Ablation Mechanism of AlSiB-C/C Composites under an Oxy-Acetylene Torch
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure of AlSiB-C/C Composites
3.2. Surface Temperature and Ablation Morphology Evolution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fitzer, E.; Manocha, L.M. Carbon Reinforcements and Carbon/Carbon Composites; Springer Science & Business Media: Berlin, Germany, 1998. [Google Scholar]
- Fu, Q.; Zhang, P.; Zhuang, L.; Zhou, L.; Zhang, J.; Wang, J.; Hou, X.; Riedel, R.; Li, H. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples. J. Mater. Sci. Technol. 2022, 96, 31–68. [Google Scholar] [CrossRef]
- Vignoles, G.L.; Aspa, Y.; Quintard, M. Modelling of carbon–carbon composite ablation in rocket nozzles. Compos. Sci. Technol. 2010, 70, 1303–1311. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, N.; Chen, L.; Wang, S.; Liu, Y. Determination of the physical properties of functional gradient materials. J. Solid Rocket. Technol. 2004, 27, 77–80. [Google Scholar]
- Fu, Q.; Shan, Y.; Wen, S.; Li, H.; Chu, Y.; Liu, X. Oxidation pre-treatment to improve the mechanical property and oxidation resistance of Si–Mo–Cr coated C/C composites. Corros. Sci. 2014, 83, 103–110. [Google Scholar] [CrossRef]
- Zhou, K.; Xu, J.; Xiao, G.; Huang, Y. A novel low-damage and low-abrasive wear processing method of Cf/SiC ceramic matrix composites: Laser-induced ablation-assisted grinding. J. Mater. Proc. Technol. 2022, 302, 117503. [Google Scholar] [CrossRef]
- Yan, C.; Liu, R.; Zhang, C.; Cao, Y. Ablation and mechanical properties of 3D braided C/ZrC–SiC composites with various SiC/ZrC ratios. Ceram. Int. 2016, 42, 19019–19026. [Google Scholar] [CrossRef]
- Sun, H.; Li, H.; Shen, X.; Cao, G.; Qiang, X.; Ren, X.; Fu, Q. Microstructure and Ablation Behavior of C/C Composites Doped with ZrB2. J. Inorg. Mater. 2011, 26, 669–672. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Fu, Q.; Chu, Y. SiC Nanowires Toughed HfC Ablative Coating for C/C Composites. J. Mater. Sci. Technol. 2015, 31, 70–76. [Google Scholar] [CrossRef]
- Pu, H.; Niu, Y.; Hu, C.; Wang, G.; Li, H.; Zeng, Y.; Zheng, X. Ablation of vacuum plasma sprayed TaC-based composite coatings. Ceram. Int. 2015, 41, 11387–11395. [Google Scholar] [CrossRef]
- Xu, Z.; Fu, Q.; Liu, L.; Li, H.; Wang, Y.; Yao, X.; He, Z. ZrB2–SiC coating to protect carbon/carbon composites against ablation. Surf. Coat. Technol. 2013, 226, 17–21. [Google Scholar] [CrossRef]
- Yang, X.; Hu, X.; Su, Z.; Shi, A.; Weng, Y.; Huang, Q. Effect of fiber-oriented direction on mechanical and ablative performance of C/C-HfC-ZrC-SiC composites. J. Asian Ceram. Soc. 2020, 8, 1162–1174. [Google Scholar] [CrossRef]
- Borji, S.; Ahangarkani, M.; Zangeneh-Madar, K.; Valefi, Z. The effect of sintering activator on the erosion behavior of infiltrated W-10wt%Cu composite. Int. J. Refract. Met. Hard Mater. 2017, 66, 150–157. [Google Scholar] [CrossRef]
- Ran, L.; Peng, K.; Yi, M.; Yang, L. Ablation property of a C/C–Cu composite prepared by pressureless infiltration. Mater. Lett. 2011, 65, 2076–2078. [Google Scholar] [CrossRef]
- Zhang, X.; Han, J.; He, X.; Yan, C.; Wang, B.; Xu, Q. Ablation-resistance of combustion synthesized TiB2-Cu cermet. J. Am. Ceram. Soc. 2005, 88, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Handbook of Practical Inorganic Thermodynamic Data. Nonferrous Met. 1980, 3, 45.
- Wu, L.; Wu, G.; Li, B.; Kang, P.; Chen, S.; Yang, W. Ablation behaviour of interpenetrating Al/graphite composites. Optoelectron. Adv. Mater. -Rapid Commun. 2015, 9, 381–383. [Google Scholar] [CrossRef]
- Liu, H.; Kang, P.; Wu, G.; Wang, Z.; Zhang, N.; Mula, S. Ablation mechanism of AlSi/graphite dissipative heat protective composites under an oxy-acetylene torch. Ceram. Int. 2021, 47, 27925–27933. [Google Scholar] [CrossRef]
- Kang, P.; Liu, H.; Yang, W.; Wang, W.; Zhang, N.; Zhao, Q.; Mula, S.; Wu, G. Microstructure and ablation behavior of SiMo/graphite composites with excellent short-time ablation resistance. Corros. Sci. 2020, 168, 108590. [Google Scholar] [CrossRef]
- Tian, T.; Sun, W.; Qing, X.; Xiong, X.; Zhang, H.; Chu, Y.; Chen, Z.; Zeng, Y. Intelligent cooling structure design of “Z-pins like” silicon rods to enhance the ablation resistance of C/C-ZrC-SiC composites above 2500 °C. J. Eur. Ceram. Soc. 2020, 40, 3875–3886. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, Q.; Wang, B.; Liu, T.; Sun, J. The ablation behavior and mechanical property of C/C-SiC-ZrB2 composites fabricated by reactive melt infiltration. Ceram. Int. 2017, 43, 6138–6147. [Google Scholar] [CrossRef]
- Eustathopoulos, N.; Israel, R.; Drevet, B.; Camel, D. Reactive infiltration by Si: Infiltration versus wetting. Scr. Mater. 2010, 62, 966–971. [Google Scholar] [CrossRef]
- Tong, Y.; Bai, S.; Liang, X.; Qin, Q.H.; Zhai, J. Reactive melt infiltration fabrication of C/C-SiC composite: Wetting and infiltration. Ceram. Int. 2016, 42, 17174–17178. [Google Scholar] [CrossRef]
- Shi, F.; Yin, X.; Fan, X.; Cheng, L.; Zhang, L. A new route to fabricate SiB4 modified C/SiC composites. J. Eur. Ceram. Soc. 2010, 30, 1955–1962. [Google Scholar] [CrossRef]
- Li, B.; Kang, P.; Gou, H.; Wu, G.; Mula, S. Surface morphology evolution and ablation mechanism of SiC–Si multiphase ceramic coating on graphite under oxy-acetylene flame. Corros. Sci. 2014, 88, 473–480. [Google Scholar] [CrossRef]
- Jia, J.; Bai, S.; Xiong, D.; Chen, Q.; Li, C.; Gao, M. Microstructure and ablation behaviour of a Cf/SiC-Al composite prepared by infiltrating Al alloy into Cf/SiC. J. Alloys Compd. 2022, 895, 162430. [Google Scholar] [CrossRef]
- Huo, C.; Guo, L.; Zhou, L.; Liu, B.; Wang, C.; Zhang, Y.; Wang, H. Effect of Al2O3 addition on the ablation behavior of SiC-ZrC coated C/C composites. J. Alloys Compd. 2018, 752, 489–504. [Google Scholar] [CrossRef]
Volume density (g/cm3) | 1.63 |
Porosity (vol%) | 23.58 |
Most probable aperture (μm) | 17.71 |
Mean aperture (μm) | 0.11 |
Materials | Surface Temperature Variation of the Ablation Centre/°C | Linear Ablation Rate/×10−3 mm·s−1 | ||||||
---|---|---|---|---|---|---|---|---|
25 s | 50 s | 100 s | 150 s | 25 s | 50 s | 100 s | 150 s | |
AlSiB-C/C | 1697 | 1713 | 1739 | 1860 | 4.04 | 17.68 | 29.32 | 47.84 |
C/C | 1806 | 1925 | 1957 | 1969 | 10.06 | 27.13 | 78.26 | 139.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Q.; Chang, L.; Sun, Z.; Sun, J.; Wei, Z.; Wang, P.; Xiu, Z.; Gou, H.; Kang, P.; Wu, G. Ablation Mechanism of AlSiB-C/C Composites under an Oxy-Acetylene Torch. Metals 2023, 13, 160. https://doi.org/10.3390/met13010160
Han Q, Chang L, Sun Z, Sun J, Wei Z, Wang P, Xiu Z, Gou H, Kang P, Wu G. Ablation Mechanism of AlSiB-C/C Composites under an Oxy-Acetylene Torch. Metals. 2023; 13(1):160. https://doi.org/10.3390/met13010160
Chicago/Turabian StyleHan, Qiuchen, Lei Chang, Zhaoqun Sun, Jiaqi Sun, Zengyan Wei, Pingping Wang, Ziyang Xiu, Huasong Gou, Pengchao Kang, and Gaohui Wu. 2023. "Ablation Mechanism of AlSiB-C/C Composites under an Oxy-Acetylene Torch" Metals 13, no. 1: 160. https://doi.org/10.3390/met13010160
APA StyleHan, Q., Chang, L., Sun, Z., Sun, J., Wei, Z., Wang, P., Xiu, Z., Gou, H., Kang, P., & Wu, G. (2023). Ablation Mechanism of AlSiB-C/C Composites under an Oxy-Acetylene Torch. Metals, 13(1), 160. https://doi.org/10.3390/met13010160