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Abstract: Herein, the effect of the shear flow on the growth of columnar crystals in an undercooled
melt is studied. The asymptotic method is used to solve the dynamic model for the growth of a
columnar crystal. The resulting asymptotic solution shows that the shear flow significantly changes
the interface morphology of the columnar crystal. With the shear effect of the forced flow, the
growth rate of the columnar interface increases in the shear direction of the shear flow. As the
shear rate of the shear flow further increases, the interface of the columnar crystal is seriously
deformed and distorted. The shear flow causes the columnar crystal in the undercooled melt to tend
to evolve into smaller crystals in the initial stage of crystal growth. The analytical result provides a
prediction of the formation of interface microstructures during solidification through the change of
processing parameters.
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1. Introduction

The formation of morphological patterns with respect to the solidification of mi-
crostructures is of fundamental significance in materials science and processing engineer-
ing. Extensive experimental and theoretical works have been undertaken by the inclusion
of various small-scale effects such as interface kinetics, anisotropy, etc., among which
convection effects of the forced flow are of utmost importance regarding morphological
pattern formation [1–7]. The treatment of generating convection in experimental frames
and practical applications is performed to exert mechanical stirring or electro-magnetic
stirring on the melt. The induced convection by the forced flow in the undercooled melt
strongly alters the solidification kinetics, which in turn changes the morphological pat-
tern formation of microstructures. As a result, a great number of crystals with micro and
even nanometer scales form in the melt and significantly improve the grain refinement
and second phase particle microstructures and consequently the physical and mechanical
properties of solidified materials [8–11].

The morphological pattern formation of microstructures is a nonlinear dynamic prob-
lem, in which the growing interface’s shape is a part of the solution. Generally, it is hard to
obtain the exact solution and for a solution to apply numerical approaches accurately. Dur-
ing crystal growth, the interface is always moving. The division and allocation of the upper
and lower meshes of the interface in numerical approaches have some inevitably artificial
assumptions. Hence, although they handle many large and complex systems, numerical
methods have inherent defects in revealing the physical essence. They are effective means
to seek the approximate analytical solution, which has a concise mathematical expression
and unambiguous physical nature [1,3,4]. Convection in the melt is complex; however,
the fluid velocity near the crystal can be decomposed into a superposition of a uniform
flow and a linear flow, among which it has been demonstrated that the shear flow of a
forced flow on crystal growth dominates in the solidification of microstructures [12–14].
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The morphological patterns of spherical particles growing from a supersaturated solution
or from a supercooled melt have widely been studied [15–18]. As perhaps the simplest case
of the spherical particles, we investigate the shear effect of the forced flow on the growth
of columnar crystals in the supercooled melt [19,20]. Using the asymptotic method, we
find the asymptotic solution of the dynamic model for the growth of the columnar crystal
and show the prediction of the formation of interface microstructures during solidification
through the change of the processing parameters.

2. The Mathematical Model

Consider the growth of a right infinite columnar crystal with an initial radius of
a circular column r0 in a convective undercooled melt. It is assumed that the melt is
undercooled to a temperature T∞ (T∞ < TM, TM is the melting equilibrium temperature of
a pure substance; the melt undercooling is defined as ∆T = TM − T∞). The convection in
the undercooled melt is driven by a forced flow when the melt is placed on a rotational disk.
The convection velocity near the columnar crystal can be decomposed into a superposition
of uniform flow and linear flow, in which it is assumed that the convection velocity U of
the flow field is driven by the shear flow, U ∼ Ayi + Bxj, where i and j are represented as
unit vectors in the rectangular coordinate system, x and y are the rectangular coordinates
(x, y), A and B are the constant shear rates and the bars over U, and x and y denote
the dimensional quantities. The growing interface of the columnar crystal is expressed
as R = R(θ, t) in the polar coordinate system (r,θ), where θ is the polar angle, t is the
dimensional time, and the bars over R and t denote the dimensional quantities. The
interface of the column crystal separates the solid phase (r < R(θ, t)) from the liquid phase
(r > R(θ, t)).

Let U and P denote the velocity and reduced pressure in the liquid phase, respec-
tively, and TL and TS denote the temperatures in the liquid phase and solid phase, re-
spectively. The growth of the columnar crystal satisfies the following equations. The
continuity equation

∇ ·U = 0
(
r > R(θ, t)

)
, (1)

the Navier–Stokes equation

(U · ∇)U +
1

ρL
∇P = υ∇2U

(
r > R(θ, t)

)
, (2)

where ∇2 is the Laplace operator, ∇ is the gradient operator, P is the reduced pressure, υ is
dynamic viscosity of the melt, and ρL is the density of the melt. The densities of the solid
and liquid phases are assumed to be equal.

The temperature equations are given as follows:

∂TL

∂t
+ (U · ∇)TL = κL∇2TL

(
r > R(θ, t)

)
, (3)

∂TS

∂t
= κS∇2TS

(
r < R(θ, t)

)
, (4)

where κL and κS are the thermal diffusion coefficients of the liquid phase and solid
phase, respectively.

At the interface R = R(θ, t), the total mass conservation and tangential non slip of the
interface hold that

U · n = 0, U · τ = 0, (5)

where n and τ are the unit normal vector and unit tangent vector of the interface, respec-
tively.

At the interface R = R(θ, t), the Gibbs–Thomson condition and energy conservation
condition hold that

TL = TS, (6)
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TS = TM

[
1 +

2K
∆H

(
γ +

∂2γ

∂θ2

)]
− 1

µ
U I , (7)

∆HU I = kS
∂TS
∂n
− kL

∂TL
∂n

, (8)

where U I is the moving velocity of the interface; K is the mean curvature of the interface;
∆H is the crystalline latent heat per unit volume; γ is the anisotropic interface energy,
γ(θ) = γ0(1 + αm cos mθ), in which γ0 is the isotropic interface energy that gives the
average magnitude of interface energy; αm is the anisotropy parameter; and m is a positive
integer, where m = 2, 3, 4, 6, . . .. In this paper, α4 for m = 4 is taken and µ is the interface
kinetics parameter, and kL and kS are the thermal conductivity coefficients of the liquid
phase region and the solid phase region, respectively.

For the asymptotic analysis of the above problem in Equations (1)–(8), we introduce
the nondimensionalization transformation

U =
U
Vp

, P =
P

ρLVpκL/r0
, TL =

TL − TM
∆H/(cpρL)

, TS =
TS − TM

∆H/(cpρL)
, r =

r
r0

, t =
t

r0/Vp
, (9)

where cp is the constant pressure specific heat, Vp is the velocity scale from the characteristic
velocity of the interface, Vp = kL∆T/r0∆H, r0/Vp is the time scale, ρLVpκL/r0 is the
pressure scale, and ∆H/(cpρL) is the temperature scale. Equations (1)–(4) are transferred
into the dimensionless governing equations:

∇ ·U = 0, (10)

ε(U · ∇)U +∇P = Pr∇2U, (11)

ε
∂TL
∂t

+ ε(U · ∇)TL = ∇2TL, (12)

ελS
∂TS
∂t

= ∇2TS, (13)

where ε is the relative undercooling parameter, Pr is the Prandtl number, and λS is the ratio
of the thermal diffusivity in the liquid phase to the thermal diffusivity in the solid phase

ε =
∆T

∆H/(cLρL)
, Pr =

υ

κL
, λS =

κL
κS

.

The crystal–melt interface conditions (5)–(8) are transferred into the dimensionless
interface conditions:

U · n = 0, U · τ = 0, (14)

TL = TS, (15)

TS = 4εΓK(1− (m2 − 1)αm cos mθ)− εE−1MkUI , (16)

εUI = k
∂TS
∂n
− ∂TL

∂n
, (17)

where Γ is the interface energy parameter

Γ =
γ0TM

2r0∆H∆T
, E =

∆T
TM

, Mk =
Vp

µTM
, k =

kS
kL

.

The far-field condition is that, as r → ∞

TL → −ε. (18)
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In the cylindrical coordinate system, U = urer + uθeθ , in which er and eθ act as the
basis vectors, and ur and uθ are the two components. The shear flow is expressed as r → ∞ ,

u ∼ r(A0 + B0) sin θ cos θer + r(B0 cos2 θ − A0 sin2 θ)eθ , (19)

where
A0 =

Ar0

Vp
, B0 =

Br0

Vp
.

Finally, the initial condition for the interface is that at time t = 0,

R(θ, t)|t=0 = 1. (20)

For the sake of simplicity, it is assumed that the buoyancy effects are neglected.

3. Asymptotic Solution and Analysis

For typical metals, the quantity ∆H/(cpρL) is of a magnitude from tens to several
hundred degrees. The relative undercooling parameter ε is practically small, ε << 1. With
the slow variable ρ = εr introduced

∂

∂r
→ ∂

∂r
+ ε

∂

∂ρ
,

∂2

∂r2 →
∂2

∂r2 + 2ε
∂2

∂r∂ρ
+ ε2 ∂2

∂ρ2 ,

the equations in Equations (10)–(13) become

∇ ·U + ε
∂ur

∂ρ
= 0, (21)

ε(U · ∇)U + ε2ur
∂U
∂ρ

+∇p + ε
∂p
∂ρ

= Pr(∇2U + 2ε
∂2U
∂r∂ρ

+ ε2 ∂2U
∂ρ2 +

ε

r
∂U
∂ρ

), (22)

ε
∂TL
∂t

+ ε(U · ∇)TL + ε2ur
∂TL
∂ρ

= ∇2TL + 2ε
∂2TL
∂r∂ρ

+
ε

r
∂TL
∂ρ

+ ε2 ∂2TL

∂ρ2 , (23)

ελS
∂TS

∂t
= ∇2TS + 2ε

∂2TS
∂r∂ρ

+
ε

r
∂TS
∂ρ

+ ε2 ∂2TS
∂ρ2 . (24)

The interface conditions in Equations (14)–(17) become

U · n = 0, U · τ = 0, (25)

TL = TS, (26)

TS = 4εΓK(1− (m2 − 1)αm cos mθ)− εE−1MkUI , (27)

εUI = k
∂TS
∂n
− ∂TL

∂n
+ ε

∂

∂ρ
(kTS − TL). (28)

The far-field conditions in Equations (18) and (19) and the initial condition for the
interface in Equation (20) maintain the same values.

Taking ε as a small parameter and writing αm = Pε temporally, we seek the asymptotic
solution of the form

U = U0 + εU1 + . . ., p = p0 + εp1 + . . . ,

TL = εTL0 + ε2TL1 + . . . ,

TS = εTS0 + ε2TS1 + . . . ,

R = R0 + εR1 + . . . . (29)
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The columnar interface is expanded into

Q = Q0 + εQ1 + ε2Q2 + . . . ,

where Q = εR, Q0 = εR0, Q1 = εR1, · · · . The interface curvature is expanded into

2K = − 1
R0

+
ε

R2
0

(
1 +

∂2

∂θ2

)
R1 + . . . .

Substituting (29) into Equations (21)–(28) together with Equations (18)–(20), and
equating the coefficients of the like terms εn in the power series of ε, we derive the equations
for each order approximation. The leading order approximations for the flow field and the
temperature fields satisfy the equations

∇ ·U0 = 0, (30)

Pr∇2U0 −∇p0 = 0. (31)

∇2TL0 = 0, (32)

∇2TS0 = 0. (33)

which are subject to the interface conditions, namely, at the interface R0 = R0(t),

U0 · n = 0, U0 · τ = 0, (34)

TL0 = TS0, (35)

TS0 = − 2Γ
R0
− E−1Mk

dR0

dt
, (36)

dR0

dt
= k

∂TS0

∂r
− ∂TL0

∂r
. (37)

The far-field temperature condition is, as r → ∞ , ρ→ ∞ ,

TL0 → −1. (38)

The flow driven condition

U0 ∼ r(A0 + B0) sin θ cos θer + r(B0 cos2 θ − A0 sin2 θ)eθ . (39)

The initial condition for the interface is that at time t = 0,

R0(0) = 1. (40)

For the flow field, when the shear flow is superimposed, the flow field throughout
the melt is modified by the additional fluid velocities. After carrying out some algebra, we
have the leading order approximations U0 = (ur, uθ) and p0:

ur = (A0 + B0)(r−
2R2

0
r

+
R4

0
r3 ) sin θ cos θ, (41)

uθ = (−A0r +
(A0 − B0)R2

0
2r

+
(A0 + B0)R4

0
2r3 ) sin2 θ

+ (B0r +
(A0 − B0)R2

0
2r

−
(A0 + B0)R4

0
2r3 ) cos2 θ, (42)

p0 = −Pr
4(A0 + B0)R2

0
r2 sin θ cos θ. (43)
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The leading order approximation solutions for the temperature fields are expressed as

TL0 = −1 + R0
dR0

dt
(R0 − ln r)eQ0−ρ, (44)

TS0 = −1 + R0(R0 − ln R0)
dR0

dt
, (45)

where the leading order interface R0 satisfies the ordinary differential equation

dR0

dt
=

R0 − 2Γ
R2

0(R0 − ln R0) + E−1MkR0
. (46)

With the initial condition in Equation (40), Equation (46) has the implicit solution
t = t(R0)

t = (R0 − 1)
[

1
3 (R2

0 + R0 + 1) + 1+4Γ
4 (R0 + 1) + 2Γ(1 + 2Γ) + E−1Mk

]
− 1

2 (R2
0 + 4ΓR0) ln R0 + 2Γ(4Γ2 + E−1Mk) ln R0−2Γ

1−2Γ − 4Γ2∫ R0
1

ln R0
R0−2Γ dR0.

(47)

From Equation (46), as R0 < 2Γ, dR0
dt < 0, the columnar crystal decays, whereas as

R0 > 2Γ, dR0
dt > 0, the columnar crystal grows. Setting dR0

dt = 0 yields a critical value of
R0 = 2Γ. Returning to the dimensional quantity of the critical value R0 = 2Γ, we define the
critical nucleation radius of the columnar crystal R∗ as

R∗ =
γTM

∆H∆T
.

The first order approximation solutions for the temperature fields satisfy the equations

∂TL0

∂t
+ (U0 · ∇)TL0 = ∇2TL1 + 2

∂2TL0

∂r∂ρ
+

1
r

∂TL0

∂ρ
, (48)

λS
∂TS0

∂t
= ∇2TS1 + 2

∂2TS0

∂r∂ρ
+

1
r

∂TS0

∂ρ
, (49)

which are subject to the interface conditions at the interface R0 = R0(t),

TL1 = TS1 +
dR0

dt
R1 + R0(R0 − ln R0)

dR0

dt
Q1, (50)

TS1 = 2Γ

(
R1

R2
0
+

1
R2

0

∂2R1

∂θ2 +
15P cos 4θ

R0

)
− E−1Mk

dR1

dt
, (51)

dR1

dt
= k

∂TS1

∂r
− ∂TL1

∂r
− 1

R0

dR0

dt
R1 −

dR0

dt
Q1 + R0(R0 − ln R0)

dR0

dt
. (52)

The far-field temperature condition is that as r → ∞ , ρ→ ∞ ,

TL1 → 0, (53)

The initial condition for the interface is that

R1(θ, 0) = 0. (54)

From Equations (48) and (49) and the interface condition in Equation (51), the first
order approximation solutions of Equations (48) and (49) are in the following forms with
three modes: n = 0, n = 2, and n = 4.

TL1 = AL0 + BL2 sin 2θ + AL4 cos 4θ, (55)



Metals 2022, 12, 1487 7 of 16

TS1 = AS0 + BS2 sin 2θ + AS4 cos 4θ, (56)

R1 = g0(t) + g2(t) sin 2θ + f4(t) cos 4θ. (57)

where the derivation of the notations AL0, BL2, AL4, AS0, BS2, AS4, g0, g2, and f4 are listed in
Appendix A. In summary, the asymptotic solution of the columnar crystals is obtained as:

U = U0 + O(ε), p = p0 + O(ε), (58)

TL = εTL0 + ε2(AL0 + BL2 sin 2θ + AL4 cos 4θ) + O(ε3), (59)

TS = εTS0 + ε2(AS0 + BS2 sin 2θ + AS4 cos 4θ) + O(ε3), (60)

R = R0 + ε(g0 + g2 sin 2θ + f4 cos 4θ) + O(ε2). (61)

The growth velocity of the columnar crystal is

UI =
dR0

dt
+ ε

(
dg0

dt
+

dg2

dt
sin 2θ +

d f4

dt
cos 4θ

)
+ O(ε2), (62)

where the notations dg0
dt , dg2

dt and d f4
dt are listed in the Appendix A.

It is easily testified that the asymptotic solution in (59)–(61) does not satisfy the initial
conditions for the temperature fields. This is caused by the early-time behavior of crystal
growth from the assumption ∂/∂t = O(1). In order to solve for the early-time behavior,
we introduce the fast time variable t̂ = t/ε and seek the inner solution with respect to
time (see Appendix B). Consequently, we can match the inner solution with the solution in
Equations (58)–(62) and obtain the uniformly valid asymptotic solution of the columnar
crystal growth in the whole melt region. Since the phase transformation occurs near the
interface, the asymptotic solution in (59)–(61) shows the variations in the temperature and
the interface of the columnar crystal during the growth of the columnar crystal.

With the asymptotic solution in (58)–(62), we use the following physical parameters
of a Cu–Fe alloy with face-centered cubic (f.c.c) structures and analyze the interface mor-
phologies of the columnar crystal under the influence of an anisotropic interface energy
and the shear effect of the forced flow.

The physical parameters of a Cu–Fe alloy are as follows: TM = 1812 K (Fe),
kL = 386 J s−1m−1 K−1 (Cu), kS = 80.4 J s−1m−1 K−1 (Fe), cp = 390 J kg−1 K−1

(Cu), cpS = 477.3 J kg−1 K−1 (Fe), γ = 0.1010 J m−1 (Fe), ∆H = 2.409 J m−3 (Fe),
ρL = 8930 kg m−3 (Cu), and ρS = 7874 kg m−3 (Fe).

Figures 1–4 show the interface morphologies of a columnar crystal growing in an
undercooled melt under the influence of an anisotropic interface energy and forced flow.
Figure 1 shows the cross-sectional curves of the interface morphology of a columnar crystal
growing in an undercooled melt under the influence of anisotropic interface energy. It is
seen that during the initial growth times from t = 0 to t ≈ 0.6, some part of the interface of
the columnar crystal in the <110> growth directions decays inwardly, whereas the other
part of the interface grows outwardly in the <100> preferred growth directions.

Figure 2 shows that when the inward decay proceeds up to a certain distance, the
parts of the interface of the columnar crystal in the <110> growth directions begin to grow
outwardly. During the initial growth process, the inward decay of the part of the interface
induced by the anisotropic interface energy results in the smaller inner radius, which is less
than the critical nucleation radius R∗. The local inward growth and outward growth of the
columnar crystal deforms the interface of the columnar crystal and forms the remarkable
ear-like interface shape with some parts concave and other parts convex. As the anisotropic
interface energy parameters increase, the interface increases in the <100> preferred growth
directions and decreases in the <110> growth directions. The columnar crystal with a
smaller inner radius than the critical nucleation radius R∗ tends to be locally re-melted
or broken.
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Figure 1. The cross-sectional curves of the interface morphology of the columnar crystal under the
influence of anisotropic interface energy at different times t = 0, 0.05, 0.10, 0.30, 0.60, where α4 = 0.25,
r0 = 1.1R∗, Γ = 0.4545, and ∆T = 10. By contrast, the dashed line denotes the columnar crystal
without the anisotropic effect of interface energy. Arrows indicate crystal growth trends.
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Figure 2. The cross-sectional curves of the interface morphology of the columnar crystal under the
influence of anisotropic interface energy at different times t = 0.6, 1.0, 1.5, 2.0, 2.5, where α4 = 0.25,
r0 = 1.1R∗, Γ = 0.4545, and ∆T = 10. By contrast, the dashed line denotes the columnar crystal
without the anisotropic effect of interface energy. Arrows indicate crystal growth trends.
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Figure 3. The cross-sectional curves of the interface morphology of the columnar crystal affected by
shear rate of the forced flow at different times t = 0, 0.10, 0.30, 0.60, 1.0, 2.0, 3.0, where A0 = B0 = 40,
α4 = 0.25, r0 = 1.1R∗, Γ = 0.4545, and ∆T = 10. By contrast, the dashed line (the circular line)
denotes the columnar crystal without the shear effect of the forced flow. Arrows indicate crystal
growth trends.
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Figure 4. The cross-sectional curves of the interface morphology of the columnar crystal affected by
the shear flow at different shear rates A0 = B0 = 0, 40, 80, 120, 160 at time t = 2, where α4 = 0.25,
r0 = 1.1R∗, Γ = 0.4545, and ∆T = 10. By contrast, the dashed line denotes the columnar crystal
without the anisotropic effect of interface energy. Arrows indicate crystal growth trends.

Figure 3 shows the interface morphology of the columnar crystal under the influence
of the forced flow. When affected by the shear flow, the ‘ear-like’ interface shape of the
columnar crystal induced by the anisotropic effect of the interface energy is deformed. As
the shear rate increases, the ‘ear-like’ interface of the columnar crystal is distorted and
recedes further inward near the angles of θ = 3π/4, leading to the splitting tendency of the
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columnar crystal (as seen in Figure 4). This phenomenon implies that the shear effect of the
forced flow aggravates the local melting tendency that was caused by the possession of a
smaller inner radius than the critical nucleation radius R∗, leading to the splitting of the
distorted columnar crystal during the initial crystal growth to form finer crystals.

Figure 5 shows the variations in the interface growth velocity along different growth
directions under the shear effect of the forced flow. The shear flow causes the different
growth velocity of the interface at different growth directions, leading to the distortion of
the interface. With the growth of the columnar crystal, the interface of the columnar crystal
is further distorted. As a result, the interface of the columnar crystal tends to split into
several smaller crystals.
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Figure 5. The variations in the interface growth velocity along different directions θ = π/4, 5π/12,
7π/12, and 3π/4 (from bottom to top) for shear rate of the forced flow A0 = B0 = 1.2, where
α4 = 0.25, r0 = 1.1R∗, Γ = 0.4545, and ∆T = 10. By contrast, the dashed line denotes the columnar
crystal growth velocity without the shear flow.

Figures 6 and 7 show the variations in the temperature near the interface along
different growth directions under the shear effect of the forced flow at different times. It
can be observed that along some growth directions (Figure 6), the shear flow induces the
larger interface temperature gradient, whereas along other growth directions (Figure 7),
it decreases the interface temperature gradient. The increase in the interface temperature
gradient enhances the growth velocity of the interface, but the decrease in the interface
temperature gradient depresses the growth velocity of the interface. Due to the shear
flow around the columnar crystal, the temperature gradient along the direction from the
polar angle causes the accelerated growth of some parts of the interface but the accelerated
extrusion of other parts of the interface. When the growth of the columnar crystal (the
interface where the arrows point) is oriented to the right, the interface of the columnar
crystal is distorted. Since the inward growth of the interface in the initial stage of crystal
growth led to a smaller inner radius than the critical nucleation radius of the columnar
crystal R∗, the interface of the columnar crystal splits into multiple smaller crystals in
the initial stage of crystal growth. Each split particle is of the same order of magnitude
in the initial stage of crystal growth. Under the shear effect of the forced flow, they will
continuously split until the end of solidification to refine the microstructures
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Figure 6. The variations in the temperature near the interface along the growth direction θ = π/12
under the different shear rates A0 = B0 = 0, 3.0, 6.0 (from top to bottom) at different times
t = 1.0, 2.0, 3.0, where α4 = 0.25, r0 = 1.1R∗, Γ = 0.4545, and ∆T = 10. By contrast, the dashed line
denotes the columnar crystal growth velocity without the shear flow. Arrows indicate trends as the
crystal growth temperature changes.
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Figure 7. The variations in the temperature near the interface along the growth direction θ = 7π/12
under the different shear rates A0 = B0 = 0, 3.0, 6.0 (from bottom to top) at different times
t = 1.0, 2.0, 3.0, where α4 = 0.25, r0 = 1.1R∗, Γ = 0.4545, and ∆T = 10. By contrast, the dashed line
denotes the columnar crystal growth velocity without the shear flow. Arrows indicate trends as the
crystal growth temperature changes.

As an application, we have conducted the calculation of the microstructural formation
of the second phase nanoparticles in a centrifugal casting experiment of as-cast Cu–Fe–Co
alloys [6,7,9]. The relevant physical parameters are as follows: the equilibrium temperature
of Fe TM = 1728 K, the solidification equilibrium temperature of Cu is taken as T∞ = 1356K,
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the latent heat per unit volume of Fe ∆H = 2.404 × 109 J m−3, the surface tension of
Fe is γ0 = 0.1010 J m−2, the density of Fe ρL = 7874 kg m−3, the specific heat of Fe
cp = 477.3 J kg−1 K−1, the sound velocity V0 = 4970 m s−1, the mole mass fraction of Fe
M0 = 56 kg mol−1, the gas constant Rg = 8.314 J kg−1 K−1, the kinetic coefficient of Fe:
µ = 3.09 m s−1 K−1, the anisotropy parameter of interface kinetics is taken as β = 0.25; and
the melt on a disk below it rotates at 300 rpm. From the heat preservation to the end of
solidification, the undercooling near the surface of the Fe particles in the matrix of a Cu
alloy is in the range of 110~375 K; the critical radius for nucleation R∗ is in the range of
0.33~0.85 nm. According to our theoretical result, the relative undercooling parameter ε
is in the range of 0.20~0.58; the nanoparticles formed in the Cu–Fe–Co alloy melt are of
the same order of magnitude as the critical radius for nucleation. Since the anisotropy of
the interface kinetics induces the local inward growth of the nuclei after nucleation, the
nuclei have radii less than the critical radius of nucleation R∗ and thus tend to split. Under
the shear effect of the forced flow, the nuclei are deformed and distorted. As a result, the
interface of the particle splits or is broken into multiple finer particles in the initial stage of
growth after nucleation. The finer particles repeat the same process to form particles at a
nano scale. We should understand that even if one nucleus has split into several smaller
particles in the melt, it is hard to judge whether these smaller particles have just split from
this particle. By contrast, it was observed that if the shear flow is not exerted in the melt,
the dispersed iron nano particles’ second phase and nano grains are difficult to obtain in
the Cu–Fe–Co alloy matrix [6,9].

4. Conclusions

We have studied the shear effect of the forced flow on the growth of the columnar
crystal interface in an undercooled melt. By using the asymptotic method, we solved the
asymptotic solution of the dynamic model for the columnar crystal. The asymptotic solution
of the temperature and interface morphology reveals that the shear flow significantly
changes the interface morphology of the columnar crystal in the initial stage of crystal
growth. As the shear rate of the forced flow shear rate increases, the growth velocity of
the columnar interface increases in the shear direction of the forced flow. With the further
increase in the shear rate, the interface of the columnar crystal seriously deforms and
distorts, eventually evolving into smaller crystals in the initial stage of crystal growth.
Each split particle is of the same order of magnitude in the initial stage of crystal growth.
Under the shear effect of the forced flow, they will continuously split. The split crystals
repeat the same process until the end of solidification to refine their microstructures. The
analytical solution of the dynamic model for columnar crystal growth contains the relevant
processing parameters during solidification and suggests definite physical explanations.
The splitting mechanism of the nuclei revealed by the solution has been evidenced in
our experiment involving Cu alloys. The analytical solution provides a prediction of
the formation of interface microstructures during solidification through the change in
processing parameters. Future work is expected to extend the model for multi-component
alloy systems and applications in a wide variety of alloys such as aluminum alloys and
nickel base alloys.
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Appendix A

The notations AL0, BL2, AL4, AS0, BS2, AS4, g0, g2, f4, dg0
dt , dg2

dt and d f4
dt are derived

as follows.
Substituting Equations (55)–(57) into Equations (48) and (49), we gain the first-order ap-

proximation solutions. For mode n = 0, AL0 and AS0 satisfy the ordinary differential equations:

∂2 AL0
∂r2 + 1

r
∂AL0

∂r = eQ0−ρ
[

R0
r

dR0
dt (−2 + R0 − ln r)

]
+eQ0−ρ

[
(R0 − ln r)( d

dt

(
R0

dR0
dt

)
+ R0

dR0
dt

dQ0
dt ) + R0

(
dR0
dt

)2
]

,
(A1)

∂2 AS0

∂r2 +
1
r

∂AS0

∂r
= λS

d
dt

[
R0(R0 − ln R0)

dR0

dt

]
. (A2)

The solutions of Equations (A1) and (A2), which obey the vanishing condition (53),
are of the forms

AL0 = aL0 +
[

R0(rR0 − r ln r) dR0
dt + 1

4 R0(
dR0
dt )

2
r2

+ 1
4 (

d
dt

(
R0

dR0
dt

)
+ R0

dR0
dt

dQ0
dt )(r2 − r2 ln r + R0r2)

]
eQ0−ρ,

(A3)

AS0 = aS0 +
1
4

λS

[
(R0 − ln R0)

d
dt

(
R0

dR0

dt

)
+ (R0 − 1)

(
dR0

dt

)2
]

r2. (A4)

With the interface conditions in Equations (50)–(52), aL0 and aS0 are determined,

aL0 =

(
2Γ
R2

0
+ dR0

dt

)
g0 − E−1Mk

dg0
dt

+
R2

0
4 (ln R0 − 1− R0)

[
d
dt

(
R0

dR0
dt

)
+ R0

dR0
dt

dQ0
dt

]
−R2

0(R0 − ln R0)
dR0
dt −

R3
0

4

(
dR0
dt

)2
+ R0(R0 − ln R0)

dR0
dt g0,

(A5)

aS0 = 2Γ
R2

0
g0 − E−1Mk

dg0
dt

− R2
0

4 λS

[
(R0 − ln R0)

d
dt

(
R0

dR0
dt

)
+ (R0 − 1)

(
dR0
dt

)2
]

,
(A6)

where g0 satisfies the first-order ordinary differential equation

dg0
dt = − 1

R2
0
<(0, R0)g0 +

1
2 kλSR0(R0 − 1)

(
dR0
dt

)2
− 1

2 R2
0

(
dR0
dt

)2

+ 1
2 R0[kλS(R0 − ln R0) + ln R0 − R0 − 1

2 ]
d
dt (R0

dR0
dt )

+R0
dR0
dt −

dR0
dt g0 +

1
2 R2

0
dR0
dt (ln R0 − R0 − 1

2 )
dQ0
dt ,

(A7)

in which

<(n, R0) =
R2

0
dR0
dt − 2n(n + 1)(k + 1)Γ
R0 + n(k + 1)E−1Mk

. (A8)

For mode n = 2, BL2 and BS2 satisfy the following ordinary differential equations:

∂2BL2

∂r2 +
1
r

∂BL2

∂r
− 4

BL2

r2 = −R0

r
dR0

dt
ureQ0−ρ, (A9)

∂2BS2

∂r2 +
1
r

∂BS2

∂r
− 4BS2

r2 = 0. (A10)
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The solutions of Equations (A9) and (A10), which obey the vanishing condition (53),
are of the forms

BL2 =
bL2

r2 +
(A0 + B0)R0

4
[(r2(

1
8
− 1

2
ln r)− R0

2 +
R0

4

r2 (
1
2

ln r +
1
8
)]

dR0

dt
eQ0−ρ, (A11)

BS2 = bS2r2, (A12)

With the interface conditions in Equations (50)–(52), bL2 and bS2 are determined as

bL2 = (−6Γ + R2
0

dR0

dt
)g2 − E−1MKR2

0
dg2

dt
+

3(A0 + B0)

16
R5

0
dR0

dt
+ R3

0(R0 − ln R0)
dR0

dt
g2, (A13)

bS2 = − 6Γ
R4

0
g2 −

E−1Mk

R2
0

dg2

dt
, (A14)

where g2 satisfies the first-order ordinary differential equation

dg2

dt
=
<(2, R0)

R2
0

g2 +
(A0 + B0)R3

0(ln R0 +
3
4 )

2(R0 + 2(k + 1)E−1Mk)

dR0

dt
+

R0[2(R0 − ln R0)− 1]
R0 + 2(k + 1)E−1Mk

dR0

dt
g2. (A15)

For mode n = 4, AL4 and AS4 satisfy the ordinary differential equations:

∂2 AL4

∂r2 +
1
r

∂AL4

∂r
− 16AL4

r2 = 0, (A16)

∂2 AS4

∂r2 +
1
r

∂AS4

∂r
− 16AS4

r2 = 0. (A17)

The solutions of Equations (A16) and (A17), which obey the vanishing condition (53),
are of the forms

AL4 =
aL4

r4 , (A18)

AS4 = aS4r4, (A19)

With the interface conditions in Equations (50)–(52), aL4 and aS4 are determined as

aL4 = (−30ΓR2
0 + R4

0
dR0

dt
) f4 + 30PΓR3

0−E−1MkR4
0

d f4

dt
+ (R0 − ln R0)R5

0
dR0

dt
f 4, (A20)

aS4 =
30Γ(− f4 + R0P)

R6
0

− E−1Mk

R4
0

d f4

dt
, (A21)

where f 4 satisfies the first-order ordinary differential equation

d f4

dt
= 3
<(4, R0)

R2
0

f4 +
120(k + 1)ΓP

R2
0 + 4(k + 1)E−1MkR0

+
R0[4(R0 − ln R0)− 1]
R0 + 4(k + 1)E−1Mk

dR0

dt
f 4. (A22)

With the initial condition in Equation (54), the solutions of Equation (A7),
Equations (A15) and (A22) are obtained:

g0 = 1
3 R2

0 +
1

2R0
kλS
∫ R0

1 R2
0(R0 − 1) dR0

dt dR0 − 1
2R0

∫ R0
1 R3

0
dR0
dt dR0

+ 1
2R0

∫ R0
1 R2

0
dt

dR0
d
dt

(
R0

dR0
dt

)[
kλS(R0 − ln R0) + ln R0 − R0 − 1

2

]
dR0

+ 1
2R0

∫ R0
1 R3

0

(
ln R0 − R0 − 1

2

)
dQ0
dt dR0 − 1

R0

∫ R0
1 R0g0dR0,

(A23)
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g2 = (A0+B0)
H(2,R0)

∫ R0
1

R3
0(ln R0+

3
4 )H(2,R0)

2R0+4(k+1)E−1 Mk
dR0

+ 1
H(2,R0)

∫ R0
1

R0[2(R0−ln R0)−1]H(2,R0)
R0+2(k+1)E−1 Mk

g2dR0,
(A24)

f4 = 120P(k+1)Γ
H(4,R0)

∫ R0
1

H(4,R0)

R2
0+4(k+1)E−1 Mk R0

dt
dR0

dR0

+ 1
H(4,R0)

∫ R0
1

R0[4(R0−ln R0)−1]H(4,R0)
R0+4(k+1)E−1 Mk

f 4dR0,
(A25)

where

H(n, R0) =
1

[R0 + n(k + 1)E−1Mk]
n−1 exp

(∫ R0

1

2n(n2 − 1)(k + 1)Γ
[
R0(R0 − ln R0) + E−1Mk

]
R0(R0 + n(k + 1)E−1Mk)(R0 − 2Γ)

dR0

)
. (A26)

Appendix B

In order to solve for the early-time behavior, we introduce the fast time variable t̂ = t/ε
and seek the inner solution with respect to time. We can derive the asymptotic solution of
the inner solution

{
T(i)

L , T(i)
S , R(i)

}
:

T(i)
L = εT(i)

L0 + ε2T(i)
L1 + . . . , (A27)

T(i)
S = εT(i)

S0 + ε2T(i)
S1 + . . . , (A28)

R(i) = R(i)
0 + εR(i)

1 + . . . , (A29)

where the superscript i represents the inner solution according to the variable (r, θ, t̂).
After some tedious algebraic calculations, by matching the inner solution with the above

solution, we obtain a solution which obeys the initial conditions for the temperature fields

T(i)
L0 = −1 + (1− 2Γ)

[
1− 2

∞

∑
n=1

e−µ2
nτ J0(µnr)

ωn J1(µn)

]
, (A30)

T(i)
S0 = −2Γ +

∞

∑
n=1

CSne−
1

λS
n2π2τ J0(µnr), (A31)

where J0(r) and J1(r) are the Bessel functions of zero and the first order, respectively. µn
(n = 1, 2, . . .) are the eigenvalues of J0(r) = 0.

CSn =
2

J2
1 (µn)

1∫
0

(T∗S (r)−WS0)rJ0(µnr)dr. (A32)

The inner solution in Equations (A27)–(A29) shows that the solution satisfies the initial
conditions of the problem.
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