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Abstract: Residual stress is a key parameter to evaluate the structural reliability of energy equipment.
The indentation method has the characteristics of being nondestructive and easy to operate to
calculate the residual stress of test materials, which has a broad application prospect in the field
testing of energy equipment. However, because of the effect of preloading and data acquisition delay,
the problem of indentation data fluctuation is prominent, and the indentation energy coefficient
fitted by the traditional least square method is not consistent with the theoretical law, making it
difficult to carry out stable calculations. In this paper, the Newton iteration formula of a binary
nonlinear formula is derived based on the univariate Newton iteration formula, which is introduced
into the data processing of residual stress, which increases the weight of the data in the stability
stage and reduces the influence of the fluctuation data on the fitting results, so that the indentation
energy coefficient is accurately calculated. Combined with the basic principle of indentation energy
difference theory, the precise and efficient measurement of residual stress is realized.

Keywords: indentation; Newton iteration method; residual stress

1. Introduction

Residual stress [1,2] refers to the internal stress that remains in an object to maintain
self-phase equilibrium after the disappearance of external force or the action of an inho-
mogeneous temperature field [3]. The existence of residual stress will not only reduce the
structural strength but also cause stress corrosion cracking and fatigue damage, which
destroy the integrity of the structure. Therefore, in order to ensure the safety and reliability
of the structure, it is necessary to accurately test the magnitude and distribution of residual
stress and formulate a pertinent control strategy. At present, the testing methods for resid-
ual stress mainly include the mechanical test method and the physical test method [4]. The
mechanical testing methods mainly include the drilling method and slotting method, which
cause local damage to materials during the measurement process and are difficult to use in
service or waiting-for-service equipment; however, physical test methods, such as X-ray
diffraction and ultrasound, fluctuate greatly when testing nonuniform tissue and strong
stress gradient structures (such as welded structures), and their application in engineering
sites is limited [1,5,6]. In contrast, the indentation method has the advantage of convenience
without sampling and testing and has a good engineering application potential in the field
test of service equipment.

In the early stages, it was found that the hardness value decreased when residual
tensile stress existed; when residual compressive stress was present, the hardness value of
the test increased. Therefore, by comparing the variation pattern of hardness values, the
magnitude and direction of the residual stress can be estimated qualitatively. Subsequently,
Tsui and Bolshakov [7] found that the residual stress did not change the true hardness of
the material but affected the real indentation area. In 1998, Suresh et al. [8] put forward the
indentation method for quantitatively testing residual stress based on the assumption of
hardness invariance. However, the test results of this method depend on the indentation
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topography, and only the equivalent average residual stress can be measured. Aiming at
this problem, Peng et al. [9] proposed a new method to calculate the biaxial residual stress
by means of the method of indentation energy difference. In this method, the Knoop [10,11]
indenter was indented in the direction of biaxial stress, the indentation energy obtained
by the integration of the load–depth curve was used as the calculation parameter, and
the biaxial stress component was obtained without observing the indentation topography.
However, in actual measurement, because of the delay of the control system of the indenta-
tion equipment and the large fluctuation of the data points, the original data fitting effect
was poor, the residual stress calculation result deviated greatly from the actual result, and
sometimes cannot even be calculated.

In view of the above problems, based on the univariate Newton iteration method [12,13],
the Newton iteration formula [14] of binary nonlinear formulas was deduced, which is
introduced into the fitting process of the indentation data. By increasing the weight of
the data in the stability stage, the influence of the fluctuation data on the fitting results is
reduced, and the accurate and efficient solution of calculation of the biaxial residual stress
based on energy difference theory is realized.

2. Residual Stress Calculation Model Design Based on the Newton Method

According to the theory of indentation energy difference, obtaining the biaxial residual
stress of the material requires three indentation tests on the specimen: the first is the test in
the stress-free state, and the other two are the orthogonal indentation of the Knoop indenter
on the surface of the specimen. The resulting load–depth curve is shown in Figure 1. From
an energy point of view, the indentation work and the stress work are all converted into
strain energy during each indentation process [15–17]. Considering that the stress work
cannot be directly solved, the residual stress can be correlated by calculating the indentation
energy difference between the stressed and the stress-free states [18].
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The calculation of the indentation energy difference at the same indentation depth
requires the indentation energy of the three indentation processes, which can be directly
obtained by integrating the load–depth curve, as shown in Formula (1) and Figure 2. Since
the indentation curve is a quadratic function, the indentation energy can be obtained by
substituting the slope of the curve instead of the integral according to the integral solution
method of the quadratic function, in which the curve slope is called the indentation energy
coefficient, as shown in Formula (2).

WF =
∫ hmax

0
Fdh =

∫ hmax

0
Ch2dh (1)

WF =
1
3

Ch3
max (2)
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It can be seen from Formula (2) that the accurate fitting of the load–depth data is
the key to the solution of the indentation energy in the study of welding residual stress
measured by the energy difference method [19,20]. In his study, Peng Wei found that due
to the deviation of the shape of the equipment indenter and the delay of the control system,
the existence of unstable region data caused the curve fitted by Formula (3) to have a large
coincidence error with the origin in the initial position, while the fitting with Formula (4)
could restrict the original data, and the slope obtained by Formula (3) was compared with
that of Formula (3). The fitting curves of the stress-free and the unidirectional stress state
do not conform to the theoretical model.

F = ah2 + bh + c (3)

F = C(h + u)2 (4)
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In order to fit the indentation data accurately, the author designed an indentation data
fitting algorithm based on Newton method. The author first calculated the sum of variance
S2 of the experimental data and the fitting formula

S2 =
n

∑
i=1

[
Fi − C(hi + u)2

]2
(5)

When S2 is the smallest, the fitting effect is best at this time, i.e., the function must have
a unique extremum and a minimum. The basic calculation method based on the extremum
of the function should meet the requirements of{

∂S2

∂C = 2Cγ4,0 + 8Cuγ3,0 + 12Cu2γ2,0 + 8Cu3γ1,0 + 2nCu4 − 2γ2,1 − 4uγ1,1 − 2u2γ0,1 = 0
∂S2

∂u = 4C2γ3,0 + 12C2uγ2,0 + 12C2u2γ1,0 + 4nC2u3 − 4Cγ1,1 − 4Cuγ1,0 = 0
(6)

γj,k =
n

∑
i=1

uj
i F

k
i ; k = 0, γj,0 =

n

∑
i=1

uj
i ; j = 0, γ0,k =

n

∑
i=1

Fk
i ; j and k are not both 0.

Thus, the fit of Formula (3) is transformed into solving a binary nonlinear system of
Formula (6).

Based on the Newton iterative formula of nonlinear formulas of binary functions, the
author rewrote the abovementioned binary nonlinear formulas into the following functions:{

A(C, u) = Cr4,0 + 4Cur3,0 + 6Cu2r2,0 + 4Cu3r1,0 + nCu4 − r2,1 − 2ur1,1 − u2r0,1
B(C, u) = C2r3,0 + 3C2ur2,0 + 3C2u2r1,0 + nC2u3 − Cr1,0 − Cur0,1

(7)

This function satisfies the basic requirements of Newton method for solving binary
nonlinear formulas, so it can be solved by substituting Newton iterative formula.

Ck+1 = Ck +
A(Ck, uk)Bh(Ck, uk)− B(Ck, uk)Au(Ck, uk)

Bc(Ck, uk)Au(Ck, uk)− Ac(Ck, uk)Bu(Ck, uk)

uk+1 = uk +
B(Ck, uk)AC(Ck, uk)− A(Ck, uk)BC(Ck, uk)

BC(Ck, uk)Au(Ck, uk)− AC(Ck, uk)Bu(Ck, uk)

(8)

Ac(C, u), Au(C, u), Bc(C, u), Bu(C, u) is the first-order partial differential of the func-
tion A(C, u) and B(C, u) for c and u.

The indentation energy coefficient can be accurately fitted by using the binary Newton
method, and the three-indentation data are correlated according to the calculated inden-
tation energy to obtain the formula of the biaxial indentation energy difference shown in
Figure 3 (when the indentation energy difference is equal to the same depth, the stress-free
indentation work minus the stressed indentation work).{

∆WF1 = WF0 −WF1
∆WF2 = WF0 −WF2

(9)

Peng found that the energy difference of the Knoop indenter had superposition and
directional characteristics after a lot of experimental studies [9,21,22]. The superposition
characteristic [23] points out that the indentation energy difference under the biaxial stress
is equal to the sum of the two stress components of the biaxial stress as the uniaxial stress,
respectively, and the difference in the relative direction is the same as the original biaxial
stress, as shown in Formula (10). The directional characteristics show that the difference
of the indentation energy produced when the long axis of the Knoop indenter is indented
perpendicular to the stress direction is aboutϕ times that in parallel, andϕ is the directional
coefficient of the Knoop indenter [24], as shown in Formula (11).

∆WF = ∆W11 + ∆W12 (10)

∆W21 = ϕ∆W11 (11)
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The combination of the above two formulas immediately converts the indentation
energy difference under any biaxial stress to the sum of the difference of the two equivalent
uniaxial stresses [25,26] perpendicular to the long axis direction of the indenter to obtain
Formula (12) ∆Weq

1 =
ϕ

ϕ2 − 1
(ϕ∆WF1 − ∆WF2)

∆Weq
2 =

ϕ

ϕ2 − 1
(ϕ∆WF2 − ∆WF1)

(12)
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Figure 3. Graphical representation of biaxial indentation energy difference: (a) the indentation energy
difference when the indenter is pressed crosswise; (b) the indentation energy difference when the
indenter is pressed longitudinally.

Biaxial residual stress components can be calculated according to the relationship
between the difference of the indentation energy and residual stress.

∆Weq
i = kVσi +

3

∑
j=1

Aj

(
σi
σy

)j
, i = 1, 2 (13)

At this point, the Knoop indentation method is used to measure biaxial residual stress
model. The binary Newton iteration formula commonly used in engineering calculation is
used in the above model to process the measured data to obtain the energy coefficient, which
avoids the error caused by the error of the specific point in the test data to the calculation
results. Combined with the indentation energy difference theory, the problem that the
calculation error caused by the traditional fitting method is large or even does not conform
to the practical law in the actual calculation process is solved and provides theoretical
support for the algorithm design of the residual stress calculation flow automation shown
in Figure 4.
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3. Derivation of the Newton Formula for Binary Equation

The Newton iteration method is one of the most powerful techniques to solve the
problem of nonlinear equations. In this method, a series of approximate solutions are found
to solve the nonlinear equation by selecting an initial estimator and approaching iteratively.

For the univariate equation: f(x) = 0, the Newton iteration formula is as follows

xn+1 = xn −
f (xn)

f ′(xn)
(14)

where n is the number of iterations, xn, xn+1 is the approximate root of equation f (x) = 0,
and f ′(xn) is the first-order differential of the function f (x) at xn.

After understanding the iterative solution process of univariate nonlinear equations,
the Newton iteration method for binary nonlinear equation can be deduced.

If we have continuous partial derivatives of more than two orders in a certain neigh-
borhood of function z = f (x, y) at (x0, y0), and (x0 + h, y0 + k) is at any point within this
neighborhood, there is

f (x0 + h, y0 + k) ≈ f (x0, y0) +

(
h

∂

∂x
f (x, y)

∣∣∣∣x=x0 + k
∂

∂y
f (x, y)

∣∣∣∣
y=y0

)
(15)

(h = x− x0, k = y− y0)

If f (x, y) = 0, the above equation can be converted to

f (xk, yk) + (x− xk) fx(xk, yk) + (y− yk) fy(xk, yk) = 0 (16)
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Similarly, let z = g(x, y) be continuous in a certain neighborhood at point (x0, y0),
and there are continuous partial derivatives up to the 2nd order; then, (x0 + h, y0 + k) at
any point within this neighborhood will also have

g(x0 + h, y0 + k) ≈ g(x0, y0) +

(
h

∂

∂x
g(x, y)

∣∣∣∣x=x0 + k
∂

∂y
g(x, y)

∣∣∣∣
y=y0

)
(17)

(h = x− x0, k = y− y0)

Then, equation g(x, y) = 0 can be reduced approximately to

g(x0 + h, y0 + k) ≈ g(x0, y0) +

(
h

∂

∂x
g(x, y)

∣∣∣∣x=x0 + k
∂

∂y
g(x, y)

∣∣∣∣
y=y0

)
(18)

Therefore, the equation set can be obtained as follows:{
f (xk, yk) + (x− xk) fx(xk, yk) + (y− yk) fy(xk, yk) = 0
g(xk, yk) + (x− xk)gx(xk, yk) + (y− yk)gy(xk, yk) = 0

(19)

For the above equation, when gx (xk, yk) fy(xk, yk)− fx(xk, yk)gy(xk, yk) 6= 0, it can be
converted to 

x = xk +
f (xk, yk)gy(xk, yk)− g(xk, yk) fy(xk, yk)

gx(xk, yk) fy(xk, yk)− fx(xk, yk)gy(xk, yk)

y = yk +
g(xk, yk) fx(xk, yk)− f (xk, yk)gx(xk, yk)

gx(xk, yk) fy(xk, yk)− fx(xk, yk)gy(xk, yk)

(20)

The Newton iteration method for nonlinear equations of binary functions can be
used to obtain approximate values by the iteration method when k is taken as a non-
zero natural number (xk, yk). δ are the error controls required for data processing; when
|(xk+1, yk+1)| ≤ δ(δ > 0), the root of the original equation is (xk, yk). Then, the Newton
iteration formula of the nonlinear equation of the binary function is as follows:

xk+1 = xk +
f (xk, yk)gy(xk, yk)− g(xk, yk) fy(xk, yk)

gx(xk, yk) fy(xk, yk)− fx(xk, yk)gy(xk, yk)

yk+1 = yk +
g(xk, yk) fx(xk, yk)− f (xk, yk)gx(xk, yk)

gx(xk, yk) fy(xk, yk)− fx(xk, yk)gy(xk, yk)

(21)

4. Results and discussion
4.1. Analysis of Newton Fitting Effect of Indentation Data

In order to verify the accuracy of the calculation results, the indentation data were ob-
tained by multiple tests using the indentation equipment in the adjacent area of Q345 weld-
less sample steel plate. After the unloading stage was removed by data processing, the
indentation data were fitted according to the above algorithm and compared with the
fitting results of the traditional one-dimensional binary equation. The fitting results are
shown in Table 1. The indentation energy coefficient results of the traditional fitting method
were 66,400 ± 9000 and the Newton fitting method were 75,200 ± 3000. This indicates that
the repeatability of the energy coefficient C obtained by the Newton method was very high,
while the numerical error obtained by the traditional one-dimensional binary equation
fitting method was large. In contrast, the residual stress data fitting method designed
by Newton method was accurate, fast, and stable, which can meet the requirements of
data processing.
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Table 1. Comparison of The Compression Energy Coefficient C between the Newton Method and the
Conventional Method.

Standard
Value 1 2 3 4 5 6 7 8 9 10

Newton method 75,000 ± 5000 73,765 73,037 78,771 72,175 78,049 77,507 79,446 75,198 73,727 72,405
Conventional method 68,195 65,268 70,139 65,398 63,502 72,918 75,668 65,640 62,379 62,375

The standard deviation analysis of the indentation curve obtained by the binary
Newton fitting method and the raw data is shown in Figure 5. The indentation data can be
divided into a stable fitting area and an unstable fitting area according to the maximum
error of data fitting in the middle stage of the acquisition process. Most of the indentation
data can meet the requirements of residual stress measured by indentation method, so it is
in the stable fitting area. Since the preloading process and the delay of the sensor during
the measurement with the indentation instrument will cause errors in the data at the initial
and end of loading phases of the indentation, these values must be removed during the
calculation of the end of measurement as “noise”, as they are in the unstable fitting region
because they do not conform to the measurement law.
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Because of the large amount of data and the difficulty of analyzing the error data, it is
almost impossible to remove the “noise” manually. While this issue was not considered
in the traditional fitting process, as all data were fitted with the same weight, and with
this method, although the degree of fit was high, the results deviated to a large extent,
which was an overfitting. It can be seen from the graph that the Newton fitting algorithm
had a good fitting effect in the middle stage of the curve, indicating that the middle stage
data (stable fitting area) occupied a significant weight in the fitting process, while the
standard deviation of the initial stage and the end stage (unstable fitting area) with more
error data was large, and the fitting weight was small. Therefore, the binary Newton fitting
method increased the weight of the steady-phase data in the fitting process and reduced
the influence of fluctuating data on the fitting results.

4.2. Measurement and Analysis of Biaxial Residual Stress

Because X-ray diffraction (XRD) has the advantage of high measurement accuracy, the
accuracy of the Newton method in calculating residual stress was verified by comparing
X-ray diffraction and the indentation method.

The testing material was an Inconel718 alloy welded plate. The width of the fusion
zone was 20 mm, and the residual stress was measured by the X-ray diffraction method
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and the indentation method in the weld metal, as shown in Figure 6. The nonuniform
temperature field caused by the welding process was the essential reason for the residual
stress. The higher the temperature, the greater the thermal expansion. However, the thermal
expansion will be constrained by the surrounding material subjected to relatively low
temperature and vice versa. The uneliminated stress is called the welding residual stress.
The measurement results are shown in Figure 7, where σ1 is the residual stress parallel to
the welding direction, and σ2 is the residual stress perpendicular to the welding direction.
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Figure 7. Measurement of Residual Stress in Inconel718 Weld Zone by X-ray Diffraction and the
Indentation Method.

It can be seen from the test results that the residual stress measured by the indentation
method was more stable than that by X-ray diffraction. The average error between the
indentation method and the X-ray diffraction method was within 10%, and the fluctuation
of the calculation result was small, which proves that the test result was stable and reliable
and has good engineering applicability.

5. Conclusions

Indentation equipment is poorly fitted to the original data due to the delay of its
control system and the large fluctuation of data points. The traditional fitting method does
not conform to the theoretical law due to its overfitting of the loading slope (also called the
indentation energy coefficient), which leads to large deviation of the measurement results
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from the actual results, and subsequent calculations cannot be performed. Therefore, in
this paper, starting from the Newtonian solution of the nonlinear binary system of equation
and combining it with the fitting of indentation data, the solution formula of the residual
stress indentation energy coefficient was derived, and the interference of the non-stable
zone data was excluded by the binary Newton iteration. The main work was as follows.

(1) The Newton iterative formula for the root of the binary nonlinear equation was
deduced through the relationship between the univariate Taylor formula and the Newton
iteration method for solving the univariate nonlinear equation. The indentation energy
coefficient problem was transformed into the root problem of the binary nonlinear equation.
The Newton iterative formula was introduced, and the fast calculation formula of the
indentation energy coefficient was established.

(2) The fitting effects of the traditional least squares method and the binary Newton
method were compared and analyzed. It was found that the traditional least squares
method fitted all data with the same weight, the influence of the data fluctuation could
not be ruled out, and the resulting deviation was too large due to overfitting. The binary
Newton method improved the fitting weight of the indentation curve in the stable fitting
region, and the fitting result was more stable and accurate.

(3) The stability of the binary Newton method for calculating the energy coefficient
was verified by using the Q345 weldless sample steel plate test, and the accuracy of the
binary Newton calculation method of residual stress based on the theory of indentation
energy difference was verified by comparison with the X-ray method.
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Nomenclature

C Indentation energy coefficient k Elasticity coefficient

u Fit Deviation V
Volume of Knoop indenter intruded into the specimen
intruded into the specimen

F Load ϕ Knoop indenter direction coefficient

h Depth ∆Weq
i

Indentation energy difference under uniaxial stress
perpendicular to the long axis of the indenter

WF Indentation work Aj Material-related plasticity coefficient

S Sum of all data fit standard deviations ∆Wij
Indentation energy difference. i, j are the indenter
direction and stress direction, respectively

∆WFi Indentation energy difference in one direction WFi Indentation work in a certain direction

a, b, c
Three coefficients of a quadratic function of

γi,j
Parameters associated with parameters u and F. i and j

one variable are the powers of u and F, respectively

A(C, u)
The nonlinear function constructed in the process

B(C, u)
The nonlinear function constructed in the process

of solving C of solving C
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