The Use of CFRP for Structural Reinforcement—Literature Review
Abstract
:1. Introduction
2. Research of CFRP Attributes
3. Modification of Carbon Fibers Surface in Order to Increase Mechanical Properties and Interfacial Shear Strength
4. CFRP as the Structure Reinforcement
4.1. Adhesive Joints
4.2. Rehabilitation/Modernization
4.3. CFRP + Concrete
4.4. CFRP + Wood
4.5. CFRP and Another Materials
4.6. Summary—CFRP as Structural Reinforcement
5. Application of CFRP
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brodka, J.; Łubiński, M. Lekkie Konstrukcje Stalowe (Light Steel Structures); Arkady: Warsaw, Poland, 1978. (In Polish) [Google Scholar]
- Brockenbrough, R.L.; Schuster, J. Design Guide 15: Rehabilitation and Retrofit Guide: Historic Shapes and Specifications; American Institute for Steel Construction: Chicago, IL, USA, 2018. [Google Scholar]
- Aleksandrowicz, M. Podstawowe Informacje o Systemach Wzmacniania Konstrukcji Budowlanych i Inżynierskich za Pomocą Materiałów Kompozytowych Sika CarboDur System. BzG 3/2005. Available online: http://www.bzg.pl/node/282 (accessed on 11 October 2020). (In Polish).
- Mertz, D.; Gillespie, J. Rehabilitation of Steel Bridge Girders through the Application of Advanced Composite Material; NCHRP 93-ID11; Transportation Research Board: Washington, DC, USA, 1996; pp. 1–20. [Google Scholar]
- Sen, R.; Liby, L.; Mullins, G. Strengthening steel bridge sections using CFRP laminates. Compos. Part B Eng. 2001, 32, 309–322. [Google Scholar] [CrossRef]
- Moy, S.S.J.; Nikoukar, F. Flexural behaviour of steel beams reinforced with carbon fibre reinforced polymer composite. In Advanced Polymer Composites for Structural Applications in Construction, Proceedings of the First International Conference on the Use of Advanced Composites in Construction, Southampton, UK, 15–17 April 2002; Shenoi, R.A., Moy, S.S.J., Hollaway, L.C., Eds.; Thomas Telford: London, UK, 2002; pp. 195–202. [Google Scholar]
- Tawfik, Q.H.; Karunasena, W.K. Use of CFRP for Rehabilitation of Steel Structures: A Review. In Proceedings of the Southern Region Engineering Conference, Toowoomba, Australia, 11–12 November 2010. [Google Scholar]
- Teng, J.G.; Chen, J.F.; Smith, S.T.; Lam, L. Behavior and strength of FRP-strengthened RC structures: A state-of-the-art review. Proc. Inst. Civ. Eng. Struct. Build. 2003, 156, 51–62. [Google Scholar] [CrossRef]
- Phares, B.M.; Wipf, T.J.; Abu-Hawash FW, A.; Lee, Y.-S. Strengthening of Steel Girder Bridges Using FRP. In Proceedings of the Mid-Continent Transportation Research Symposium, Ames, IA, USA, 21–22 August 2003. [Google Scholar]
- Huster, U.; Broennimann, R.; Winistörfer, A. Strengthening of a historical roof structure with CFRP-straps. In Proceedings of the Fourth International Conference on FRP Composites in Civil Engineering (CICE2008), Zürich, Switzerland, 22–24 July 2008. [Google Scholar]
- Bastianini, F.; Corradi, M.; Borri, A.; di Tommaso, A. Retrofit and monitoring of an historical building using ‘‘Smart’’ CFRP with embedded fibre optic Brillouin sensors. Constr. Build. Mater. 2005, 19, 525–535. [Google Scholar] [CrossRef]
- Łagoda, G.; Łagoda, M. Strengthening Steel Bridge across Vistula River in Poland. In Proceedings of the IABSE Symposium Bangkok 2009. Sustainable Infrastructure. Environment Friendly, Safe and Resource Efficient, Bangkok, Thailand, 9–11 September 2009; Volume 96. [Google Scholar]
- Harries, K.A. FRP International—The Official Newsletter of the International Institute for FRP in Construction, 2001, 8(3). Available online: https://www.yumpu.com/en/document/view/22570715/frp-international (accessed on 16 July 2022).
- Moy, S.S.Y. FRP Composites. Life Extension and Strengthening of Metallic Structures; ICE Design and Practice Guides; Institution of Civil Engineers: London, UK, 2001. [Google Scholar]
- Tavakkolizadeh, M.; Saadatmanesh, H. Strengthening of Steel–Concrete Composite Girders Using Carbon Fiber Reinforced Polymers Sheets. J. Struct. Eng. 2003, 129, 30–40. [Google Scholar] [CrossRef]
- Krzywoń, R. Effect of elevated temperature on the effectiveness of reinforcing reinforced concrete beams with CFRP and SRP tapes. J. Civ. Eng. Environ. Arch. 2017, XXXIV, 271–280. [Google Scholar] [CrossRef]
- Zhou, F.; Pang, R.; Zhang, P.; Cui, J. Experimental investigation of the mechanical properties of carbon fiber-reinforced polymer (CFRP) tendons during and after exposure to elevated temperatures. Mater. Struct. 2022, 55, 82. [Google Scholar] [CrossRef]
- Agnihotri, S.N.; Thakur, R.K.; Singh, K.K. Influence of nanoclay filler on mechanical properties of CFRP composites. Mater. Proc. 2022. [Google Scholar] [CrossRef]
- Zhang, N.; Gu, X.; Hou, W. Analysis of Interfacial Mechanical Properties of Steel Beams Strengthened with CFRP Sheets under Temperature and Creep. Polymers 2022, 14, 2384. [Google Scholar] [CrossRef]
- Li, H.; Ye, Y.; Du, T.; Zhao, Y.; Ren, X.; Hua, Y. The effect of thermal damage on mechanical strengths of CFRP cut with different pulse-width lasers. Opt. Laser Technol. 2022, 153, 108219. [Google Scholar] [CrossRef]
- Bendine, K.; Gibhardt, D.; Fiedler, B.; Backs, A. Experimental characterization and mechanical behavior of 3D printed CFRP. Eur. J. Mech. A/Solids 2022, 94, 104587. [Google Scholar] [CrossRef]
- Banon, F.; Sambruno, A.; González-Rovira, L.; Vazquez-Martinez, J.M.; Salguero, J. A Review on the Abrasive Water-Jet Machining of Metal–Carbon Fiber Hybrid Materials. Metals 2021, 11, 164. [Google Scholar] [CrossRef]
- Wu, T.; Tinkloh, S.; Tröster, T.; Zinn, W.; Niendorf, T. Measurement and Analysis of Residual Stresses and Warpage in Fiber Reinforced Plastic and Hybrid Components. Metals 2021, 11, 335. [Google Scholar] [CrossRef]
- Danish, M.; Gupta, M.K.; Rubaiee, S.; Ahmed, A.; Mahfouz, A.; Jamil, M. Machinability investigations on CFRP composites: A comparison between sustainable cooling conditions. Int. J. Adv. Manuf. Technol. 2021, 114, 3201–3216. [Google Scholar] [CrossRef]
- Wang, C.; Ming, W.; An, Q.; Chen, M. Machinability characteristics evolution of CFRP in a continuum of fiber orientation angles. Mater. Manuf. Process. 2017, 32, 1041–1050. [Google Scholar] [CrossRef]
- Jenarthanan, M.P.; Jeyapaul, R. Machinability study of carbon fibre reinforced polymer (CFRP) composites using design of experiment technique. Pigment. Resin Technol. 2014, 43, 35–44. [Google Scholar] [CrossRef]
- Sui, J.; Wang, C. Machinability study of unidirectional CFRP laminates by slot milling. Int. J. Adv. Manuf. Technol. 2019, 100, 189–197. [Google Scholar] [CrossRef]
- Kumaran, V.U.; Kliuev, M.; Billeter, R.; Wegener, K. Influence of Carbon based Fillers on EDM Machinability of CFRP. Procedia CIRP 2020, 95, 437–442. [Google Scholar] [CrossRef]
- Yomamoto, T.; Uematsu, K.; Irisawa, T.; Tanabe, Y. A polymer colloidal technique for enhancing bending properties of carbon fiber-reinforced thermoplastics using nylon modifier. Compos. Part A Appl. Sci. Manuf. 2018, 112, 250–254. [Google Scholar] [CrossRef]
- Yomamoto, T.; Uematsu, K.; Irisawa, T.; Tanabe, Y. Enhancement of bending strength, thermal stability and recyclability of carbon-fiber-reinforced thermoplastics by using silica colloids. Compos. Sci. Technol. 2019, 181, 107665. [Google Scholar] [CrossRef]
- Yomamoto, T.; Terada, Y. Use of hollow colloids for generating nanovoids to mitigate the brittle fracture of carbon fiber-reinforced thermoplastics. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106506. [Google Scholar] [CrossRef]
- Yomamoto, T.; Uematsu, K.; Irisawa, T.; Tanabe, Y. Enhancement of surface adhesion between thermoplastic resin and carbon fiber using polymer colloids. J. Adhes. 2017, 93, 943–948. [Google Scholar] [CrossRef]
- Yamamoto, T.; Uematsu, K.; Yabushita, S. Enhancement of mechanical properties of carbon fiber reinforced thermoplastic using colloidal techniques. Procedia Manuf. 2018, 15, 1738–1745. [Google Scholar] [CrossRef]
- Sager, R.J.; Klein, P.J.; Lagoudas, D.C.; Zhang, Q.; Liu, J.; Dai, L.; Baur, J.W. Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos. Sci. Technol. 2009, 69, 898–904. [Google Scholar] [CrossRef]
- Wang, X.; Xu, T.; Jung de Andrade, M.; Ramaplli, I.; Cao, D.; Haque, M.; Roy, S.; Baughman, R.H.; Lu, H. The Interfacial Shear Strength of Carbon Nanotube Sheet Modified Carbon Fiber Composites. Chall. Mech. Time Depend. Mater. 2021, 2, 25–32. [Google Scholar]
- Zhang, F.-H.; Wang, R.-G.; He, X.-D.; Wang, C.; Ren, L.-N. Interfacial shearing strength and reinforcing mechanisms of an epoxy composite reinforced using a carbon nanotube/carbon fiber hybrid. J. Mater. Sci. 2009, 44, 3574–3577. [Google Scholar] [CrossRef]
- Godara, A.; Gorbatikh, L.; Kalinka, G.; Warrier, A.; Rochez, O.; Mezzo, L.; Luizi, F.; van Vuure, A.W.; Lomov, S.V.; Verpoest, I. Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos. Sci. Technol. 2010, 70, 1346–1352. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Z.; Wang, X.; Zhang, G.; Long, S.; Yang, J. Interfacial shear strength of carbon fiber reinforced polyphenylene sulfide measured by the microbond test. Polym. Test. 2013, 32, 724–730. [Google Scholar] [CrossRef]
- Na, W.; Lee, G.; Sung, M.; Han, H.N.; Yu, W.R. Prediction of the tensile strength of unidirectional carbon fiber composites considering the interfacial shear strength. Compos. Struct. 2017, 168, 92–103. [Google Scholar] [CrossRef]
- Fakhrhoseini, S.M.; Li, Q.; Unnikrishnan, V.; Naebe, M. Nano-magnetite decorated carbon fibre for enhanced interfacial shear strength. Carbon 2019, 148, 361–369. [Google Scholar] [CrossRef]
- Wang, H.; Jin, K.; Tao, J. Improving the interfacial shear strength of carbon fibre and epoxy via mechanical interlocking effect. Compos. Sci. Technol. 2020, 200, 108423. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Li, W.; Ren, D.; Yu, Y. An improved microbond test method for determination of the interfacial shear strength between carbon fibers and epoxy resin. Polym. Test. 2013, 32, 1460–1465. [Google Scholar] [CrossRef]
- Tam, L.; Jiang, J.; Yu, Z.; Orr, J.; Wu, C. Molecular dynamics investigation on the interfacial shear creep between carbon fiber and epoxy matrix. Appl. Surf. Sci. 2021, 537, 148013. [Google Scholar] [CrossRef]
- Shioya, M.; Yasui, S.; Takaku, A. Relation between interfacial shear strength and tensile strength of carbon fiber/resin composite strands. Compos. Interfaces 1998, 6, 305–323. [Google Scholar] [CrossRef]
- Kim, J.H.; Shioya, M.; Nakatani, M. Relation between interfacial shear strength and compressive strength of carbon fiber/epoxy resin composite strands. Compos. Interfaces 2000, 7, 443–458. [Google Scholar] [CrossRef]
- Zou, Q.; Jiao, J.; Xu, J.; Sheng, L.; Zhang, Y.; Ouyang, W.; Xu, Z.; Zhang, M.; Xia, H.; Tian, R.; et al. Effects of laser hybrid interfacial pretreatment on enhancing the carbon fiber reinforced thermosetting composites and TC4 alloy heterogeneous joint. Mater. Today Commun. 2022, 30, 103142. [Google Scholar] [CrossRef]
- Jiao, J.; Zou, Q.; Ye, Y.; Xu, Z.; Sheng, L. Carbon fiber reinforced thermoplastic composites and TC4 alloy laser assisted joining with the metal surface laser plastic-covered method. Compos. Part B Eng. 2021, 213, 108738. [Google Scholar] [CrossRef]
- Ye, Y.; Zou, Q.; Xiao, Y.; Jiao, J.; Du, B.; Liu, Y.; Sheng, L. Effect of Interface Pretreatment of Al Alloy on Bonding Strength of the Laser Joined Al/CFRTP Butt Joint. Micromachines 2021, 12, 179. [Google Scholar] [CrossRef]
- Jiao, J.; Jia, S.; Xu, Z.; Ye, Y.; Sheng, L.; Zhang, W. Laser direct joining of CFRTP and aluminium alloy with a hybrid surface pre-treating method. Compos. Part B Eng. 2019, 173, 106911. [Google Scholar] [CrossRef]
- Sheng, L.; Jiao, J.; Du, B.; Wang, F.; Wang, Q. Influence of Processing Parameters on Laser Direct Joining of CFRTP and Stainless Steel. Adv. Mater. Sci. Eng. 2018, 2018, 2530521. [Google Scholar] [CrossRef]
- Jiao, J.; Xu, Z.; Wang, Q.; Sheng, L.; Zhang, W. CFRTP and stainless steel laser joining: Thermal defects analysis and joining parameters optimization. Opt. Laser Technol. 2018, 103, 170–176. [Google Scholar] [CrossRef]
- Szewczak, I.; Rzeszut, K.; Rozylo, P.; Samborski, S. Laboratory and Numerical Analysis of Steel Cold-Formed Sigma Beams Retrofitted by Bonded CFRP Tapes. Materials 2020, 13, 4339. [Google Scholar] [CrossRef] [PubMed]
- Szewczak, I.; Rzeczut, K.; Rozylo, P.; Snela, M. Laboratory and Numerical Analysis of Steel Cold-Formed Sigma Beams Retrofitted by Bonded CFRP Tapes—Extended Research. Materials 2020, 13, 4960. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.C.; Baskar, K. Behaviour of thin-walled castellated beams strengthened using CFRP. Structures 2021, 30, 338–351. [Google Scholar] [CrossRef]
- Szewczak, I.; Rozylo, R.; Rzeszut, K. Influence of Mechanical Properties of Steel and CFRP Tapes on the Effectiveness of Strengthening Thin-Walled Beams. Materials 2021, 14, 2388. [Google Scholar] [CrossRef]
- Bambach, M.R.; Elchalakani, M.; Zhao, X.L. Composite steel–CFRP SHS tubes under axial impact. Compos. Struct. 2009, 87, 282–292. [Google Scholar] [CrossRef]
- Mamalis, A.G.; Manolakos, D.; Ioannidis, M.B.; Papapostolou, D.P. Crashworthy characteristics of axially statically compressed thin-walled square CFRP composite tubes: Experimental. Compos. Struct. 2004, 63, 347–360. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X. Numerical and experimental investigations on the axial crushing response of composite tubes. Compos. Struct. 2009, 91, 222–228. [Google Scholar] [CrossRef]
- Zhou, G.; Sun, Q.; Fenner, J.; Li, D.; Zeng, D.; Su, X.; Peng, Y. Crushing behaviors of unidirectional carbon fiber reinforced plastic composites under dynamic bending and axial crushing loading. Int. J. Impact Eng. 2020, 140, 103539. [Google Scholar] [CrossRef]
- Sebaey, T.A.; Rajak, D.K.; Mehboob, H. Internally stiffened foam-filled carbon fiber reinforced composite tubes under impact loading for energy absorption applications. Compos. Struct. 2021, 255, 112910. [Google Scholar] [CrossRef]
- Liu, Q.; Xing, H.; Ju, Y.; Ou, Z.; Li, Q. Quasi-static axial crushing and transverse bending of double hat shaped CFRP tubes. Compos. Struct. 2014, 117, 1–11. [Google Scholar] [CrossRef]
- Majidi, H.R.; Razavi, S.M.J.; Berto, F. Failure Assessment of Steel/CFRP Double Strap Joints. Metals 2017, 7, 255. [Google Scholar] [CrossRef] [Green Version]
- Colombi, P.; Poggi, C. Strengthening of tensile steel members and bolted joints using adhesively bonded CFRP plates. Constr. Build. Mater. 2006, 20, 22–33. [Google Scholar] [CrossRef]
- Colombi, P.; Poggi, C. An experimental, analytical and numerical study of the static behavior of steel beams reinforced by pultruded CFRP strips. Compos. Part B Eng. 2006, 37, 64–73. [Google Scholar] [CrossRef]
- Rzeszut, K.; Szewczak, I.; Rozylo, P. Issues of Thin-Walled Sigma Beams Strengthened by CFRP Tape in the Context of Experimental and Numerical Studies. Eng. Trans. 2018, 66, 79–91. [Google Scholar]
- Al-Emrani, M.; Linghoff, D.; Kliger, R. Bonding strength and fracture mechanisms in composite steel-CFRP elements. In Proceedings of the International Symposium of Bond Behaviour of FRP in Structures, Hong Kong, China, 7–9 December 2005. [Google Scholar]
- Lee, M.S.; Kang, C.G. Determination of forming procedure by numerical analysis and investigation of mechanical properties of steel/CFRP hybrid composites with complicated shapes. Compos. Struct. 2017, 164, 118–129. [Google Scholar] [CrossRef]
- Deng, J.; Lee, M.M.K. Behaviour under static loading of metallic beams reinforced with a bonded CFRP plate. Compos. Struct. 2007, 78, 232–242. [Google Scholar] [CrossRef]
- Kałuża, M.; Hulimka, J.; Kubica, J. Effectiveness of adhesive CFRP/Steel joints—Double-lap static test. BMC Proc. 2015, 11, 479–488. [Google Scholar]
- Szewczak, I.; Rozylo, P.; Snela, M.; Rzeszut, K. Impact of Adhesive Layer Thickness on the Behavior of Reinforcing Thin-Walled Sigma-Type Steel Beams with CFRP Tapes. Materials 2022, 15, 1250. [Google Scholar] [CrossRef]
- Nguyen, T.-C.; Bai, Y.; Zhao, Z.-L.; Al-Mahaidi, R. Mechanical characterization of steel/CFRP double strap joints at elevated temperatures. Compos. Struct. 2011, 93, 1604–1612. [Google Scholar] [CrossRef]
- Colombi, P.; Fava, G. Fatigue behaviour of tensile steel/CFRP joints. Compos. Struct. 2012, 94, 2407–2417. [Google Scholar] [CrossRef]
- Bocciarelli, M.; Colombi, P.; Fava, G.; Poggi, C. Prediction of debonding strength of tensile steel/CFRP joints using fracture mechanics and stress based criteria. Eng. Fract. Mech. 2009, 76, 299–313. [Google Scholar] [CrossRef]
- Agarwal, A.; Foster, S.J.; Hamed, E. Testing of new adhesive and CFRP laminate for steel-CFRP joints under sustained loading and temperature cycles. Compos. Part B Eng. 2016, 99, 235–247. [Google Scholar] [CrossRef]
- Agarwal, A.; Foster, S.J.; Hamed, E. Wet thermo-mechanical behavior of steel–CFRP joints—An experimental study. Compos. Part B Eng. 2015, 83, 284–296. [Google Scholar] [CrossRef]
- Al-Emrani, M.; Kliger, R. Experimental and Numerical Investigation of the Behaviour and Strength of Composite Steel-CFRP Members. Adv. Struct. Eng. 2006, 9, 819–831. [Google Scholar] [CrossRef]
- Nguyen, T.-C.; Bai, Y.; Al-Mahaidi, R.; Zhao, X.-L. Time-dependent behaviour of steel/CFRP double strap joints subjected to combined thermal and mechanical loading. Compos. Struct. 2012, 94, 1826–1833. [Google Scholar] [CrossRef]
- Galvez, P.; Abenojar, J.; Martinez, M.A. Durability of steel-CFRP structural adhesive joints with polyurethane adhesives. Compos. Part B Eng. 2019, 165, 1–9. [Google Scholar] [CrossRef]
- Tsokanas, P.; Loutas, T.; Nijhuis, P. Interfacial Fracture Toughness Assessment of a New Titanium–CFRP Adhesive Joint: An Experimental Comparative Study. Metals 2020, 10, 699. [Google Scholar] [CrossRef]
- Hwang, J.H.; Jin, C.K.; Lee, M.S.; Choi, S.W.; Kang, C.G. Effect of Surface Roughness on the Bonding Strength and Spring-Back of a CFRP/CR980 Hybrid Composite. Metals 2018, 8, 716. [Google Scholar] [CrossRef]
- Qin, G.; Na, J.; Mu, W.; Tan, W.; Yang, J.; Ren, J. Effect of continuous high temperature exposure on the adhesive strength of epoxy adhesive, CFRP and adhesively bonded CFRP-aluminum alloy joints. Compos. Part B Eng. 2018, 154, 43–55. [Google Scholar] [CrossRef]
- Firmo, J.P.; Roquette, M.G.; Correia, J.R.; Azevedo, A.S. Influence of elevated temperatures on epoxy adhesive used in CFRP strengthening systems for civil engineering applications. Int. J. Adhes. Adhes. 2019, 93, 102333. [Google Scholar] [CrossRef]
- Li, C.; Ke, L.; He, J.; Chen, Z.; Jiao, Y. Effects of mechanical properties of adhesive and CFRP on the bond behavior in CFRP-strengthened steel structures. Compos. Struct. 2019, 211, 163–174. [Google Scholar] [CrossRef]
- Ke, L.; Li, C.; Luo, N.; Jiao, Y.; Liu, Y. Enhanced comprehensive performance of bonding interface between CFRP and steel by a novel film adhesive. Compos. Struct. 2019, 229, 111393. [Google Scholar] [CrossRef]
- Wang, H.-T.; Liu, S.-S.; Liu, Q.-L.; Pang, Y.-Y.; Shi, J.-W. Influences of the joint and epoxy adhesive type on the CFRP-steel interfacial behavior. J. Build. Eng. 2021, 43, 103167. [Google Scholar] [CrossRef]
- Kowal, M.; Rozylo, P. Effect of bond end shape on CFRP/steel joint strength. Compos. Struct. 2022, 284, 115186. [Google Scholar] [CrossRef]
- Matta, F.; Karbhari, V.M.; Vitaliani, R. Tensile response of steel/CFRP adhesive bonds for the rehabilitation of civil structures. Struct. Eng. Mech. 2005, 20, 589–608. [Google Scholar] [CrossRef]
- Kim, Y.J.; Green, M.F.; Fallis, G.J. Repair of Bridge Girder Damaged by Impact Loads with Prestressed CFRP Sheets. J. Bridge Eng. 2008, 13, 15–23. [Google Scholar] [CrossRef]
- Jimenez-Vicaria, J.D.; Gomez-Pulido, M.D.; Castro-Fresno, D. Numerical and Experimental Evaluation of a CFRP Fatigue Strengthening for Stringer-Floor Beam Connections in a 19th Century Riveted Railway Bridge. Metals 2021, 11, 603. [Google Scholar] [CrossRef]
- Youssef, M.A. Analytical prediction of the linear and nonlinear behaviour of steel beams rehabilitated using FRP sheets. Eng. Struct. 2006, 28, 903–911. [Google Scholar] [CrossRef]
- El Damatty, A.A.; Abushagur, M.; Youssef, M.A. Experimental and analytical investigation of steel beams rehabilitated using GFRP sheets. Steel Compos. Struct. 2003, 3, 421–438. [Google Scholar] [CrossRef]
- Ehsani, M.R.; Saadatmanesh, H. Fiber Composites for Bridge Rehabilitation. Bridge Eval. Repair Rehabil. 1990, 187, 579–588. [Google Scholar]
- Lepretre, E.; Chataigner, S.; Dieng, L.; Gaillet, L. Fatigue strengthening of cracked steel plates with CFRP laminates in the case of old steel material. Constr. Build. Mater. 2018, 174, 421–432. [Google Scholar] [CrossRef]
- Mashrei, M.A.; Makki, J.S.; Sultan, A.A. Flexural Strengthening of Reinforced Concrete Beams Using Carbon Fiber Reinforced Polymer (CFRP) Sheets with Grooves. Lat. Am. J. Solids Struct. 2019, 16. [Google Scholar] [CrossRef]
- Lesiuk, G.; Pedrosa, B.A.S.; Zięty, A.; Błażejewski, W.; Correia, J.A.F.O.; De Jesus, A.M.P.; Fragassa, C. Minimal Invasive Diagnostic Capabilities and Effectiveness of CFRP-Patches Repairs in Long-Term Operated Metals. Metals 2020, 10, 984. [Google Scholar] [CrossRef]
- Soutis, C.; Duan, D.-M.; Goutas, P. Compressive behaviour of CFRP laminates repaired with adhesively bonded external patches. Compos. Struct. 1999, 45, 289–301. [Google Scholar] [CrossRef]
- Cheng, P.; Gong, X.-J.; Hearn, D.; Aivazzadeh, S. Tensile behaviour of patch-repaired CFRP laminates. Compos. Struct. 2011, 93, 582–589. [Google Scholar] [CrossRef]
- Tie, Y.; Hou, Y.; Li, C.; Zhou, X.; Sapanathan, T.; Rachik, M. An insight into the low-velocity impact behavior of patch-repaired CFRP laminates using numerical and experimental approaches. Compos. Struct. 2018, 190, 179–188. [Google Scholar] [CrossRef]
- Xiaoquan, C.; Baig, Y.; Renwei, H.; Yujian, G.; Jikui, Z. Study of tensile failure mechanisms in scarf repaired CFRP laminates. Int. J. Adhes. Adhes. 2013, 41, 177–185. [Google Scholar] [CrossRef]
- Sun, Z.; Li, C.; Tie, Y. Experimental and numerical investigations on damage accumulation and energy dissipation of patch-repaired CFRP laminates under repeated impacts. Mater. Des. 2021, 202, 109540. [Google Scholar] [CrossRef]
- Nguyen, D.M.; Chan, T.K.; Cheong, H.K. Brittle Failure and Bond Development Length of CFRP-Concrete Beams. J. Compos. Constr. 2001, 5, 12–17. [Google Scholar] [CrossRef]
- Li, G.; Tan, K.H.; Fung, T.C. Experimental study on CFRP-concrete dynamic debonding behaviour. Eng. Struct. 2020, 206, 110055. [Google Scholar] [CrossRef]
- Wan, B.; Petrou, M.F.; Harries, K.A. The Effect of the Presence of Water on the Durability of Bond between CFRP and Concrete. J. Reinf. Plast. Compos. 2006, 25, 875–890. [Google Scholar] [CrossRef]
- Shahawy, M.A.; Arockiasamy, M.; Beitelman, T.; Sowrirajan, R. Reinforced concrete rectangular beams strengthened with CFRP laminates. Compos. Part B Eng. 1996, 27, 225–233. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Kianoush, M.R.; Tajari, A.R. Flexural behaviour of reinforced concrete beams strengthened by CFRP sheets. Eng. Struct. 2007, 29, 2428–2444. [Google Scholar] [CrossRef]
- Täljsten, B. Strengthening concrete beams for shear with CFRP sheets. Constr. Build. Mater. 2003, 17, 15–26. [Google Scholar] [CrossRef]
- Barros, J.A.O.; Fortes, A.S. Flexural strengthening of concrete beams with CFRP laminates bonded into slits. Cem. Concr. Compos. 2005, 27, 471–480. [Google Scholar] [CrossRef]
- Barros, J.A.O.; Dias, S.J.E. Near surface mounted CFRP laminates for shear strengthening of concrete beams. Cem. Concr. Compos. 2006, 28, 276–292. [Google Scholar] [CrossRef]
- Altin, S.; Anil, O.; Kara, M.E.; Kaya, M. An experimental study on strengthening of masonry infilled RC frames using diagonal CFRP strips. Compos. Part B Eng. 2008, 39, 680–693. [Google Scholar] [CrossRef]
- Täljsten, B.; Elfgren, L. Strengthening concrete beams for shear using CFRP-materials: Evaluation of different application methods. Compos. Part B Eng. 2000, 31, 87–96. [Google Scholar] [CrossRef]
- Krzywoń, R.; Górski, M.; Dawczyński, S. Features of SRP Tapes against CFRP Composites Used for Strengthening of Concrete Structures. Procedia Eng. 2017, 193, 289–296. [Google Scholar] [CrossRef]
- Szewczak, A. Influence of Epoxy Glue Modification on the Adhesion of CFRP Tapes to Concrete Surface. Materials 2021, 14, 6339. [Google Scholar] [CrossRef]
- Rafi, M.M.; Nadjai, A.; Ali, F.; Talamona, D. Aspects of behaviour of CFRP reinforced concrete beams in bending. Constr. Build. Mater. 2008, 22, 277–285. [Google Scholar] [CrossRef]
- Soudki, K.; El-Salakawy, E.; Craig, B. Behavior of CFRP Strengthened Reinforced Concrete Beams in Corrosive Environment. J. Compos. Constr. 2007, 11, 291–298. [Google Scholar] [CrossRef]
- Nawaz, W.; Elchalakani, M.; Karrech, A.; Yehia, S.; Yang, B.; Youssf, O. Flexural behavior of all lightweight reinforced concrete beams externally strengthened with CFRP sheets. Constr. Build. Mater. 2022, 327, 126966. [Google Scholar] [CrossRef]
- Kim, Y.J.; Harries, K.A. Modeling of timber beams strengthened with various CFRP composites. Eng. Struct. 2010, 32, 3225–3234. [Google Scholar] [CrossRef]
- Kula, K.; Socha, T.; Denisiewicz, A. Weakened Zones in Wood—Based Composite Beams and Their Strengthening by CFRP: Experimental, Theoretical, and Numerical Analysis. Eng. Trans. 2019, 67, 461–474. [Google Scholar] [CrossRef]
- Kawecki, B.; Podgórski, J. The Effect of Glue Cohesive Stiffness on the Elastic Performance of Bent Wood–CFRP Beams. Materials 2020, 13, 5075. [Google Scholar] [CrossRef]
- Wdowiak-Postulak, A.; Brol, J. Ductility of the Tensile Zone in Bent Wooden Beams Strengthened with CFRP Materials. Materials 2020, 13, 5451. [Google Scholar] [CrossRef]
- Socha, T.; Kula, K.; Denisiewicz, A.; Lesiuk, G.; Błażejewski, W. Rheological Relaxation of OSB Beams Reinforced with CFRP Composites. Materials 2021, 14, 7527. [Google Scholar] [CrossRef]
- Fiorelli, J.; Dias, A.A. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber. Mater. Res. 2003, 6, 193–202. [Google Scholar] [CrossRef]
- De La Rosa Garcia, P.; Escamilla, A.C.; Garcia, M.N.G. Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials. Compos. Part B Eng. 2013, 55, 528–536. [Google Scholar] [CrossRef]
- Borri, A.; Corradi, M.; Grazini, A. A method for flexural reinforcement of old wood beams with CFRP materials. Compos. Part B Eng. 2005, 36, 143–153. [Google Scholar] [CrossRef]
- Li, Y.-F.; Xie, Y.-M.; Tsai, M.-J. Enhancement of the flexural performance of retrofitted wood beams using CFRP composite sheets. Constr. Build. Mater. 2009, 23, 411–422. [Google Scholar] [CrossRef]
- De Jesus, A.M.P.; Pinto, J.M.T.; Morais, J.J.L. Analysis of solid wood beams strengthened with CFRP laminates of distinct lengths. Constr. Build. Mater. 2012, 35, 817–828. [Google Scholar] [CrossRef]
- Liu, W.; Yu, Y.; Zhang, Z.; Liu, C.; Tong, Y. Impact resistance of CFRP-reinforced wood beams under axial force using a digital image correlation method. Compos. Struct. 2021, 261, 113276. [Google Scholar] [CrossRef]
- Khelifa, M.; Celzard, A. Numerical analysis of flexural strengthening of timber beams reinforced with CFRP strips. Compos. Struct. 2014, 111, 393–400. [Google Scholar] [CrossRef]
- Schober, K.U.; Rautenstrauch, K. Experimental investigation on flexural strengthening of timber structure with CFRP. In Proceedings of the International Symposium on Bond Behaviour of FRP in Structures, Hong Kong, China, 7–9 December 2005. [Google Scholar]
- Huang, Z.; Zhang, X.; Yang, C. Experimental and numerical studies on the bending collapse of multi-cell Aluminum/CFRP hybrid tubes. Compos. Part B Eng. 2020, 181, 107527. [Google Scholar] [CrossRef]
- Pramanik, A.; Basak, A.K.; Dong, Y.; Sarker, P.K.; Uddin, M.S.; Littlefair, G.; Dixit, A.R.; Chattopadhyay, S. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys—A review. Compos. Part A Appl. Sci. Manuf. 2017, 101, 1–29. [Google Scholar] [CrossRef]
- Möller, F.; Thomy, C.; Vollertsen, F.; Vollertsen, P.; Hoffmeister, C.; Herrmann, A.S. Novel method for joining CFRP to aluminium. Phys. Procedia 2010, 5, 37–45. [Google Scholar] [CrossRef]
- Su, J.; Tan, C.; Wu, Z.; Wu, L.; Gong, X.; Chen, B.; Song, X.; Feng, J. Influence of defocus distance on laser joining of CFRP to titanium alloy. Opt. Laser Technol. 2020, 124, 106006. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Wang, X.-T.; Ma, L.; Wu, L.-Z. Study on the mechanical properties of CFRP composite auxetic structures consist of corrugated sheets and tubes. Compos. Struct. 2022, 292, 115655. [Google Scholar] [CrossRef]
- Sandeep, R.; Natarajan, A. Advances in joining technologies for the innovation of 21st century lightweight aluminium-CFRP hybrid structures. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022, 236, 1239–1255. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, S.; Li, G.; Cui, J.; Yu, Y.; Jinag, H. A sandwich structure realizing the connection of CFRP and Al sheets using magnetic pulse welding. Compos. Struct. 2022, 295, 115865. [Google Scholar] [CrossRef]
- Birk, F.; Ali, F.; Weigold, M.; Abele, E.; Schutzer, K. Lightweight hybrid CFRP design for machine tools with focus on simple manufacturing. Int. J. Adv. Manuf. Technol. 2020, 108, 3915–3924. [Google Scholar] [CrossRef]
- Fasana, A.; Ferraris, A.; Airale, A.G.; Polato, D.B.; Carello, M. Experimental Characterization of Damped CFRP Materials with an Application to a Lightweight Car Door. Shock Vib. 2017, 2017, 7129058. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yamauchi, M.; Takahashi, J. Life cycle assessment of CFRP in application of automobile. In Proceedings of the 18th International Conference on Composite Materials, Jeju, Korea, 21–26 August 2011. [Google Scholar]
- Galvez, P.; Quesada, A.; Martinez, M.A.; Abenojar, J.; Boada, M.J.J.; Diaz, V. Study of the behaviour of adhesive joints of steel with CFRP for its application in bus structures. Compos. Part B Eng. 2017, 129, 41–46. [Google Scholar] [CrossRef]
- Olofin, I.; Liu, R. The Application of Carbon Fibre Reinforced Polymer (CFRP) Cables in Civil Engineering Structures. SSRG Int. J. Civ. Eng. 2015, 2, 1–5. [Google Scholar] [CrossRef]
- Mei, K.; Li, Y.; Lu, Z. Application study on the first cable-stayed bridge with CFRP cables in China. J. Traffic Transp. Eng. 2015, 2, 242–248. [Google Scholar] [CrossRef]
- Nakamura, T.; Morino, Y.; Endo, T.; Kobayashi, M. CFRP application to upper stage structure of Japan’s launch vehicles. NASA STI/Recon Tech. Rep. A 1989, 90, 923–932. [Google Scholar]
- Utsunomiya, S.; Kamiya, T.; Shimizu, R. Development of CFRP mirrors for space telescopes. In Proceedings of the Material Technologies and Applications to Optics, Structures, Components, and Sub-Systems, San Diego, CA, USA, 25 September 2013; p. 8837. [Google Scholar] [CrossRef]
- Dattoma, V.; Nobile, R.; Panella, F.W.; Saponaro, A. NDT thermographic techniques on CFRP structural components for aeronautical application. Procedia Struct. Integr. 2018, 8, 452–461. [Google Scholar] [CrossRef]
- Mokhtari, M.; Nia, A.A. The application of CFRP to strengthen buried steel pipelines against subsurface explosion. Soil Dyn. Earthq. Eng. 2016, 87, 52–62. [Google Scholar] [CrossRef]
- Yao, S.; Chen, Z.; Xu, P.; Li, Z.; Zhao, Z. Experimental and Numerical Study on the Energy Absorption of Polyurethane Foam-Filled Metal/Composite Hybrid Structures. Metals 2021, 11, 118. [Google Scholar] [CrossRef]
- Moritz, J.; Götze, P.; Schiefer, T.; Stepien, L.; Klotzbach, A.; Standfuß, J.; López, E.; Brückner, F.; Leyens, C. Additive Manufacturing of Titanium with Different Surface Structures for Adhesive Bonding and Thermal Direct Joining with Fiber-Reinforced Polyether-Ether-Ketone (PEEK) for Lightweight Design Applications. Metals 2021, 11, 265. [Google Scholar] [CrossRef]
- Lozano, C.; Langston, M.; Kashefizadeh, M.H.; Prinz, G.S. Analytical and Experimental Investigation into Pre-Stressed Carbon Fiber Reinforced Polymer (CFRP) Fatigue Retrofits for Steel Waterway Lock-Gate Structures. Metals 2022, 12, 88. [Google Scholar] [CrossRef]
Article Number | Modifier/Method | Effect on Properties | Comments |
---|---|---|---|
[30] | Modifier: PMMA colloids | Effects occur when the electrodeposition voltage | |
Method: electrospinning | |||
[33] | Modifier: Polymer colloids containing the same components as the matrix | Effects occur when the number of adsorbed particles
When the tension the amount of adsorbed molecules | |
Method: Colloidal techniques, emulsion polymerization without soap or with thermoplastic powder and surfactant. | |||
[34] | Modifier: carbon nanotubes | 37% and 30% 71% and 11% 9% and 13% | Occurring effects depend on the arrangement of the nanotubes |
Method: thermal chemical vapor deposition (CVD) | |||
[40] | Modifier: magnetic Fe3O4 nanoparticles | 84.3% from 58.81 to 64.31 mj/m2 | |
Method: iron (II) ammonium sulphate as a precursor of nanoparticles | |||
[41] | Modifier: amino groups | 8.39% 277.9% and 133.6% compared to unmodified particles. | |
Method: Fenton’s chemical reaction |
Article Number | Material | Characteristics | Improved Durability Compared to the Sample without Reinforcement |
---|---|---|---|
[52] | Thin-walled steel sigma beams | Reinforcement of the lower flange with CFRP tape. | |
[105] | Concrete beam | Reinforcement with CFRP tape on the tensile flange. | |
[123] | Wooden beam | CFRP tape reinforcing half of the beam—the flange and half the height on each side of the web. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlak, A.M.; Górny, T.; Dopierała, Ł.; Paczos, P. The Use of CFRP for Structural Reinforcement—Literature Review. Metals 2022, 12, 1470. https://doi.org/10.3390/met12091470
Pawlak AM, Górny T, Dopierała Ł, Paczos P. The Use of CFRP for Structural Reinforcement—Literature Review. Metals. 2022; 12(9):1470. https://doi.org/10.3390/met12091470
Chicago/Turabian StylePawlak, Aleksandra M., Tomasz Górny, Łukasz Dopierała, and Piotr Paczos. 2022. "The Use of CFRP for Structural Reinforcement—Literature Review" Metals 12, no. 9: 1470. https://doi.org/10.3390/met12091470
APA StylePawlak, A. M., Górny, T., Dopierała, Ł., & Paczos, P. (2022). The Use of CFRP for Structural Reinforcement—Literature Review. Metals, 12(9), 1470. https://doi.org/10.3390/met12091470