Comparative Study on the Microstructure and Biodegradation Behavior of Commercialized Pure Mg and Mg-1.0Ca-0.5Sr Alloy in 27 mM HCO3−-SBF: The Influence of the pH Regulation Treatments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Microstructure Characterization
2.3. Immersion Test
2.4. Corrosion Precipitation Prediction via Hydra–Medusa
3. Results and Discussion
3.1. Cp Mg and Mg Alloy Microstructure and Phase Constitution Characterization
3.2. Post-Immersion: Morphology Analysis and Corrosion Precipitation Characterization
3.3. Influence of pH Regulation Approaches in r-SBF
3.4. Influence of r-SBF and pH Regulation Technique on the Formation of Corrosion Protective Layer
3.5. Influence of Tris-HCL Buffering Reagent
3.6. Corrosion Mechanisms of Mg-1.0Ca-0.5Sr Alloy in r-SBF
4. Conclusions
- The incorporation of Sr and Ca into the Mg-1.0Ca-0.5Sr alloy has shown an evident grain-refining effect in which its synergistic effect with the formation of secondary phases results in the enhancement in the corrosion resistance of the alloy.
- Mg2Ca acts as a sacrificial anode, protecting or retarding the dissolution of the α-Mg; whereas the Mg17Sr2 cathode accelerates α-Mg dissolution in the early immersion stage but inhibits intergranular corrosion propagation by forming a continuous barrier network in the GBs.
- The dissolution of Mg2Ca into Ca2+ ions near the surface facilitates the formation of a nobler HA precipitate despite the chelating reaction given by the Tris-HCL buffer reagent.
- The higher content in the r-SBF (27 mM) aids in regulating the local pH value, which is confirmed by the lower pH variation in Tris-HCL buffered r-SBF, and the matched content of as in the human physiological body was seen to promote the formation of stoichiometric HA deposits.
- The utilization of Tris-HCl should be avoided due to its incapability to regulate the pH near the surface of the materials, which reflects a contradicting finding across the test results. For instance, the lower pH variation in r-SBF should indicate an enhanced corrosion resistance, but it is due to the consumption of OH− ions, which has accelerated the corrosion rate due to its precipitation-inhibiting properties. Its binding to Mg2+ and Ca2+ away from the surface of the materials has also affected the expected precipitations.
- Future work should consider chromic-cleaned surface morphology analysis because it offers conclusive evidence regarding the influence of each secondary phase on the corrosion performance of alloys based on magnesium.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández, J.; El Ouardi, Y.; Bonastre, J.; Molina, J.; Cases, F. Modification of the magnesium corrosion rate in physiological saline 0.9 wt% NaCl via chemical and electrochemical coating of reduced graphene oxide. Corros. Sci. 2019, 152, 75–81. [Google Scholar] [CrossRef]
- Hanawa, T. Recent development of new alloys for biomedical use. Mater. Sci. Forum 2006, 512, 243–248. [Google Scholar] [CrossRef]
- Xing, F.; Li, S.; Yin, D.; Xie, J.; Rommens, P.M.; Xiang, Z.; Liu, M.; Ritz, U. Recent progress in Mg-based alloys as a novel bioabsorbable biomaterials for orthopedic applications. J. Magnes. Alloys 2022, 10, 1428–1456. [Google Scholar] [CrossRef]
- Godavitarne, C.; Robertson, A.; Peters, J.; Rogers, B. Biodegradable materials. Orthop. Trauma 2017, 31, 316–320. [Google Scholar] [CrossRef]
- Tan, L.; Yu, X.; Wan, P.; Yang, K. Biodegradable materials for bone repairs: A review. J. Mater. Sci. Technol. 2013, 29, 503–513. [Google Scholar] [CrossRef]
- Mei, D.; Lamaka, S.V.; Gonzalez, J.; Feyerabend, F.; Willumeit-Römer, R.; Zheludkevich, M.L. The role of individual components of simulated body fluid on the corrosion behavior of commercially pure Mg. Corros. Sci. 2019, 147, 81–93. [Google Scholar] [CrossRef]
- Tsakiris, V.; Tardei, C.; Clicinschi, F.M. Biodegradable Mg alloys for orthopedic implants–A review. J. Magnes. Alloys 2021, 9, 1884–1905. [Google Scholar] [CrossRef]
- Zhang, E. Phosphate treatment of magnesium alloy implants for biomedical applications. In Surface Modification of Magnesium and Its Alloys for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2015; pp. 23–57. [Google Scholar]
- Nasr Azadani, M.; Zahedi, A.; Bowoto, O.K.; Oladapo, B.I. A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog. Biomater. 2022, 11, 1–26. [Google Scholar] [CrossRef]
- Kumar, R.; Katyal, P. Effects of alloying elements on performance of biodegradable magnesium alloy. Mater. Today Proc. 2022, 56, 2443–2450. [Google Scholar] [CrossRef]
- Li, H.; Lin, G.; Wang, P.; Huang, J.; Wen, C. Nutrient alloying elements in biodegradable metals: A review. J. Mater. Chem. B 2021, 9, 9806–9825. [Google Scholar] [CrossRef]
- Maji, K.; Mondal, S. Calcium phosphate biomaterials for bone tissue engineering: Properties and relevance in bone repair. In Racing for the Surface; Springer: Berlin/Heidelberg, Germany, 2020; pp. 535–555. [Google Scholar]
- Hebert, S.C. Extracellular calcium-sensing receptor: Implications for calcium and magnesium handling in the kidney. Kidney Int. 1996, 50, 2129–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peacock, M. Calcium metabolism in health and disease. Clin. J. Am. Soc. Nephrol. 2010, 5, S23–S30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mushahary, D.; Sravanthi, R.; Li, Y.; Kumar, M.J.; Harishankar, N.; Hodgson, P.D.; Wen, C.; Pande, G. Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration. Int. J. Nanomed. 2013, 8, 2887–2902. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Zhou, C.; Ma, Y.; Li, J.; Jiang, J.; Chen, Y.; Dong, L.; He, F. Improved osseointegration of strontium-modified titanium implants by regulating angiogenesis and macrophage polarization. Biomater. Sci. 2022, 10, 2198–2214. [Google Scholar] [CrossRef]
- Liu, X.; Yang, H.; Xiong, P.; Li, W.; Huang, H.-H.; Zheng, Y. Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions. Corros. Sci. 2019, 157, 205–219. [Google Scholar] [CrossRef]
- Oyane, A.; Kim, H.M.; Furuya, T.; Kokubo, T.; Miyazaki, T.; Nakamura, T. Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. Part A 2003, 65, 188–195. [Google Scholar] [CrossRef]
- Gamble, J.L. Chemical Anatomy, Physiology and Pathology of Extracellular Fluid: A Lecture Syllabus; Harvard University Press: Cambridge, MA, USA, 1954. [Google Scholar]
- Kim, H.-M.; Kishimoto, K.; Miyaji, F.; Kokubo, T.; Yao, T.; Suetsugu, Y.; Tanaka, J.; Nakamura, T. Composition and structure of apatite formed on organic polymer in simulated body fluid with a high content of carbonate ion. J. Mater. Sci. Mater. Med. 2000, 11, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Kishimoto, K.; Miyaji, F.; Kokubo, T.; Yao, T.; Suetsugu, Y.; Tanaka, J.; Nakamura, T. Composition and structure of the apatite formed on PET substrates in SBF modified with various ionic activity products. J. Biomed. Mater. Res. 1999, 46, 228–235. [Google Scholar] [CrossRef]
- Marco, I.; Feyerabend, F.; Willumeit-Römer, R.; Van der Biest, O. Degradation testing of Mg alloys in Dulbecco’s modified eagle medium: Influence of medium sterilization. Mater. Sci. Eng. C 2016, 62, 68–78. [Google Scholar] [CrossRef]
- Kirkland, N.; Birbilis, N.; Staiger, M. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater. 2012, 8, 925–936. [Google Scholar] [CrossRef]
- Shi, Z.; Atrens, A. An innovative specimen configuration for the study of Mg corrosion. Corros. Sci. 2011, 53, 226–246. [Google Scholar] [CrossRef]
- Aljarrah, M.; Medraj, M. Thermodynamic modelling of the Mg–Ca, Mg–Sr, Ca–Sr and Mg–Ca–Sr systems using the modified quasichemical model. Calphad 2008, 32, 240–251. [Google Scholar] [CrossRef]
- Bornapour, M.; Celikin, M.; Pekguleryuz, M. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg–Sr and Mg–Ca–Sr biodegradable implant alloys and the role of the microstructure. Mater. Sci. Eng. C 2015, 46, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Berglund, I.S.; Brar, H.S.; Dolgova, N.; Acharya, A.P.; Keselowsky, B.G.; Sarntinoranont, M.; Manuel, M.V. Synthesis and characterization of Mg–Ca–Sr alloys for biodegradable orthopedic implant applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1524–1534. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-S.; Guo, X.-F.; Cui, H.-B. Microstructures and tensile properties of as-cast Mg-5Sn-1Si magnesium alloy modified with trace elements of Y, Bi, Sb and Sr. China Foundry 2021, 18, 9–17. [Google Scholar] [CrossRef]
- Malekan, M.; Bahmani, A. Determination of dendrite coherency point characteristics in Al-Si-Mg alloy. Int. J. Cast Met. Res. 2021, 34, 14–20. [Google Scholar] [CrossRef]
- Sahu, M.R.; Kumar, T.S.; Chakkingal, U. A review on recent advancements in biodegradable Mg-Ca alloys. J. Magnes. Alloys 2022, 10, 2094–2117. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, Q.; Wang, J.; Yang, Q.; Zhao, W.; Qiao, B.; Li, Y.; Jiang, D. Improving in vitro and in vivo corrosion resistance and biocompatibility of Mg–1Zn–1Sn alloys by microalloying with Sr. Bioact. Mater. 2021, 6, 4654–4669. [Google Scholar] [CrossRef]
- Zeng, R.-C.; Qi, W.-C.; Cui, H.-Z.; Zhang, F.; Li, S.-Q.; Han, E.-H. In vitro corrosion of as-extruded Mg–Ca alloys—The influence of Ca concentration. Corros. Sci. 2015, 96, 23–31. [Google Scholar] [CrossRef]
- Seong, J.; Kim, W. Mg–Ca binary alloy sheets with Ca contents of ≤ 1 wt.% with high corrosion resistance and high toughness. Corros. Sci. 2015, 98, 372–381. [Google Scholar] [CrossRef]
- Harandi, S.E.; Mirshahi, M.; Koleini, S.; Idris, M.H.; Jafari, H.; Kadir, M.R.A. Effect of calcium content on the microstructure, hardness and in-vitro corrosion behavior of biodegradable Mg–Ca binary alloy. Mater. Res. 2013, 16, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Jeong, Y.; Kim, W. Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion. Corros. Sci. 2014, 82, 392–403. [Google Scholar] [CrossRef]
- Tan, C.Y.; Singh, R.; Teh, Y.C.; Tan, Y.M.; Yap, B.K. The effects of calcium-to-phosphorus ratio on the densification and mechanical properties of hydroxyapatite ceramic. Int. J. Appl. Ceram. Technol. 2015, 12, 223–227. [Google Scholar] [CrossRef]
- Gómez-Morales, J.; Torrent-Burgues, J.; Boix, T.; Fraile, J.; Rodríguez-Clemente, R. Precipitation of stoichiometric hydroxyapatite by a continuous method. Cryst. Res. Technol. J. Exp. Ind. Crystallogr. 2001, 36, 15–26. [Google Scholar] [CrossRef]
- Zhou, P.; Yu, B.; Hou, Y.; Duan, G.; Yang, L.; Zhang, B.; Zhang, T.; Wang, F. Revisiting the cracking of chemical conversion coating on magnesium alloys. Corros. Sci. 2021, 178, 109069. [Google Scholar] [CrossRef]
- Xin, Y.; Hu, T.; Chu, P.K. Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HCO3−. Corros. Sci. 2011, 53, 1522–1528. [Google Scholar] [CrossRef]
- Atrens, A.; Shi, Z.; Mehreen, S.U.; Johnston, S.; Song, G.-L.; Chen, X.; Pan, F. Review of Mg alloy corrosion rates. J. Magnes. Alloys 2020, 8, 989–998. [Google Scholar] [CrossRef]
- Atrens, A.; Johnston, S.; Shi, Z.; Dargusch, M.S. Understanding Mg corrosion in the body for biodegradable medical implants. Scr. Mater. 2018, 154, 92–100. [Google Scholar] [CrossRef]
- Gong, C.; He, X.; Fang, D.; Liu, B.; Yan, X. Effect of second phases on discharge properties and corrosion behaviors of the Mg-Ca-Zn anodes for primary Mg-air batteries. J. Alloys Compd. 2021, 861, 158493. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Zhang, Z.; Farrell, N.; Chen, D.; Zheng, Y. Comparative, real-time in situ monitoring of galvanic corrosion in Mg-Mg2Ca and Mg-MgZn2 couples in Hank’s solution. Corros. Sci. 2019, 161, 108185. [Google Scholar] [CrossRef]
- Kondoh, K.; Takei, R.; Kariya, S.; Li, S.; Umeda, J. Local galvanic corrosion analysis on cast Mg-Ca binary alloy using scanning Kelvin probe force microscopy. Mater. Lett. 2022, 319, 132266. [Google Scholar] [CrossRef]
- Jin, Y.; Blawert, C.; Feyerabend, F.; Bohlen, J.; Campos, M.S.; Gavras, S.; Wiese, B.; Mei, D.; Deng, M.; Yang, H. Time-sequential corrosion behaviour observation of micro-alloyed Mg-0.5 Zn-0.2 Ca alloy via a quasi-in situ approach. Corros. Sci. 2019, 158, 108096. [Google Scholar] [CrossRef]
- Kim, J.-G.; Joo, J.-H.; Koo, S.-J. Development of high-driving potential and high-efficiency Mg-based sacrificial anodes for cathodic protection. J. Mater. Sci. Lett. 2000, 19, 477–479. [Google Scholar] [CrossRef]
- Kim, W.-C.; Kim, J.-G.; Lee, J.-Y.; Seok, H.-K. Influence of Ca on the corrosion properties of magnesium for biomaterials. Mater. Lett. 2008, 62, 4146–4148. [Google Scholar] [CrossRef]
- Xu, C.; Wang, J.; Chen, C.; Wang, C.; Sun, Y.; Zhu, S.; Guan, S. Initial micro-galvanic corrosion behavior between Mg2Ca and α-Mg via quasi-in situ SEM approach and first-principles calculation. J. Magnes. Alloys, 2021; in press. [Google Scholar] [CrossRef]
- Thekkepat, K.; Han, H.-S.; Choi, J.-W.; Lee, S.-C.; Yoon, E.S.; Li, G.; Seok, H.-K.; Kim, Y.-C.; Kim, J.-H.; Cha, P.-R. Computational design of Mg alloys with minimal galvanic corrosion. J. Magnes. Alloys 2022, 10, 1972–1980. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, K.; Yuan, J.; Li, Y.; Li, X.; Ma, M.; Shi, G.; Wang, K. In vitro degradation behavior of as-cast Mg-3Zn-1Ca-0.5 Sr alloy. Mater. Res. Express 2020, 7, 025404. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Y.; Wen, C. Effects of Mg17Sr2 phase on the bio-corrosion behavior of Mg–Zr–Sr alloys. Adv. Eng. Mater. 2016, 18, 259–268. [Google Scholar] [CrossRef]
- Ascencio, M.; Pekguleryuz, M.; Omanovic, S. An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The effect of electrolyte renewal. Corros. Sci. 2015, 91, 297–310. [Google Scholar] [CrossRef]
- Chelliah, N.M.; Padaikathan, P.; Kumar, R. Evaluation of electrochemical impedance and biocorrosion characteristics of as-cast and T4 heat treated AZ91 Mg-alloys in Ringer’s solution. J. Magnes. Alloys 2019, 7, 134–143. [Google Scholar] [CrossRef]
- Liang, M.-j.; Wu, C.; Ma, Y.; Wang, J.; Dong, M.; Dong, B.; Liao, H.-h.; Fan, J.; Guo, Z. Influences of aggressive ions in human plasma on the corrosion behavior of AZ80 magnesium alloy. Mater. Sci. Eng. C 2021, 119, 111521. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Yu, Y.; Shen, Y.; Xiong, Y. Wear behavior of extruded ZK60 magnesium alloy in simulated body fluid with different pH values. Mater. Chem. Phys. 2021, 262, 124292. [Google Scholar] [CrossRef]
- Bornapour, M.; Mahjoubi, H.; Vali, H.; Shum-Tim, D.; Cerruti, M.; Pekguleryuz, M. Surface characterization, in vitro and in vivo biocompatibility of Mg-0.3 Sr-0.3 Ca for temporary cardiovascular implant. Mater. Sci. Eng. C 2016, 67, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, X.; Mei, D.; Deng, M.; Zheng, Y.; Zheludkevich, M.L.; Lamaka, S.V. Local pH and oxygen concentration at the interface of Zn alloys in Tris-HCl or HEPES buffered Hanks’ balanced salt solution. Corros. Sci. 2022, 197, 110061. [Google Scholar] [CrossRef]
- Xin, Y.; Chu, P.K. Influence of Tris in simulated body fluid on degradation behavior of pure magnesium. Mater. Chem. Phys. 2010, 124, 33–35. [Google Scholar] [CrossRef]
- Rad, H.R.B.; Idris, M.H.; Kadir, M.R.A.; Farahany, S. Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys. Mater. Des. 2012, 33, 88–97. [Google Scholar] [CrossRef]
- Amukarimi, S.; Mozafari, M. Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities. MedComm 2021, 2, 123–144. [Google Scholar] [CrossRef]
- Zeng, R.-C.; Hu, Y.; Guan, S.-K.; Cui, H.-Z.; Han, E.-H. Corrosion of magnesium alloy AZ31: The influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution. Corros. Sci. 2014, 86, 171–182. [Google Scholar] [CrossRef]
- Johnston, S.; Dargusch, M.; Atrens, A. Building towards a standardised approach to biocorrosion studies: A review of factors influencing Mg corrosion in vitro pertinent to in vivo corrosion. Sci. China Mater. 2018, 61, 475–500. [Google Scholar] [CrossRef] [Green Version]
- Mei, D.; Lamaka, S.V.; Lu, X.; Zheludkevich, M.L. Selecting medium for corrosion testing of bioabsorbable magnesium and other metals–a critical review. Corros. Sci. 2020, 171, 108722. [Google Scholar] [CrossRef]
- Lamaka, S.V.; Gonzalez, J.; Mei, D.; Feyerabend, F.; Willumeit-Römer, R.; Zheludkevich, M.L. Local pH and its evolution near Mg alloy surfaces exposed to simulated body fluids. Adv. Mater. Interfaces 2018, 5, 1800169. [Google Scholar] [CrossRef]
- Mei, D.; Lamaka, S.V.; Feiler, C.; Zheludkevich, M.L. The effect of small-molecule bio-relevant organic components at low concentration on the corrosion of commercially pure Mg and Mg-0.8 Ca alloy: An overall perspective. Corros. Sci. 2019, 153, 258–271. [Google Scholar] [CrossRef]
- McDowell, H.; Gregory, T.; Brown, W. Solubility of Ca5(PO4)3OH in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37 °C. J. Res. Natl. Bur. Standards. Sect. A Phys. Chem. 1977, 81, 273. [Google Scholar] [CrossRef]
- Xin, Y.; Huo, K.; Tao, H.; Tang, G.; Chu, P.K. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomater. 2008, 4, 2008–2015. [Google Scholar] [CrossRef]
- Brady, M.; Rother, G.; Anovitz, L.; Littrell, K.; Unocic, K.; Elsentriecy, H.; Song, G.-L.; Thomson, J.; Gallego, N.; Davis, B. Film breakdown and nano-porous Mg(OH)2 formation from corrosion of magnesium alloys in salt solutions. J. Electrochem. Soc. 2015, 162, C140. [Google Scholar] [CrossRef]
- Maltseva, A.; Shkirskiy, V.; Lefèvre, G.; Volovitch, P. Effect of pH on Mg (OH) 2 film evolution on corroding Mg by in situ kinetic Raman mapping (KRM). Corros. Sci. 2019, 153, 272–282. [Google Scholar] [CrossRef]
- Ott, N.; Schmutz, P.; Ludwig, C.; Ulrich, A. Local, element-specific and time-resolved dissolution processes on a Mg–Y–RE alloy–Influence of inorganic species and buffering systems. Corros. Sci. 2013, 75, 201–211. [Google Scholar] [CrossRef]
- Ferreira, C.M.; Pinto, I.S.; Soares, E.V.; Soares, H.M. (Un) suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions—A review. Rsc Adv. 2015, 5, 30989–31003. [Google Scholar] [CrossRef]
Abbreviation | ||||
---|---|---|---|---|
Condition | r-SBF | |||
Material | Uninterrupted (Non-Renewed) | 24 h Corrosion Media Renewal | Tris-HCL Buffered | |
CP Mg | MgSBFx | MgSBFT | MgSBFT | |
Mg-1.0Ca-0.5Sr | M2SBFx | M2SBFR | M2SBFT |
Ionic Species | Ionic Concentration (mM) | ||
---|---|---|---|
Human Plasma | r-SBF | r-SBF + Tris/HCl | |
142 | 142 | 142 | |
5.0 | 5.0 | 5.0 | |
1.5 | 1.5 | 1.5 | |
2.5 | 2.5 | 2.5 | |
103 | 103 | 103 | |
27.0 | 27.0 | 27.0 | |
1.0 | 1.0 | 1.0 | |
0.5 | 0.5 | 0.5 | |
Tris | - | - | 50.5 |
Mg System | Mg (wt.%) | Ca (wt.%) | Sr (wt.%) | |||
---|---|---|---|---|---|---|
Nominal | Detected | Nominal | Detected | Nominal | Detected | |
CP Mg | 100.0 | 99.8 | 0 | 0.01 | 0 | 0 |
Mg-1.0Ca-0.5Sr | 98.5 | 98.3 | 1.0 | 1.2 | 0.5 | 0.5 |
Analysis Site | Detected Element (wt.%) | |||
---|---|---|---|---|
Mg | Ca | Sr | Phase | |
A (globular lamellar) | 65.8 | 9.3 | 24.9 | Mg2Ca and Mg17Sr2 |
B (greyish globular phase) | 33.7 | 66.3 | 0 | Mg2Ca |
C (GB interior) | 65.0 | 15.0 | 20.0 | Mg2Ca and Mg17Sr2 |
D (α-Mg interior) | 99.5 | ≈0 | ≈0 | Mg |
E (bright globular particle) | 75.3 | 0 | 24.7 | Mg17Sr2 |
Material | Analysis Site | Elements (at.%) | Ca:P | ||||||
---|---|---|---|---|---|---|---|---|---|
Mg | O | C | Cl | Ca | Sr | P | |||
MgSBFx | A | 5.4 | 60.9 | 19.8 | - | 8.7 | - | 5.2 | 1.673 |
B | 6.2 | 58.1 | 18.9 | - | 7.2 | - | 10.3 | 0.699 | |
MgSBFR | C | 18.9 | 49.1 | 9.5 | - | 11.2 | - | 10 | 1.120 |
D | 58.1 | 11.6 | 12.4 | - | 5.1 | - | 12.8 | 0.398 | |
MgSBFT | E | 22.4 | 71.8 | 5.8 | - | - | - | - | - |
F | 12.8 | 68.3 | 7.3 | 0.5 | 6.3 | - | 4.8 | 1.312 | |
M2SBFx | G | 4.80 | 72.4 | 6.5 | - | 9.4 | 0.3 | 5.6 | 1.678 |
H | 25.4 | 63.4 | 11.5 | 0.2 | 8.3 | 0.5 | 6.9 | 1.203 | |
I | 3.2 | 41.3 | 20.5 | - | 20.5 | 0.1 | 14.4 | 1.423 | |
J | 10.2 | 68.2 | 9.5 | - | 5.3 | 0.2 | 6.6 | 0.803 | |
M2SBFR | K | 8.7 | 63.6 | 13.5 | - | 8.1 | 0.1 | 6 | 1.350 |
L | 23.8 | 71.2 | 4.9 | 0.1 | - | - | - | - | |
M2SBFT | M | 5.7 | 52.4 | 19.3 | 0.4 | 7.2 | 0.1 | 4.3 | 1.674 |
System | Hydra–Medusa: Predicted Precipitation. | ||||
---|---|---|---|---|---|
Mg(OH)2 | MgCO3 | Ca5(PO4)3(OH) | CaCO3 | SrCO3 | |
MgSBFx | ✓ | ✓ | ✓ | ✓ | |
MgSBFR | ✓ | ✓ | ✓ | ✓ | |
MgSBFT | ✓ | ✓ | ✓ | ✓ | |
M2SBFx | ✓ | ✓ | ✓ | ✓ | ✓ |
M2SBFR | ✓ | ✓ | ✓ | ✓ | ✓ |
M2SBFT | ✓ | ✓ | ✓ | ✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafyra, S.; Nazim, E.M.; Ngadiman, N.H.A.; Sudin, I. Comparative Study on the Microstructure and Biodegradation Behavior of Commercialized Pure Mg and Mg-1.0Ca-0.5Sr Alloy in 27 mM HCO3−-SBF: The Influence of the pH Regulation Treatments. Metals 2023, 13, 136. https://doi.org/10.3390/met13010136
Shafyra S, Nazim EM, Ngadiman NHA, Sudin I. Comparative Study on the Microstructure and Biodegradation Behavior of Commercialized Pure Mg and Mg-1.0Ca-0.5Sr Alloy in 27 mM HCO3−-SBF: The Influence of the pH Regulation Treatments. Metals. 2023; 13(1):136. https://doi.org/10.3390/met13010136
Chicago/Turabian StyleShafyra, Sabri, Engku Mohammad Nazim, Nor Hasrul Akhmal Ngadiman, and Izman Sudin. 2023. "Comparative Study on the Microstructure and Biodegradation Behavior of Commercialized Pure Mg and Mg-1.0Ca-0.5Sr Alloy in 27 mM HCO3−-SBF: The Influence of the pH Regulation Treatments" Metals 13, no. 1: 136. https://doi.org/10.3390/met13010136
APA StyleShafyra, S., Nazim, E. M., Ngadiman, N. H. A., & Sudin, I. (2023). Comparative Study on the Microstructure and Biodegradation Behavior of Commercialized Pure Mg and Mg-1.0Ca-0.5Sr Alloy in 27 mM HCO3−-SBF: The Influence of the pH Regulation Treatments. Metals, 13(1), 136. https://doi.org/10.3390/met13010136