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Abstract: T-joint welding is a key manufacturing process of large storage tanks. However, complex
residual stresses are generated and have a great effect on the structural integrity of storage tanks.
The high residual stress caused by welding and the discontinuous structure may result in tank
cracking and failure. In this work, the residual stress distributions on the inner surface, outer surface,
and thickness direction of the T-joint were investigated by using the finite element method and
indentation test method. The effect of local PWHT with different heating temperatures, heating rates,
and heating widths on the residual stress distribution was also discussed. Results show that the
residual stress of the T-shaped joint is high due to the serious structure discontinuity, multi-layer
welding, and high strength. Among all the stresses, the circumferential residual stress is the highest
and most concentrated in the outer weld connected with the annular plate. The residual stress
gradually decreases with the increase in the heat treatment temperature. When the heating rate is
less than 106 ◦C/h, the residual stress gradually decreases with the decrease in the heating rate. The
large thermal deformation caused by heat treatment can be simultaneously avoided by heating the
inside and outside of the T-joint. The residual stress decreases with the decrease in the width of the
heating zone. The residual stress can be regulated by using a smaller width in the heating zone. An
optimized heat treatment scheme with a heating temperature of 700 ◦C, heating rate of 56 ◦C/h, and
heating width of 200 mm was proposed, which has a good ability to control residual stresses and
improve the quality of the T-joint. It also has a good application in engineering.

Keywords: T-joint welding; residual stress; numerical simulation; heat treatment

1. Introduction

With the development of the petroleum industry, storage tanks are gradually being
developed at a large scale [1]. At present, the volume of super-large storage tanks exceeds
100,000 m3. The number of super-large storage tanks has been rapidly increasing year by
year; therefore, the design and manufacturing level of super-large storage tanks must be
improved [2]. Most tank failure cases occur at the T-joint due to the stress concentration [3].

Residual stress is caused by the expansion and contraction of the weld due to the heat-
ing and cooling of the welding process. Residual stress can easily cause stress concentration
in the welded structures and increases the sensitivity of welds to fatigue damage, stress
corrosion cracking, and fracture. Finite element analysis is a process of simulating real
working conditions by using a limited number of simple and interactive elements. To date,
many researchers have studied the welding residual stress distribution via finite element
modeling, and it has become a popular tool for predicting residual stress. Siddique et al. [4]
used a 3D simulation to study the influence of welding parameters on residual stress.
Lee et al. [5,6] studied the residual stress of dissimilar steel welded joints through a 3D
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simulation and thermal elastoplastic analysis. Luo et al. [7,8] studied the residual stress
distribution of different welded joints by the finite element method and experimental
verification. Pandey et al. [9] presented the effect of welding direction on the residual
deformation of double-sided fillet welds. They [10] also pointed out that 2D models can
save a significant amount of computational time with reasonable accuracy. Luo et al. [11]
studied the welding residual stress and deformation of ultra-large pressure vessels via a 3D
finite element method. Shanmugam et al. [12] analyzed the temperature distribution of the
laser welded T-joint by using a 3D finite element model. Piekarska et al. [13] simulated the
deformation of a laser welded T-joint with ABAQUS and considered the various thermo-
mechanical properties of the welding materials. Peric et al. [14] studied the residual stress
and deformation of the two types of T-joints via a shell model and test. Teng et al. [15]
studied the residual stress and deformation from the fillet welding of a T-joint via the finite
element method and thermal elastoplastic analysis. The change of filling material with
time is simulated by the element birth and death technique.

At present, the methods for reducing welding residual stress are mainly divided into
in situ and post-welding regulation methods. The former is used to design a reasonable
welding process and structure to control the tensile residual stress. Taraphdar et al. [16]
investigated the effects of groove configuration, restraints, and mechanical tensioning on
the residual stress distribution in a thick double-V butt weld joint, and the appropriate
technologies were recommended. The latter releases residual stress by external heating or
a mechanical method. The post-weld heat treatment (PWHT) is an appropriate method
for controlling welding residual stresses. The PWHT can release the residual stresses
and harmful gas in the metal, stabilize the shape and size of the structure, and improve
the performance of the base of the metal and welding area and the ability to resist stress
corrosion. However, conducting a furnace-based PWHT to release the residual stresses of
a large storage tank is impractical due to its huge volume. The T-joints of a large storage
tank are typically not subjected to PWHT, resulting in a cracking risk in the weld joint after
long-time service. To assure the security of large storage tanks under long-time service,
the local PWHT is recommended, as it is also the only possible choice. However, the
effects of the local PWHT on the residual stresses of the T-joint of a large storage tank are
unclear. The residual stress distribution of a large T-joint before and after a local PWHT
must be studied. Some studies on the influence of heat treatment on residual stresses were
performed. Chandan et al. [17] showed that heat treatment can reduce residual stress.
Luo et al. [18] significantly reduced the residual stress by optimizing the heat treatment
scheme. Jin et al. [19] studied the effect of primary and secondary local heat treatment on
the residual stress of large pressure vessels via the finite element method and experiments.
Wei et al. [20] studied the welding residual stress of the cracked joint of a large distillation
column via the finite element method and experimental research. The results showed
that the stress concentration caused by structural discontinuity is the main cause of the
cracks. Geng et al. [21] studied the residual stress distribution after welding and the local heat
treatment of ultra-thick-walled cylinders by using a plane strain 2D model. In summary, finite
element methods can be used to study the effect of local heat treatment on residual stress.

According to the literature, the local PWHT has a good effect on releasing residual
stresses in complex structures. Meanwhile, investigations of the local PWHT on T-joints
made of 12MnNiVR are still insufficient. Accordingly, the mechanisms of releasing residual
stresses and the optimum parameters of PWHT on T-joints made of 12MnNiVR have not
been revealed. This situation necessitates a detailed investigation of the effect of local PWHT
process technologies on the residual stress distribution of T-joints and of an effective PWHT
scheme. In this work, a local PWHT scheme of T-joints made of 12MnNiVR is proposed
to provide a reference for controlling the residual stresses of T-joints in engineering. The
residual stress distributions along the inner surface, outer surface, and thickness of the weld
were first investigated via the indentation test and finite element method to understand the
distribution and evolution of the residual stress in the T-joint and to propose some methods
for reducing residual stress. Then, the effects of the heat treatment factors, including heating



Metals 2022, 12, 1502 3 of 14

temperature, heating rate, and heating width, on residual stress were studied by using the
ABAQUS finite element software 6.14-5. The parameters of the optimized PWHT scheme
were determined on the basis of the above-mentioned studies, providing a reference for
engineering applications.

2. Experimental Procedure
2.1. Specimen Preparation

From the point view of the local size of a T-joint of the large diameter of the tank, the
T-joint of the tank can be assumed as the T-joint with a plate. The stress distribution of
the T-joint of the tank can be approximately regarded as the same as that of the section
of the welding test plate. The test plate T-joint is used in this study. The specimens were
fabricated using thick plates made of 12MnNiVR low-alloy steel (500 L × 200 W × 32 T mm
and 500 L × 200 W × 21 T mm), as shown in Figure 1. The chemical compositions (wt.%)
of the base metal and filler metals are illustrated in Table 1, and the chemical compositions
of the welding flux are shown in Table 2. Manual arc welding (MAW) and submerged arc
welding (SAW) were used for root welding filling and cover welding, respectively. The
electrode and welding parameters are shown in Table 3. Pass 1 is the root welding that
uses the MAW method with a CHE607CG welding rod, and passes 2–4 (fill welding) and
5–7 (cover welding) use the SAW method with a CHW-S7CG welding rod. This process
is widely used in tank welding to improve the welding efficiency to ensure the welding
quality. According to the requirements of GB 50661-2011, the preheat temperature was
120 ◦C, and the inter-pass temperature was about 100 ◦C, which was achieved by the flame
heating method. The welding flux is CHF26H, which should be dried at 350 ◦C for 1 h
before use.
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Figure 1. Welding sample structure (unit: mm). 

Table 1. Chemical composition of base metal and filler metals (wt.%). 

Composition C Mn Si Mo Ni S P Cr V Ti 

CHE607CG 0.070 1.44 0.26 0.27 0.94 0.006 0.013 / / / 

CHW-S7CG 0.006 1.70 0.15 0.53 0.025 0.008 0.01 0.02 0.004 0.10 

12MnNiVR 0.094 1.70 0.15 0.07 0.21 0.008 0.01 0.02 0.046 0.011 

Figure 1. Welding sample structure (unit: mm).

Table 1. Chemical composition of base metal and filler metals (wt.%).

Composition C Mn Si Mo Ni S P Cr V Ti

CHE607CG 0.070 1.44 0.26 0.27 0.94 0.006 0.013 / / /
CHW-S7CG 0.006 1.70 0.15 0.53 0.025 0.008 0.01 0.02 0.004 0.10
12MnNiVR 0.094 1.70 0.15 0.07 0.21 0.008 0.01 0.02 0.046 0.011

Table 2. Chemical composition of welding flux (wt.%).

Composition SiO2 CaO + MgO MnO TiO2 + Al2O3 CaF2

CHF26H 20~40 30~40 5~10 5~15 15~30
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Table 3. Welding parameters.

Pass Method Electrode Diameter (mm) Current (A) Voltage (V) Welding Speed (cm/min)

1 SMAW CHE607CG 4.0 200–240 18–24 /
2 SAW CHW-S7CG 2.4 380–460 30–36 18–26
3 SAW CHW-S7CG 2.4 380–460 30–36 18–26
4 SAW CHW-S7CG 2.4 380–460 30–36 18–26
5 SAW CHW-S7CG 2.4 380–460 30–36 18–26
6 SAW CHW-S7CG 2.4 380–460 30–36 18–26
7 SAW CHW-S7CG 2.4 380–460 30–36 18–26

2.2. Residual Stress Measurement

The surface residual stresses after welding were measured by the indentation strain
gauge method along paths L1, L2, and L3, as shown in Figure 2. Five points were measured
on every path.
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Figure 2. Positions in residual stress measurement.

The indentation strain method [22] is one of the most widely used residual stress mea-
surement methods because of its semi-destructive characteristics. The level of load is selected
according to the different materials. The diameter of the indentation is 1.2 mm, and the
depth is 0.2 mm. The measuring principle is shown in Figure 3. The test positions of the
actual path are shown in Figure 4. When the impact load is applied, the impact indentation
method adds an additional stress field to the original stress field to relax the residual stress,
resulting in a strain increment compared with the specimen without residual stress. The
residual elastic strain is calculated according to the relationship between the residual elastic
strain and the strain increment under different indentation sizes. The residual stress measured
by the indentation strain gauge method is calculated by using Equations (1) and (2) [23]:

σT =
E

1 − v2 (εeT + vεeL) (1)

σL =
E

1 − v2 (εeL + vεeT) (2)

where εeT and εeL are the transverse and longitudinal elastic strain increments due to resid-
ual stress and impact loads, whereas σT and σL represent the transverse and longitudinal
residual stress.

Metals 2022, 12, x FOR PEER REVIEW 5 of 15 
 

 

 

Figure 3. The measurement principle of indentation strain gauge method. 

 

Figure 4. The measurement process of indentation strain gauge method. 

The residual stress measurement requires four steps. Step 1: the measurement surface 

is ground with a grinding mill and polished with an emery cloth. Step 2: the strain gauges 

are pasted along the parallel and vertical directions to the weld. Step 3: the center of the 

impact device is kept concentric with the center of the measurement point. Step 4: the 

indentation is generated by the impact pin. The longitudinal and transverse residual elas-

tic strains are measured by sticking the biaxial strain gauge parallel and perpendicular to 

the weld. 

3. Finite Element Model Details 

3.1. Finite Element Model 

ABAQUS software 6.14-5 was used to calculate the finite element. The 2D axisym-

metric model was adopted because of the large size of the storage tank, as shown in Figure 

5. The structure and welding sequence are consistent with Figure 2. The dimensions of the 

bottom plate model, vertical plate model, left seam model, and right seam model are 910 

L × 21 T mm, 630 L × 32 T mm, 24 D × 13 H mm, and 13 D × 13 H mm, respectively. The 

thermal–mechanical coupling model, equivalent heat source, and ideal elastic–plastic 

model were adopted in the welding process, which are carefully described in Section 3.2. 

The birth and death technology is used to simulate the shape change of the work piece by 

deleting and reactivating the mesh or contact pairs and was adopted in this model. Weld 

passes 1 to 7 were sequentially activated.  

Figure 3. The measurement principle of indentation strain gauge method.



Metals 2022, 12, 1502 5 of 14

Metals 2022, 12, x FOR PEER REVIEW 5 of 15 
 

 

 

Figure 3. The measurement principle of indentation strain gauge method. 

 

Figure 4. The measurement process of indentation strain gauge method. 

The residual stress measurement requires four steps. Step 1: the measurement surface 

is ground with a grinding mill and polished with an emery cloth. Step 2: the strain gauges 

are pasted along the parallel and vertical directions to the weld. Step 3: the center of the 

impact device is kept concentric with the center of the measurement point. Step 4: the 

indentation is generated by the impact pin. The longitudinal and transverse residual elas-

tic strains are measured by sticking the biaxial strain gauge parallel and perpendicular to 

the weld. 

3. Finite Element Model Details 

3.1. Finite Element Model 

ABAQUS software 6.14-5 was used to calculate the finite element. The 2D axisym-

metric model was adopted because of the large size of the storage tank, as shown in Figure 

5. The structure and welding sequence are consistent with Figure 2. The dimensions of the 

bottom plate model, vertical plate model, left seam model, and right seam model are 910 

L × 21 T mm, 630 L × 32 T mm, 24 D × 13 H mm, and 13 D × 13 H mm, respectively. The 

thermal–mechanical coupling model, equivalent heat source, and ideal elastic–plastic 

model were adopted in the welding process, which are carefully described in Section 3.2. 

The birth and death technology is used to simulate the shape change of the work piece by 

deleting and reactivating the mesh or contact pairs and was adopted in this model. Weld 

passes 1 to 7 were sequentially activated.  

Figure 4. The measurement process of indentation strain gauge method.

The residual stress measurement requires four steps. Step 1: the measurement surface is
ground with a grinding mill and polished with an emery cloth. Step 2: the strain gauges are
pasted along the parallel and vertical directions to the weld. Step 3: the center of the impact
device is kept concentric with the center of the measurement point. Step 4: the indentation
is generated by the impact pin. The longitudinal and transverse residual elastic strains are
measured by sticking the biaxial strain gauge parallel and perpendicular to the weld.

3. Finite Element Model Details
3.1. Finite Element Model

ABAQUS software 6.14-5 was used to calculate the finite element. The 2D axisymmet-
ric model was adopted because of the large size of the storage tank, as shown in Figure 5.
The structure and welding sequence are consistent with Figure 2. The dimensions of the
bottom plate model, vertical plate model, left seam model, and right seam model are
910 L × 21 T mm, 630 L × 32 T mm, 24 D × 13 H mm, and 13 D × 13 H mm, respectively.
The thermal–mechanical coupling model, equivalent heat source, and ideal elastic–plastic
model were adopted in the welding process, which are carefully described in Section 3.2.
The birth and death technology is used to simulate the shape change of the work piece by
deleting and reactivating the mesh or contact pairs and was adopted in this model. Weld
passes 1 to 7 were sequentially activated.
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The model has 9138 elements and 9704 nodes. The effect of the quantity of mesh on
the residual stress was considered. Figure 6 shows that the residual stress calculated by the
number of elements, 9138 and 11,235, is basically consistent; thus, the number of elements,
9138, can ensure the calculation accuracy. The smallest mesh size is 0.64 mm × 0.6 mm.
The DCAX4 (4-node linear axisymmetric heat-transfer quadrilateral) thermal element and
CAX4R (4-node bilinear axisymmetric reduced-integration) stress element are used in the
whole model during thermal and elastic–plastic analyses, respectively. During the welding
and PWHT, the thermophysical and mechanical properties vary with temperature. The
temperature-dependent material properties of 12MnNiVR, including the mechanical and
thermal properties, are considered in the finite element analysis, as shown in Figure 7.
Herein, the material properties of the weld and base metals are assumed to be the same.
The mechanical properties are obtained from tests, such as the elastic modulus, Poisson’s
ratio, and yield strength. The thermal property parameters were calculated using JMatPro
software. JMatPro has a powerful metal material database that has been widely verified
by experiments. The thermal performance parameters of the material can be obtained by
inputting the chemical element composition of the material. The material parameters in the
simulation are assumed to be constant when the temperature is above 1400 ◦C.
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3.2. Thermal Analysis

The thermal-elastic-plastic analysis consists of the welding temperature and stress
analyses and employs the temperature that was obtained from the thermal analysis. The
2D model with an endogenous heat source has better results and can greatly reduce the
computational cost [24]. The welding temperature is simulated by applying a heat flux
to the weld elements by using a ramp heat input model. This heat model is described
in Ref. [25] in detail, which can be used to model the welding heat source and avoid the
numerical convergence problems, as shown in Figure 8. The heat flux varies with time,
simulating the movement of the heat source. The weld bead is heated to the maximum
heat input within ramp time t1 (i.e., the heat source approaching process). Then, it stays
constant until t2 to ensure melting. At last, it decreases to zero within t3. A ramp time of
20% of the total weld time gives the best correlation with the measurement data. In this
work, t1, t2, and t3 are 0.1, 0.4, and 0.5 s, respectively.
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The heat flux for each weld pass, DFLUX, is calculated by [20]:

DFLUX =
ηUI

V
(3)

where η is the arc thermal efficiency, U is the arc voltage, I is the welding current, and V is
the weld pass volume.

The heat transfer between model and environment was defined by Newton’s law for
convection and Stefan–Boltzmann’s law for radiation, as shown in Equations (4) and (5),
respectively:

qc = ac(T − T0) (4)

qr = εC0

(
T4 − T4

0

)
(5)

where ac = 2.5 × 10−5 J·mm2·s−1·K−1 is the convective heat transfer coefficient, ε = 0.85 is
the absorption of steel, C0 = 5.67 × 10−14 J·mm2·S−1·K−1 is the Stefan–Boltzmann constant,
and T0 is the ambient temperature [K].

After the welding simulation, the local PWHT simulations were conducted. The
thermal cycle was applied to the heated zone of the local PWHT.

3.3. Mechanical Analysis

The effect of phase transformation on the low-carbon steel is not evident [22]; thus,
phase transformation is not considered. Therefore, the residual stress was calculated
according to the results of the thermal analysis, and the total strain increment consists of
three components, as shown in Equation (6) [26]:

dε = dεe + dεp + dεth (6)
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The thermal strain is calculated by using the coefficient of thermal expansion related to
temperature. The rate-independent plastic model for plastic strain uses the von Mises yield
surface, temperature-dependent mechanical properties, and the isotropic hardening model,
which are used for welding simulation because the tests required for model calibration are
easy to carry out. Isotropic strengthening means that the loaded surface uniformly expands in
all directions after the material enters the plastic deformation. However, the center and shape
of the yield surface remain unchanged. The yield function is defined as Equation (7) [26]:

f
(
σij, k

)
= f0

(
σij

)
− k(k) = 0, (7)

where k(k) is a strengthening function used to determine the yield surface size.
No displacement boundary condition is set for the two ends of the tank bottom and

the two vertices of the tank wall. The constraint points of the boundary conditions are
shown in Figure 5.

4. Results
4.1. Analysis on Welding Residual Stress Distribution

The transverse and longitudinal residual stresses are high at the discontinuity due to
the geometric discontinuity of the structure. The inner weld is tempered by the thermal
cycle of the multi-pass weld; thus, the residual stress is relatively small. Furthermore, the
circumferential residual stress of the outer weld is high after cooling. The S11, S22, and
S33 of the 2D axisymmetric model correspond to the radial, axial, and circumferential
stresses, respectively.

The residual stress calculation results are shown in Figure 9. The maximum value of the
radial residual stress (S11) is 454 MPa, which is located at the tank bottom. The radial residual
tensile stress at the discontinuous joint between the weld and tank bottom is 343 MPa, and
the corresponding compressive stress is formed in the interior of the tank bottom.
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The maximum residual axial stress (S22) is 438 MPa, which is located at the joint
between the weld and the tank wall, and a certain compressive stress is formed in the
interior of the tank wall. The hoop residual stress (S33) has a large value on the inside and
outside of the weld. The maximum stress is 756 MPa, which is located at the joint between
the weld and the tank floor.

During the welding heating, the deposited metal expands to produce compressive
stress. The weld forms high residual tensile stress due to the constraint of the joint in the
cooling process. The latter weld of the multi-layer welding has a post-thermal effect on the
previous weld, which can reduce the residual stress of the inner weld. Thus, the residual
stress is mainly in the outer layer of the weld.

4.2. Verification of Residual Stresses

The calculated and measured values of the residual stress on the inner and outer surfaces
of the sample are compared according to the path shown in Figure 2, and the comparison
results are shown in Figures 10 and 11. The axial and hoop residual stress distributions of the
inner and outer welds are analyzed because the radial residual stress is small.
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The finite element calculation of the axial residual stress is in good agreement with the
measured value, and its magnitude and trend can be reflected through the finite element
calculation. The maximum axial residual stresses of the inner and outer welds are 408 and
439 MPa, respectively, which are both located at the joint between the weld and the tank
wall. A high residual stress can also be observed at the joint between the weld and the
tank wall and between the tank floor and the weld. When the last inner weld is cooled, the
shrinkage of the inner weld forms tensile stress. Accordingly, a high axial residual stress is
generated at the joint between the weld and the tank wall.

The maximum hoop residual stresses of the inner and outer welds are 682 and 678 MPa,
respectively, which are both located inside the weld connected with the tank floor. The
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hoop residual stress in the weld zone is high, especially at the connection between the weld
and the tank wall, weld, and tank floor.

The finite element calculation value of the hoop residual stress is basically consistent
with the experimental value. The maximum error is 13%, which proves the reliability of
the finite element model. The small error may be caused by: (1) a manual measurement
error, (2) an assumption condition of the simulation, and (3) material parameter properties
subject to actual manufacturing process errors.

5. Discussion

In actual practice, the storage tank is not subject to PWHT. According to the Section 4
analysis, the values of the hoop residual stress in the inner and outer welds are high. The
residual stress must be reduced via heat treatment. The effect of the local heat treatment on
residual stress is studied because the volume of the storage tank is large.

The heat treatment temperature, heating rate, and heating zone width were studied
according to the requirements of GB/T 30583-2014. Path 1 was taken along the inner and
outer surfaces of the weld, as shown in Figure 5. The hoop residual stress on the paths was
selected to study the influencing factors of heat treatment because the hoop residual stress
is much higher than the radial and axial residual stresses.

The S11, S22, and S33 of path 1 were selected to study the influencing factors of heat
treatment because the overall hoop residual stress is high, and the safety requirement of
the inside weld is considerable.

5.1. Effect of PWHT Temperature

The heat treatment temperatures of 600 ◦C, 650 ◦C, and 700 ◦C were selected to study in
accordance with the requirements of GB/T30583-2014. The residual stresses under different
heat treatment temperatures were obtained by finite element analysis. Figure 12 shows the ra-
dial, axial, and hoop residual stress distribution of path 1 with varying heating temperatures.
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During the heat treatment, plastic deformation occurs within the metal under the
action of residual stresses due to the reduction of the yield point, causing some residual
stresses to be released. After heat treatment at different temperatures, the maximum
residual stress moves from the two segments to the inside of the weld, and the residual
stress distribution trend is the same. The axial residual stress has the maximum value at
the joint between the weld and the tank wall. The hoop residual stress has the maximum
value in the weld connected with the tank floor.

The distribution trend of the hoop residual stress gradually slows down, and the value
becomes smaller with the increase in heat treatment temperature. The maximum values of
the hoop residual stress of path 1 at 600 ◦C, 650 ◦C, and 700 ◦C are 511, 401, and 346 MPa,
respectively.

When the temperature increases, the residual stress can be relaxed better because
the uniformity of the structure increases, and the yield strength of the material decreases.
Therefore, the heat treatment temperature of 700 ◦C is selected to study the other influencing
factors of heat treatment.

5.2. Effect of PWHT Heating Rate

The heating rate is set to 56/76/96/106/136 ◦C/h within the allowable range of
GB/T30583-2014. Figure 13 shows the radial, axial, and hoop residual stress distribution of
path 1 with different heating rates.
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The trend of the residual stress distribution slows down after different heat treatment
rates. The axial residual stress has the maximum value at the joint between the weld and
the tank wall. Meanwhile, the hoop residual stress has the maximum value inside the outer
weld connected to the tank floor.

Except for the heating rate of 106 ◦C/h, the value of hoop residual stress decreases
with the decrease in heating rate. The changes in the radial and axial residual stresses
at different heating rates are evident, but they are much lower than the residual stress
after welding.

The hoop residual stress of path 1 can be reduced by 49% when the heating rate is
56 ◦C/h. The main reason is that the temperature difference is small when heating slowly,
and high thermal stress is avoided during the heat treatment.

The slower heating rate can achieve a good heat treatment effect and save energy con-
sumption. Thus, the heating rate of 56 ◦C/h is selected for follow-up heat treatment research.

5.3. Effect of PWHT Width

According to GB/T 30853-2014, the heating width is HB = 7nhk (1 < n < 3) when the
thickness is less than 50 mm, where hk is the maximum width of the weld. Different heating
widths of 200, 400, 600, 800, 1000, and 1200 mm are arranged along the inner and outer walls
of the tank, as shown in Figure 5. The heat treatment scheme was obtained by studying the
above-mentioned factors. The heat treatment temperature of 700 ◦C and the heating rate of
56 ◦C/h were used to study the effect of heating zone width. Figure 14 shows the radial,
axial, and hoop residual stress distribution of path 1 with different heating widths.
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The value of the hoop residual stress gradually increases with the increase in the
heating zone width. When the heating zone width is less than 600 mm, the changes in
the radial and axial residual stresses with different heating widths are not evident. When
the heating zone width is greater than 800 mm, the radial residual stress is greater than
that after welding. The effect of the heat treatment is the best with a 200 mm heating zone
width, and the maximum hoop residual stress can be reduced by 52%.

Therefore, the heat treatment temperature of 700 ◦C, the heating rate of 56 ◦C/h, and
the heating zone width of 200 mm can greatly reduce the residual stress, especially the
hoop residual stress.

6. Conclusions

In this work, the residual stress distribution caused by T-shaped fillet welding and a
heat treatment is studied via the finite element method and experimental test. The 2D finite
element model and equivalent heat source model were used in a numerical simulation. The
influences of the PWHT factors on the residual stress were studied, including the heating
temperature, heating rate, and heating zone width. The following conclusions may be
drawn based on the obtained results:

(1) The welding residual stress at the weld is high due to the discontinuity of the T-weld
structure and the material characteristics of a high yield strength. The maximum
value of the hoop residual stress can reach 756 MPa, which is located at the connection
between the outer weld and the bottom plate of the tank.

(2) The circumferential residual stress is mainly distributed in the outer weld because the
inner weld is tempered by the outer weld.

(3) The maximum radial residual stress is 454 MPa, which is mainly located at the bottom
of the tank. The maximum axial residual stress is 438 MPa, which is mainly located at
the joint between the weld and the tank wall.

(4) The varying heat treatment temperature has a great influence on the residual stress.
The effect of residual stress relief is better with the increase in temperature. The heat
treatment temperature of 12MnNiVR is recommended to be 700 ◦C.

(5) The residual stress reduction increases with the decrease in the heating rate. The
residual stress is greatly reduced through the 56 ◦C/h heating rate. This effect is
mainly due to the avoidance of thermal stress caused by the high heating rate.

(6) The residual stress decreases when the inner and outer walls are arranged with a
200 mm heating zone width because the symmetrical distribution prevents large
deformations and high stress from occurring.
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