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Abstract

:

Nickel-based alloy metal matrix composite (NAMMC) is a new type of composite material which is expected to replace traditional Nickel-base superalloy used in the manufacture of important hot-end components in aerospace, naval ships and industrial gas turbine engines due to its excellent high temperature strength, superior thermal fatigue resistance, high oxidation resistance and thermal corrosion resistance. However, these outstanding properties make it hard to process these materials with conventional manufacturing methods such as forging and machining owing to posing problems of high cost and energy consumptions. Laser additive manufacturing (AM) with a high degree of machining freedom and a high-energy-density laser beam as heat source has been used for processing NAMMC hot-end components with superior performance and complicated structure. Nevertheless, some manufacturing defects of poor bonding, high residual stress, cracking, pore etc. still exist in laser AM NAMMC parts. Therefore, this paper reviews research progress of laser AM NAMMC at present. The control method of manufacturing defect and the effect of reinforcements on the microstructure and mechanical properties of NAMMC are summarized. In addition, the challenges and prospects of laser AM NAMMC in the future are also discussed.
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1. Introduction


Nickel-based alloy has excellent oxidation resistance, corrosion resistance and good mechanical properties, and can service at high temperature environments for a long time [1,2,3,4]. With the rapid development of industry in recent years, the working environment of Nickel-based alloy parts has become more and more severe, and higher requirements are put forward for the properties of high-temperature material. Nickel-based alloy metal matrix composite (NAMMC) combine the properties of matrix (toughness, formability, heat and electrical conductivity) and reinforcement (high strength, high modulus, high wear resistance and high temperature resistance). Therefore, NAMMC has better higher temperature strength and better corrosion-oxidation resistance than nickel-based alloy [5,6,7,8]. However, it is difficult to produce high-strength and complex-structure NAMMC parts with conventional manufacturing methods (forging and machining). Due to a high degree of machining freedom and a high-energy-density laser beam as heat source, laser additive manufacturing (AM) has been used for processing NAMMC hot-end components with superior performance and complicated structure. Laser AM technology includes laser beam powder bed fusion (LBPBF) [9], laser metal deposition(LMD) [10] and Laser Engineered Net-Shaping (LENS) [11]. Among them, LBPBF has a good prospect and potential. This technology uses the focused high energy laser beam to melt and solidify solid powder of a few tens of microns in diameter, layer-by-layer, under direct input from a computer-aided design system, and finally form a three-dimensional structure of parts [12,13,14,15]. Laser AM process can be regarded as multi-layer and multi-pass welding process. So, only alloys with good welding properties are suitable to be used as the matrix for preparing full dense NAMMC with high performance. It has been reported that the comprehensive mechanical properties and forming property of laser AM NAMMCs can be improved by ceramic particle addition [16,17,18]. Therefore, laser AM NAMMCs are expected to replace traditional Nickel-based alloy used in important hot-end components with complicated structure in aerospace, naval ships and industrial gas turbine engines [19,20,21,22,23]. The choice of reinforcement is particularly important for laser AM NAMMC. The common reinforcement mainly includes carbides (SiC, TiC) [24,25,26], nitrides (AlN) [27,28], oxides (Al2O3, ZrO2) [29,30], carbon fibers (CFs) [31], carbon nanotubes (CNTs) [32,33] and graphene nanoplatelets (GNPs) [34,35]. Ceramic particles have properties such as high hardness, high strength, high modulus and high temperature resistance. Therefore, the particle-reinforced metal matrix composites have higher specific strength, specific stiffness and heat resistance [36,37]. CFs has good resistance to high temperature oxidation and corrosion as well as self-lubricating properties. Especially, short CFs are more homogeneously distributed in the composites, so the mechanical properties of short CFs reinforced composites are isotropic [38,39]. Due to the extremely small diameter, high Young’s modulus and excellent chemical stability, CNTs are used as reinforcement for lightweight and high-strength composites [40,41]. GNPs as a two-dimensional (2D) material with a high aspect ratio can improve the strength and toughness of metal matrix composites [42,43]. Adding proper amount of reinforcement particles to nickel-based alloy metal matrix can effectively improve the comprehensive mechanical properties of NAMMC. In addition, laser AM is a complex processing technology and it includes many processing parameters, such as laser beam size, laser power, scanning speed, layer thickness, and hatch spacing [44]. The optimization of process parameters is the main means to eliminate manufacturing defects, such as poor bonding, high residual stress, cracking and pore. Therefore, this also attracts much attention from researchers. At last, the reinforcement adding and process parameter adjusting impact obviously the microstructure and mechanical property of laser AM NAMMC. Therefore, this paper reviews the research progress of laser AM NAMMC from the perspective of reinforcement adding and process parameter optimizing, and their effect mechanism on the microstructure and mechanical property.




2. Reinforcement Adding


Ceramic particle reinforcement is the more common reinforcement including borides [45], carbides [46], nitrides [47], oxides [48] due to their high strength, stiffness, modulus and refractoriness. Ceramic particles reinforced NAMMCs not only has simple processing and low cost, but also exhibit the advantages of isotropy. In addition, the ceramic particles reinforced nickel matrix composites has good high temperature strength, thermal fatigue resistance, oxidation resistance and thermal corrosion resistance. The yield strength (YS), ultimate tensile strength (UTS) and elongation (EI) of NAMMCs reinforced with different ceramic particles are shown in Table 1. In addition to ceramic particle, GNPs and CNTs used as reinforcement has attracted much attention for reinforcing nickel-based alloys, owing to the high strength, high thermal and electrical conductivity [49,50]. Wang et al. [51] successfully prepared CNTs reinforced Inconel 625 composite using LBPBF technology. The results showed that the tensile strength (998 MPa) and yield strength (788 MPa) of LBPBF CNTs/IN625 were higher than the tensile strength (878 MPa) and yield strength (641 MPa) of LBPBF IN625. Chen et al. [52] successfully prepared GNPs reinforced K418 Nickel-based superalloy composites by LBPBF process. The results showed that the GNPs distributed uniformly in the matrix, and the grain of GNPs/K418 composites changed from columnar crystal to equiaxed crystal. The tensile strength (1200 MPa) and yield strength (1018 MPa) of LBPBF GNPs/K418 were higher than the tensile strength (1078 MPa) and yield strength (912 MPa) of LBPBF K418 alloy. Meanwhile, the EI of LBPBF GNPs/K418 was increased from 7.13% to 10.3%. The synchronous improvement of the strength and plasticity was attributed to the load transfer strengthening, dislocation strengthening and Orowan strengthening. Table 2 lists the properties of common ceramic particle reinforcements [53]. The difference of physical properties between the reinforcement and the matrix should be analyzed when the reinforcement is selected, such as physical matching, interface bonding, coefficient of thermal expansion (CTE), laser absorption rate (LAR), shape and size. The influence of the reinforcement with different physical properties and geometric profile on nickel-based alloy are described in detail below.



2.1. Physical Matching and Interface Bonding


The physical matching and interface bonding between the matrix and the reinforcement should be considered comprehensively when choosing the reinforcement. For instance, the lattice structure difference between TiC particles and nickel-based alloy is smaller, indicating that the better physical matching is easy to form between TiC ceramic particles and nickel-based alloy matrix. Cooper et al. [58] investigated the influences of the reinforcements with different lattice structure, such as SiC, Al2O3 and TiC, on IN625 Nickel-based superalloy manufactured by laser AM. The results showed that the surfaces of SiC/IN625 and Al2O3/IN625 composites were rough and porous, and cracks exist. However, the surface of TiC/IN625 composite was smooth and without defects. It can be seen from Figure 1 that there are many pores and large cracks in SiC/IN625 and Al2O3/IN625 composites, while a denser microstructure appears in TiC/IN625 composite. This indicates that TiC ceramic particle with a better physical matching is suited to be used as the reinforcement for nickel-based alloys. In addition, the good interface bonding between reinforcement and matrix is a key factor in the preparation of high density and high strength laser AM NAMMC parts. Wang et al. [59] studied the microstructure and mechanical properties of TiN reinforced IN718 composites. It can be seen from Figure 2 that the interface between TiN particles and IN718 alloy is compact, and no second phase precipitates at the interface. In addition, lots of misfit dislocations distribute near the interface, which also give rise to additional reinforcement effect. Tensile strength of TiN/IN718 composite are higher than that of IN718 alloy. Hong et al. [60] studied the interface of LMD TiC/Inconel 718 composites, and found that a interface layer with the thickness of 0.8 to 1.4 mu formed between TiC particles and matrix, as shown in Figure 3. The interfacial layer is formed by the reaction of matrix and reinforcement into the composition of (Ti, M) C (M: Nb and Mo). The typical metallurgical bonding interface is helpful to improve the microstructure and mechanical properties of Inconel 718 alloy.




2.2. Coefficient of Thermal Expansion and Laser Absorption Rate


The difference of CTE and LAR between the matrix and reinforcement should be considered when selecting the reinforcement. If the CTE of reinforcement is far from that of matrix, a large amount of residual thermal stress is generated inside NAMMC parts during laser AM process, resulting in high density dislocations around the particles [53,61]. Jiang et al. [62] studied systematically TiC/Inconel 625 composite coating by laser cladding, and found that high density dislocations distributed around TiC particles (Figure 4), which was attributed to the difference in CTE between TiC particles (7.74 × 10−6/K) and Inconel 625 (12.8 × 10−6/K). Introduced residual stress increased and the cracking tendency inside NAMMC parts raised, which was not conducive to the forming property of laser AM NAMMC. In addition, the reinforcements with higher LAR can improve the forming quality of laser AM NAMMC parts. Due to the ceramic particles with higher LAR than the metal, the LAR of NAMMC is higher than that of nickel-based alloy [46,63]. The LAR of composite powders is calculated by the formula: A = ∑βi Ai (Ai and βi are the LAR and the volume fraction of the powder, respectively). Table 3 lists the LAR of some metal materials, ceramics and composites [46,64]. Yang et al. [22] studied the influence of TiB2 on the mechanical properties of Hastelloy-X. It is found from the Figure 5 that the LAR of TiB2/Hastelloy-X composite increases with the increase of TiB2 content. The increase in LAR contributes to melting the composite powders and reducing the pore due to more energy from laser beam absorbed during laser AM process. The UTS of the TiB2/Hastelloy-X composite was 106% higher than that of Hastelloy-X. Ceramic particles can also improve the LAR of other metal alloys. For example, Li et al. [65] added TiB2 to AlSi10Mg alloy and found that the LAR of TiB2/AlSi10Mg composite increased obviously. As a result, the forming quality of laser AM AlSi10Mg/TiB2 composite was improved and its tensile strength from 360 MPa to 530 MPa with higher EI at about 15.5%, due to the addition of TiB2.




2.3. Shape and Size


Spherical or nearly spherical particles are widely regarded as feasible reinforcements. Li et al. [66] studied the effect of spherical and non-spherical WC-reinforced on microstructure, mechanical properties and wear resistance of LMD Inconel 625 superalloy. The study showed that the wear rate of spherical WC/IN625 composite coatings was smaller than that of non-spherical WC/IN625 composite coatings. This indicated that spherical WC/IN625 composite coating had higher wear resistance. In addition, the size of the reinforcement has great influence on the mechanical properties of NAMMC [67]. Cao et al. [68] studied the effects of micron-TiC and nano-TiC on the microstructure and mechanical properties of IN625 alloy by laser AM process. The results showed that the grain of nano-TiC/Inconel 625 composite was significantly refined compared with micro-TiC/Inconel 625 composite. The hardness, tensile properties and wear resistance of the composite samples were significantly improved, and the ductility was not significantly reduced. AlMangour et al. [69] prepared micro-scale and nano-scale TiC particle-reinforced 316L stainless steel matrix by LBPBF, and analyzed the effect of ceramic particle sizes on the crack propagation of metal matrix composite. The results showed that the grain size was significantly reduced by adding nano-scale TiC. It was found that the crack propagated along the boundary of the molten pool in 316L stainless steel as shown in Figure 6A. But no cracks were found to appear inside nano-TiC/316L composite (Figure 6C), because nanoscale TiC particles were able to prevent crack propagation.





3. Process Parameter Optimizing for Controlling Defect


The manufacturing defect of NAMMC can be reduced by optimizing the process parameters. Guo et al. [57] successfully prepared Y2O3/Inconel 738 composites by LBPBF. Figure 7a shows the distribution law of pore and crack in LBPBF Inconel 738 alloy. When the laser energy density is too high or too low, a large number of pores and cracks appear in Inconel 738 alloy. When the laser power is 290 W and the scanning speed is 1200 mm/s, the forming quality of Inconel 738 alloy is the best. It indicates that optimizing the process parameters is a simple and effective method to reduce the manufacturing defect of NAMMC. Figure 7b shows the defect distribution of LBPBF Y2O3/Inconel 738 composites. In addition, Guo et al. found that the Y2O3 particle addition significantly improved the forming quality of LBPBF Inconel 738 alloy. Zr segregation along grain boundaries was effectively eliminated and the crack density was reduced. Chen et al. [70] studied the densification behavior, microstructure evolution and wear properties of LBPBF TiC/Inconel 625 composites. Their results showed that there were many defects such as pores and non-fusion in Inconel 625 alloy when laser energy density was 139 J/mm3. When laser energy density reached 208 J/mm3, the sample density reached the highest value. Microhardness reached the maximum 440 HV. Hong et al. [67] successfully prepared LMD TiC/Inconel 625 composite with high wear resistance and high strength by optimizing process parameters. They found that some unmelted TiC particle severely agglomerated in columnar dendrites when laser energy input per unit length (LEIPUL) was below 72 kJ/m, as shown in Figure 8a,b. The columnar dendrites seriously coarsened when LEIPUL was 160 kJ/m (Figure 8d). In addition, areas 1-4 shows the EDX analysis of the chemical composition in the inter-dendrite matrix of the LMD-processed TiC/ Inconel 625 composites under different LEIPUL. A large number of TiC particles melted when LEIPUL was above 100 kJ/m (Figure 8c,d) and the content of element C showed at least double increase. When LEIPUL was in the range from 72 to 100 kJ/m, TiC/Inconel 625 composite exhibited excellent microstructure and optimum mechanical properties. Wang et al. [71] studied the process optimization of oxide dispersion strengthened Nickel-based superalloy by LBPBF. Figure 9 shows the effect of process parameters on the tensile strength. Figure 9a shows that the tensile strength decreases with increasing laser power. This is because the higher the laser power, the more laser energy is input. Excessive laser energy input causes the metal powder to overmelting, resulting in more porosity and cracks in the sample during the building process. This eventually caused a decrease in the tensile strength of the sample. Figure 9b shows that the tensile strength increases first and then decreases as the scanning speed increases. The lower scanning speed will improve the temperature of melt pool, resulting in an instability of the melt pool. Excessively high scanning speed results in a low melt pool temperature, and the metal powder cannot be completely melted. Therefore, lower or higher speeds are not good for tensile strength. Figure 9c shows that the tensile strength increases first and then decreases with the increase of hatch spacing. This also indicates smaller or larger hatch spacing bring manufacturing deficiency for NAMMC, resulting in poor tensile strength.



In addition to process parameter optimizing for controlling manufacturing defect, it has been proved by a large number of studies that adding ceramic particles to the metal matrix is feasible to eliminate cracks forming during laser AM process. For example, Han et al. [72] investigated the effect of nano-TiC on the distribution of defects and molten pool boundaries in LBPBF Hastelloy X matrix composites. They found that TiC particles addition eliminated obviously pores and cracks in the molten pool in Hastelloy X alloy (Figure 10). The yield strength (830MPa) and UTS (1150MPa) of LBPBF TiC/Hastelloy X composite are much higher than that the yield strength (690MPa) and UTS (920MPa) of LBPBF Hastelloy X alloy. Cheng et al. [73] studied the effect of adding Y2O3 on cracks and mechanical properties of LBPBF Hastelloy X alloy. It can be seen from Figure 11a that many cracks (yellow arrows) were found in the LBPBF Hastelloy X alloy. The results showed that the addition of Y2O3 eliminated the crack, and the microstructure uniformity of LBPBF Y2O3/Hastelloy X composite was improved (Figure 11).




4. Strengthening Mechanism


It has been demonstrated that the strength of laser AM NAMMC is able to be enhanced by the reinforcement without sacrificing plasticity, which is mainly attributed to some strengthening synergy mechanism, such as stress-transfer strengthening, grain refinement strengthening, Orowan strengthening and high-density dislocation strengthening [69,74,75,76]. Wang et al. [77] studied the strengthening mechanism of LBPBF TiC/GTD222 composites. As can be seen from Figure 12a, the yield strength (1270 MPa) and UTS (1390MPa) of LBPBF TiC/GTD222 composite are much higher than the yield strength (831 MPa) and UTS (1100MPa) of LBPBF GTD222 alloy. This is mainly due to Orowan strengthening of TiC particles evenly dispersed in the cellular and columnar structures (Figure 12b). Both TiC and γ’ phases prevent movable dislocations from moving (Figure 12). Yao et al. [78] deemed that the increased strength of TiC/IN718 composites alloy was mainly attributed to the combination of grain refinement strengthening and high-density dislocation strengthening. Zheng et al. [11] thought the strengthening mechanism of LENS TiC/IN625 composite was ascribed to a large number of dislocations around TiC particles (Figure 13), which was caused by the residual stress between the reinforcement TiC and the matrix IN625 alloy. Zhang et al. [5] considered that LBPBF TiC/GTD222 composite with high strength was concerned with the well-combined interface between matrix and TiC reinforcement (Figure 14a). The inset in Figure 14a shows the Fourier transform image of the carbide, and it can be identified as TiC particles. In addition, they found that there were a large number of dislocations (yellow symbols) at the interface between the matrix and the reinforcement due to the difference in lattice constants between matrix and the reinforcement (Figure 14b). Therefore, they believed that the increase in strength of TiC/GTD222 composite was attributed to the synergistic effect of load-bearing strengthening of particles and Orowan strengthening.




5. Heat Treatment of Nickel-Based Alloy Composites


The extremely high melting and solidification rates of laser AM technologies result in high residual stresses of NAMMC parts [79,80,81,82]. In addition, NAMMC parts may undergo phase transitions or harmful phase precipitation at high temperatures, resulting in insufficient material strength and premature component failure in practical applications. Therefore, a subsequent heat treatment is required for liminate residual stress and improve microstructure performance of the AM NAMMC. Zhang et al. [5] investigated the effect of heat treatment on the microstructure and mechanical properties of TiC/GTD222 nickel matrix composites prepared by LBPBF. Figure 15 shows the microstructure and the particle size distribution in GTD222 alloy and the TiC/GTD222 composite after heat treatment. It shows that the microstructures of both materials consist of γ matrix, γ′ phase (black contrast) and carbide (bright contrast). It can be seen from Figure 15e,f that the average carbide size in GTD222 and the TiC/GTD222 composite after heat treatment are 123 nm and 125 nm, and the latter has more uniform carbide size distribution. In addition, the yield strength (1270 MPa) and UTS (1470 MPa) of the TiC/GTD222 composites are higher than the yield strength (1270 MPa) and UTS (1380 MPa) of the GTD222 alloy. However, the EI (8.1%) of the TiC/GTD222 composites is lower than that (15%) of the GTD222 alloy. Guo et al. [57] investigated the effect of heat treatment on the microstructure and mechanical properties of Y2O3/IN738LC composites prepared by LBPBF. Figure 16a,b shows the microstructures of IN738LC alloy and Y2O3/IN738LC composite after heat treatment, respectively. It is clearly seen from the figures that there are 2 groups of precipitates, i.e., coarse (red arrows) and fine precipitates (yellow arrows) in the microstructure. The coarse precipitates are primary γ′ (400 nm), while the fine precipitates are secondary γ′ (50 nm). The volume fractions of primary and secondary γ′ for IN738LC alloy and Y2O3/IN738LC composite are 36–38% and 24–26%, respectively. Figure 16c,d shows the inverse pole figures of the IN738LC alloy and the Y2O3/IN738LC composite after heat treatment, respectively. The average grain size of the IN738LC alloy increased from 16.7 µm to 27.5 µm, and the average grain size of the Y2O3/IN738LC composite increased from 19.9 µm to 29.3 µm after the heat treatment process. In addition, the yield strength (633 MPa) and UTS (773 MPa) of the Y2O3/IN738LC composites are higher than the yield strength (615 MPa) and UTS (714 MPa) of the IN738LC alloy. However, the EI of the Y2O3/IN738LC composites is slightly decreased.




6. Conclusions and Prospect


In summary, due to the excellent high temperature strength, superior thermal fatigue resistance, high oxidation resistance and thermal corrosion resistance, the NAMMC is expected to replace traditional nickel-based alloys used in the manufacture of important hot-end components in aerospace, industrial gas turbines, seawater pipelines and other fields. It is well known that the future aerospace manufacturing industry requires more and more high temperature parts with complex structural designs. Using traditional manufacturing methods (forging and machining) to process these parts with complex internal and external profiles needs high-time cost and high-complexity complex process flow, and even some parts cannot be manufactured. From the above general description, high performance and complex structure parts of NAMMC was successfully fabricated using laser AM through a proper selection of reinforcement addition and process parameters. However, due to the large temperature gradient and extremely high cooling rate of laser AM process, high residual stress introduced deformation and cracking come out easily inside laser AM NAMMC. This problem should deserve a lot of attention of researchers. In addition, the traditional reinforcement addition improves the strength of the metal matrix at the price of sacrificing metal matrix plasticity as well as fracture toughness. Moreover, the microstructure stability of some reinforcement is deteriorated during long-term and high-temperature service. Therefore, the research and development of new reinforcement with stable crystal structure for improving strengthen and toughen synchronously is the great challenge of the field in the future.
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Figure 1. OM image of cross-sections of different composites [58]. 
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Figure 2. (a) The bright field image of the interface between TiN particle and matrix; (b) the HRTEM image of the interface between TiN particle and matrix; (c) the corresponding FFT patterns of yellow frame in (b); (d) the Inversed FFT image of (c) [59]. 
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Figure 3. SEM image of the interface layer between TiC and matrix [60]. 
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Figure 4. TEM image of dislocations around TiC particles [62]. 
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Figure 5. Diagram of laser absorption rate versus wavelength for all specimens [22]. 
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Figure 6. SEM image of crack propagation with (A) LBPBF 316L; (B) LBPBF micro-TiC/316L composite and (C) LBPBF nano-TiC/316L composite [69]. 
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Figure 7. OM images of the polished surfaces of Inconel 738 alloy (a) without Y2O3 and (b) with Y2O3 fabricated by LPBF showing pore and crack under different laser powers and scan speeds as well as the corresponding crack density [57]. 
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Figure 8. High-magnification SEM images showing composite structures of LMD-processed TiC/Inconel 625 parts using (a) P = 500 W, v = 900 mm/min, LEIPUL = 33 kJ/m; (b) P = 800 W, v = 900 mm/min, LEIPUL = 53 kJ/m; (c) P = 500 W, v = 300 mm/min, LEIPUL = 100 kJ/m; and (d) P = 800 W, v = 300 mm/min, LEIPUL = 160 kJ/m [67]. 
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Figure 9. Effect of process parameters on the tensile strength: (a) power, (b) scanning speed, (c) hatch spacing [71]. 
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Figure 10. Defect distribution and molten pools in the built samples under optimum conditions: (a,b) Hastelloy X; (c,d) Hastelloy X matrix composite [72]. 
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Figure 11. OM images of LBPBF manufactured specimens, (a,b) undoped specimen; (c,d) Y2O3-doped specimen [73]. 
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Figure 12. (a) Typical tensile stress-strain curves of LBPBF processed GTD222 alloy and TiC particle-reinforced Ni matrix composite; (b) schematic illustration of the strengthening mechanisms in TiC particle-reinforced Ni matrix composite [77]. 
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Figure 13. TEM micrographs of LENS-deposited IN625 TiC/Ni MMCs: (a) high density of dislocation in matrix and (b) large amount of precipitation interacting with dislocations [11]. 
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Figure 14. (a) Interfacial bonding of TiC particles and GTD222 matrix, (b) Dislocations (yellow symbols) [5]. 
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Figure 15. SEM images and corresponding to carbide particle size distributions after heat treatment: (a) GTD222, (b) Enlarged image of square area in Figure 14a, (c) TiC/GTD222 composite, (d) TiC/GTD222 local area magnification, (e) Carbide particle sizes distribution in GTD222, (f) Carbide particle sizes distribution in TiC/GTD222 composite [5]. 
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Figure 16. SEM images showing the microstructures (a) IN738LC alloy and (b) Y2O3/IN738LC composit, EBSD mapping showing the grain structure of the (c) IN738LC alloy and (d) Y2O3/IN738LC composit [57]. 
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Table 1. Mechanical properties of NAMMCs reinforced with different ceramic particles.
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Reinforcement

	
Material

	
YS (MPa)

	
UTS (MPa)

	
EI (%)

	
Ref.






	
WC

	
Hastelloy X

	
590.0

	
780.0

	
37.0

	
[54]




	
WC/Hastelloy X

	
670.0

	
850.0

	
32.0




	
TiB2

	
Hastelloy X

	
555.9

	
692.5

	
6.1

	
[55]




	
TiB2/Hastelloy X

	
715.5

	
1053.2

	
7.2




	
TiN

	
IN718

	
950.0

	
-

	
45

	
[56]




	
TiN/IN718

	
1024.0

	
-

	
30




	
Y2O3

	
IN738

	
1050

	
1190

	
6.7

	
[57]




	
Y2O3/IN738

	
1004

	
1148

	
7.2
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Table 2. The properties of common reinforcements [53].
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	Particals
	Density

ρ/(g/cm3)
	CTE

α/(10−6/°C)
	Modulus of Elasticity

E/GPa
	Melting Point

°C





	TiB2
	1.50
	6.39
	550
	2980



	SiC
	3.21
	5.40
	480
	2700



	TiC
	4.93
	7.20
	360
	3140



	WC
	15.50
	2.82
	132
	2870



	AlN
	3.26
	4.84
	310
	2200



	Al2O3
	3.97
	6.80
	460
	2054
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Table 3. LAR of alloys, ceramics and composites powders [46,64].
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	Material
	Laser Absorptivity Rate (%)





	Ti
	0.77



	Ni
	0.64



	Fe
	0.64



	Al
	0.15



	TiB2
	>0.71



	SiC
	0.78



	TiC
	0.82



	AlSi10Mg
	0.09



	TiC/Inconel 718
	0.72



	TiB2/AlSi10Mg
	0.71
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