 nm +/− 17 nm. Such sub-100 nm sized SDAS
and SDA values suggest that nanostructured regions exist within the gas-atomized Al 6061
feedstock particulates.
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Figure 9. Image analysis was performed on the EDS mapping areas taken at several locations in
the TEM sample. A histogram of the size results of the Mg-Si and Fe particles is shown herein.
Accordingly, the precipitate radius size distribution of Mg, Si, and Fe intermetallic phases within an
as-atomized Al 6061 powder particle is presented.

The solutionized sample was scanned in the DSC, described in the Methods and
Materials section previously documented, and held at 540 ◦C for 1 h. The DSC curve is
plotted in Figure 10. The typical peaks for the precipitation and dissolution of the β phase
were found, like the literature data in Figure 10. A powder particle approximately 40 µm in
diameter was examined in STEM and shown in Figure 11. Fairly equiaxed grains are found
in the sample, with precipitates speckled at the grain boundaries. Upon closer inspection of
the right side of Figure 11, there are bright, small precipitates containing heavier elements
and larger dark precipitates at triple points of the grain boundaries. EDS was used to
probe the identities of these phases once again. The DSC curve presented in Figure 10 was
consistent with the work of Sousa et al. in [12].
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Figure 10. DSC scan for Al 6061.
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Figure 11. (a) A HAADF-STEM micrograph of a thermally pre-processed and gas-atomized Al 6061
powder particle was heat-treated at 540 ◦C for 60 min and prepared by FIB milling and polishing.
(b) A higher magnification HAADF-STEM micrograph of the heat-treated Al 6061 gas-atomized
powder particle wherein precipitates and intermetallic phases along the sub-grain boundaries can be
observed. Note that the scale bar associated with (a) is 5 µm while the scale bar associated with (b) is
1 µm.

Through EDS mapping in Figures 12 and 13, it was found that the small bright white
precipitates at the grain boundary contain almost all of the elements in the alloy; aluminum,
silicon, iron, chromium, and manganese. This means these phases are difficult to identify
and could be any combination of the following phases from the predictive tools: Al13Fe4,
Al8Fe2Si, Al15Si2Fe4, Al9Fe2Si2, and Al18Fe2Mg7Si20. The darker, larger precipitates mostly
contained magnesium and silicon at triple points and were hypothesized to be Mg2Si.
The precipitate radius size distribution of Al-Fe-Si-Cr-Mn and Mg2Si particles is shown
in Figure 14. It is found that the Al-Fe-Si-Cr-Mn precipitates are small, with the majority
around 40 nm to 60 nm and with a few over 200 nm in size. The average area fraction of
these particles is approximately 4.1 +/− 1.3%. The Mg2Si phase has seemed to be lower in
number but coarser in size. Most of the precipitates are over 200 nm, with an average of
324 +/− 154 nm in size.

There was a significant change in the morphology of the phases during the solution-
ization step. Firstly, the Al-Fe-Si-Cr-Mn particles seemed to have refined in size. There was
an extensive size range in the as-received sample, from 20 nm to over 140 nm in size. In the
solutionized sample, most of these particles were around 40 nm to 60 nm, with only a few
over 200 nm in size. Secondly, the solutionization step dissolved the interesting dendritic
structure of the Mg2Si phase. The non-dendritic precipitates found in the as-atomized
sample were around 40 nm to 80 nm in size, with a 2.7 +/− 0.7% area fraction. After solu-
tionization, the Mg2Si phase does not contain any precipitates in the dendritic structure, but
it lessened in number and became coarser in size. Most of these precipitates were between
200 nm and 500 nm in radius. The sample had approximately 15 Mg2Si precipitates, mostly
at triple points.
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Figure 12. The subfigure labeled with “HAADF” presents a HAADF-STEM micrograph affiliated
with a collection of subgrains and sub-granular boundary regions, with particular attention afforded
to the discrete intermetallic precipitates along the polycrystalline boundaries within a thermally
pre-processed Al 6061 gas-atomized powder particle. Thermal pre-processing was achieved via a heat
treatment hold time of 60 min and a hold temperature of 540 ◦C. The colored micrographs labeled
with Al, Mg, Si, Cr, Mn, and Fe present the respective EDS-derived elemental maps for the area
presented in the HAADF micrograph. Note that the scale bar affiliated with each micrograph is 2 µm.
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Nanoindentation was applied to the gas-atomized Al 6061 powder, both with and
without thermal processing. The average nanoindentation hardness (H = P/Ac, wherein
Ac is the contact area function dependent upon the reporting indentation depth) of the
as-atomized Al 6061 powder, with a size range of 38–45 µm was 1.12 GPa, and an average
nanoindentation hardness value of 1.26 ± 0.15 GPa for randomly selected particulates of
variable size categories, i.e., within the un-sieved powder. The variation in nanoindentation
hardness values for difference solutionization hold times at an elevated temperature of
thermal processing temperature of 540 ◦C was recorded as follows: 1.29 GPa at zero
minutes, 1.23 GPa at 20 min, 1.19 GPa at 60 min, 1.14 GPa at 120 min, and 0.88 GPa at
240 min. It was shown that an initial increase in nanoindentation hardness existed at 0 h
when the sample was brought to 540 ◦C and immediately quenched. As the time held at the
solutionization temperature increased, the nanoindentation hardness tended to decrease,
with the lowest value after 4 h of elevated temperature exposure. This could have been due
to the coarsening and loss of coherency with the main strengthening phase, Mg2Si. These
results show that heat treating the powder will reduce its hardness, thus reducing the flow
stress of the material and making it more “sprayable”.

Power law curve fitting was applied to a multi-curve fit dataset obtained using each
loading cycle load–depth data captured via nanoindentation testing as a function of speci-
men solutionization condition. Accordingly, the load–depth data were found to take the
following form: P = C(hc)

m, wherein the magnitude of the coefficients (C) were found
to be 0.00003, 0.0005, 0.00006, 0.0002, and 0.000002 for the 0, 20, 60, 120, and 240 min
solutionized powder particles, respectively. In said order, the power exponents (m) were
determined to be 1.9912, 1.4508, 1.8486, 1.6753, and 2.4268, respectively. Finally, the sta-
tistical regression scoring metric known as the coefficient of determination (R2) was also
computed per hold time, in the same order, yielding 0.9959, 0.9987, 0.9970, 0.9979, and
0.9937, respectively. Finally, Figure 15 presents the power-law curve fit load–depth data
associated with the loading portion of the test for each solutionization hold time to provide
additional contextualization of the nanoindentation-based mechanical behavior across each
condition studied.
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Since the point in time when cold spray processing was first reported within the early
scholastic literature of relevance, let alone cold spray’s recent and formalized extension
into the realm of metal additive manufacturing via CSAM, numerable mechanistic models
and relations have emerged relating impact phenomena with material properties and
the like. For example, CSAM researchers not only modified [59] and applied [60] the
Johnson–Cook plasticity model for computationally exploring impact-induced mechanical,
microstructural, and thermal evolution, as highlighted in [61] through [62]. Instead, the
materials research community focused upon CSAM processing development also invoked,
recalled, and refined numerable relations between the following, for instance: the critical
impact velocity and the ultimate tensile strength of a microparticle [63]; the critical impact
velocity and the yield/flow stress of a microparticle [64]; the strain rate experienced during
particle impact and the microhardness of the material [33]; the dependence of deposition
efficiency on particle size and thermophysical properties of the powder; the critical impact
velocity as a function of spall strength, the bulk modulus and speed of sound, etc. [65];
the critical impact velocity as a function of oxygen content in gas-atomized pure Cu, for
example [36]; and the mean impact pressure as a function of particle impact velocity;
among others.

Of course, such an itemization only captures a few of the notable developments made
to date following the continued evolution of our collective understanding of the feedstock
material properties and microstructural relations underpinning and CSAM processing
and thus resultant consolidated component performance. In so far as such mechanistic
developments underlying CSAM are related to the experimental results presented and
discussed herein, such formulations and theoretical, computational, or empirical relations
can be coupled with said findings better to understand their implications for CSAM
processing optimization and tunability.

4. Conclusions

Previous success in CSAM processing of powder in a solutionized condition has led to
more research in thermally pre-processing powder before being processed via CSAM. An
optimal heat treatment schedule is still needed, as it will differ from the traditional heat
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treatment schedules reported in the literature for bulk Al 6061 counterparts. Considering
the potential suitability of a homogenized microstructure CSAM, future work surrounding
the continued development of dissolution models will aid in predicting when the soluble
solute atoms have gone into solution and the dissolvable precipitates have been effectively
eliminated. Such a model could be analytical or utilize commercially available diffusion
software such as DICTRA (Thermo-Calc Software, Stockholm, Sweden). More experiments
on heat treatment time and temperature need to be conducted. This work provided another
preliminary exploration of the microstructural effects when exposed to high temperatures
for a short period for gas-atomized Al 6061 CSAM feedstock.

Specifically,

• Consistent with the general understanding of impact-induced cold spray-related
phenomena, XRD characterization and analysis revealed no measurable deformation-
or processing-induced secondary phase transformations pre- and post-deposition of
the as-atomized and cold sprayed Al 6061 specimens.

• Given the degree of variability in the interpretation of microstructural classification
surrounding rapidly solidified and gas-atomized Al alloys, EBSD analysis was applied
to the as-atomized Al 6061 powder. EBSD analysis demonstrated the presence of
both high- and low-angled grains, wherein high-angled grains were comprised of
similarly orientated sub-grains, which was found to be consistent with either com-
pound/equiaxed/dendritic solidification.

• STEM analysis unveiled at least three secondary intermetallic precipitates, which
generally ranged from 100–200 nm in size and were primarily observed along the
polycrystalline microstructural grain boundaries. In the as-atomized powder, the
three phases observed (in addition to the Al matrix phase) included a β-Mg2Si-type
intermetallic; Al-Fe-type intermetallics; and Mg-Si-type intermetallics. Identification
was achieved via HAADF-STEM and STEM-EDS analysis.

• DSC analysis of the as-atomized powder unveiled the following dissolution/precipitation
sequence: GP zone dissolution→ β” precipitation→ β” dissolution→ β′ precipitation
→ β′ dissolution→ β precipitation.

• HAADF-STEM and EDS analysis of thermally pre-processed Al 6061 powder particles
demonstrated the presence of two dominant categories of intermetallic phases present
after applying the 540 ◦C for 60 min heat treatment: Al-Fe-Si-Cr-Mn-type and Mg-
Si-type constituents. Moreover, the Al-Fe-Si-Cr-Mn-type phases were predominately
smaller than those maintained by the Mg-Si-type intermetallic phases.

• By way of applying suitable nanoindentation testing protocols, the measured hardness
at a constant reporting depth was found to decrease as a function of thermal pre-
processing hold time, ultimately dropping from a mean 250 nm depth-based hardness
of 1.29 GPa after ramping up to 540 ◦C and followed by immediate quenching (i.e.,
a hold time of 0 min) to 0.88 GPa after 240 min. In turn, insights into pre-processing
structure–hardness relations were able to be gleaned.

• Concerning cold spray additive manufacturing, work by Lima et al. suggests that
the degree of impacted particle flattening (or straining) introduced is inversely pro-
portional to the particulate yield stress, or hardness of the feedstock, under constant
cold spray processing parameters [66]. Therefore, microstructure-to-plasticity linkages
will be explored in future work wherein pre-processing coupled with constant cold
spray processing parameters will be consolidated and characterized to enhance the
through-process understanding of solid-state additive manufacturing of Al 6061 via
cold spray.

As far as the future work surrounding the development of a suitable dissolution model,
experiments explicitly designed for comparison with the prospective kinetic models will be
essential. Characterization techniques that have proved successful for these experiments
were S/TEM with image analysis of solutionized samples to determine phase fractions in
comparison with the as-atomized condition and nanoindentation-based characterization
for mechanical property (hardness) assessment. Another interesting technique that ought
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to be pursued in future work concerned with thermally processing CSAM feedstock is that
of atom probe tomography. Atom probe tomography would be even more beneficial than
EDS in STEM alone since EDS-STEM has revealed what elements are in each precipitate;
however, it was challenging to identify the exact precipitates when they contained several
alloying elements that are each able to be present in different intermetallic phases. Atom
probe tomography will provide more information surrounding the composition of the
micrometric and nano-sized precipitates and the coherency of said precipitates with the
matrix phase. The much-needed and future thermodynamic and kinetic models, when
utilized in conjunction with STEM and phase identification, will also enable more accurate
and telling single-particle and multi-particle CSAM impact models to be formulated and
probed such that one may more directly study and inspect the effects of precipitates along
the interior grain boundaries of feedstock particulates during deposition. In short, CSAM
particle impact models will likely become more accurate when microstructural features are
implemented, as was briefly demonstrated in [12,36].

One of the primary goals of the present work was to characterize gas-atomized alu-
minum 6061 powder fully and quantitatively inspect the resultant microstructural evolu-
tion incurred through the lens of CSAM suitability. The basic microstructural research of
aluminum particles will significantly contribute to powder metallurgy and additive manu-
facturing. Powder microstructures of aluminum differ significantly from their wrought and
cast counterparts because of the unique atmosphere and solidification conditions during
atomization. There is very little to no literature data on the microstructures of these alloys
in powder metallurgy, particularly those of the powders of interest to this research. Initial
solutionization heat treatments were performed on both alloys, and the samples were fully
characterized and compared to the as-atomized powder. For Al 6061, grain growth was not
significantly identifiable after applying the solutionization heat treatment. The microstruc-
ture, however, changed significantly. For Al 6061, the Al-Fe-Si-Cr-Mn intermetallic phase
or phases refined in size after solutionization. The Chinese script eutectic non-stable Mg2Si
phase was dissolved, but a few larger Mg2Si particles, between 200 and 500 nm in radius,
formed and remained.

This work demonstrated the effects of heat treatments on aluminum powders. With
more research, a complete understanding of the effect of thermal processing on Al 6061
and other alloyed powders will benefit the powder metallurgy community and the CSAM
sector. The microstructure of the powders for additive manufacturing has yet to be the
focus of research, as in most additive manufacturing techniques, particle melting usually
occurs. Understanding the effects of the heat treatments will optimize CSAM and other
solid-state processing and properties with heat-treated powders. Much success has al-
ready been accomplished using only trial-and-error methods at this point. The modeling
and characterization techniques in the present work could easily be applied to different
material systems.
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