Rapid Electrodeposition and Corrosion Behavior of Zn Coating from a Designed Deep Eutectic Solvent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrolyte Preparation and Zinc Coating Electrodeposition
2.2. Characterization
3. Results and Discussion
3.1. Cyclic Voltammetry Behavior
3.2. Crystal Structure of Deposited Zinc Coating
3.2.1. Influence of Temperature
3.2.2. Influence of Current Density
3.3. Surface Morphology and Coating Thickness
3.3.1. Influence of Temperature on Morphology
3.3.2. Influence of Current Density on Morphology
3.3.3. Coating Thickness
3.4. Electrochemical Tests
3.4.1. Influence of Temperature
3.4.2. Influence of Current Density
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarke, C.J.; Tu, W.C.; Levers, O.; Brohl, A.; Hallett, J.P. Green and Sustainable Solvents in Chemical Processes. Chem. Rev. 2018, 118, 747–800. [Google Scholar] [CrossRef] [PubMed]
- Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071–2083. [Google Scholar] [CrossRef] [PubMed]
- Wilkes, J.S. A short history of ionic liquids—From molten salts to neoteric solvents. Green Chem. 2002, 4, 73–80. [Google Scholar] [CrossRef]
- Armstrong, J.P.; Hurst, C.; Jones, R.G.; Licence, P.; Lovelock, K.R.J.; Satterley, C.J.; Villar-Garcia, I.J. Vapourisation of ionic liquids. Phys. Chem. Chem. Phys. 2007, 9, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Anantharaj, S.; Noda, S.; Driess, M.; Menezes, P.W. The Pitfalls of Using Potentiodynamic Polarization Curves for Tafel Analysis in Electrocatalytic Water Splitting. Energy Lett. 2021, 6, 1607–1611. [Google Scholar] [CrossRef]
- Liu, Y.X.; Liu, Z.; Xu, A.Y.; Liu, X.T. Understanding pitting corrosion behavior of AZ91 alloy and its MAO coating in 3.5% NaCl solution by cyclic potentiodynamic polarization. J. Magnes. Alloy. 2022, 10, 1368–1380. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Georgouvelas, D.; Edlund, U.; Mathew, A.P. CelloZIFPaper: Cellulose-ZIF hybrid paper for heavy metal removal and electrochemical sensing. Chem. Eng. J. 2022, 446, 136614. [Google Scholar] [CrossRef]
- Armand, M.; Endres, F.; MacFarlane, D.R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629. [Google Scholar] [CrossRef]
- Zhang, Y.; Bakshi, B.R.; Demessie, E.S. Life cycle assessment of an ionic liquid versus molecular solvents and their applications. Environ. Sci. Technol. 2008, 42, 1724–1730. [Google Scholar] [CrossRef]
- Zhang, Q.; Vigier, K.D.O.; Royer, S.; Jerome, F. Deep eutectic solvents: Syntheses, properties, and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef]
- Svigelj, R.; Dossi, N.; Grazioli, C.; Toniolo, R. Deep Eutectic Solvents (DESs) and Their Application in Biosensor Development. Sensors 2021, 21, 4263. [Google Scholar] [CrossRef]
- Halder, A.K.; Natalia, M.; Cordeiro, D.S. Probing the Environmental Toxicity of Deep Eutectic Solvents and Their Components: An In Silico Modeling Approach. ACS Sustain. Chem. Eng. 2019, 7, 10649–10660. [Google Scholar] [CrossRef]
- Khandelwal, S.; Tailor, Y.K.; Kumar, M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J. Mol. Liq. 2016, 215, 345–386. [Google Scholar] [CrossRef]
- Xu, P.; Zheng, G.W.; Zong, M.H.; Li, N.; Lou, W.Y. Recent progress on deep eutectic solvents in biocatalysis. Bioresour. Bioprocess. 2017, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Abbott, A.P.; Ballantyne, A.; Harris, R.C.; Juma, J.A.; Ryder, K.S. Bright metal coatings from sustainable electrolytes: The effect of molecular additives on electrodeposition of nickel from a deep eutectic solvent. Phys. Chem. Chem. Phys. 2017, 19, 3219–3231. [Google Scholar] [CrossRef] [Green Version]
- Bernasconi, R.; Lucotti, A.; Nobili, L.; Magagnin, L. Ruthenium Electrodeposition from Deep Eutectic Solvents. J. Electrochem. Soc. 2018, 165, D620–D627. [Google Scholar] [CrossRef]
- Protsenko, V.; Bobrova, L.; Danilov, F. Trivalent chromium electrodeposition using a deep eutectic solvent. Anti-Corros. Methods Mater. 2018, 65, 499–505. [Google Scholar] [CrossRef]
- Li, X.; Lee, Y.R.; Row, K.H. Synthesis of Mesoporous Siliceous Materials in Choline Chloride Deep Eutectic Solvents and the Application of These Materials to High-Performance Size Exclusion Chromatography. Chromatographia 2016, 79, 375–382. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, Y.H.; Gu, C.D.; Wang, X.L.; Tu, J.P. Electrochemical Synthesis and Characterization of Ni-P Alloy Coatings from Eutectic-Based Ionic Liquid. J. Electrochem. Soc. 2012, 159, D642–D648. [Google Scholar] [CrossRef]
- Fashu, S.; Gu, C.D.; Zhang, J.L.; Huang, M.L.; Wang, X.L.; Tu, J.P. Effect of EDTA and NH4Cl additives on electrodeposition of Zn-Ni films from choline chloride-based ionic liquid. Trans. Nonferrous Met. Soc. 2015, 25, 2054–2064. [Google Scholar] [CrossRef]
- Yanai, T.; Shiraishi, K.; Shimokawa, T.; Watanabe, Y.; Ohgai, T.; Nakano, M.; Suzuki, K.; Fukunaga, H. Electroplated Fe films prepared from a deep eutectic solvent. J. Appl. Phys. 2014, 115, 17A344. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, A.H.P. Matthias Gollas, Bernhard, Zinc Electrodeposition from a Deep Eutectic System Containing Choline Chloride and Ethylene Glycol. J. Electrochem. Soc. 2010, 157, D328–D334. [Google Scholar] [CrossRef]
- Fashu, S.; Khan, R. Electrodeposition of ternary Zn-Ni-Sn alloys from an ionic liquid based on choline chloride and their characterisation. Trans. IMF 2016, 94, 237–245. [Google Scholar] [CrossRef]
- Hu, L.; Luo, J.; Lu, D.; Tang, Q. Urea decomposition: Efficient synthesis of pyrroles using the deep eutectic solvent choline chloride/urea. Tetrahedron Lett. 2018, 59, 1698–1701. [Google Scholar] [CrossRef]
- Hu, C.; Xie, X.; Zheng, H.; Qing, Y.; Ren, K. Facile fabrication of superhydrophobic zinc coatings with corrosion resistance via an electrodeposition process. New J. Chem. 2020, 44, 8890–8901. [Google Scholar] [CrossRef]
- Abbott, A.P.; Barron, J.C.; Ryder, K.S. Electrolytic deposition of Zn coatings from ionic liquids based on choline chloride. Trans. IMF 2013, 87, 201–207. [Google Scholar] [CrossRef]
- Li, Y.; Wu, P.; Zhong, W.; Xie, C.; Xie, Y.; Zhang, Q.; Sun, D.; Tang, Y.; Wang, H. A progressive nucleation mechanism enables stable zinc stripping-plating behavior. Energy Environ. Sci. 2021, 14, 5563–5571. [Google Scholar] [CrossRef]
- Wang, T.; Sun, J.; Hua, Y.; Krishna, B.N.V.; Xi, Q.; Ai, W.; Yu, J.S. Planar and dendrite-free zinc deposition enabled by exposed crystal plane optimization of zinc anode. Energy Storage Mater. 2022, 53, 273–304. [Google Scholar] [CrossRef]
- Zou, J.; Zeng, Z.; Wang, C.; Zhu, X.; Zhang, J.; Lan, H.; Li, L.; Yu, Y.; Wang, H.; Zhu, X.; et al. Ultraconformal Horizontal Zinc Deposition toward Dendrite-Free Anode. Small Struct. 2022, 4, 2200194. [Google Scholar] [CrossRef]
- Alesary, H.F.; Cihangir, S.; Ballantyne, A.D.; Harris, R.C.; Weston, D.P.; Abbott, A.P.; Ryder, K.S. Influence of additives on the electrodeposition of zinc from a deep eutectic solvent. Electrochim. Acta 2019, 304, 118–130. [Google Scholar] [CrossRef] [Green Version]
- Gu, C.D.; You, Y.H.; Yu, Y.L.; Qu, S.X.; Tu, J.P. Microstructure, nanoindentation, and electrochemical properties of the nanocrystalline nickel film electrodeposited from choline chloride-ethylene glycol. Surf. Coat. Technol. 2011, 205, 4928–4933. [Google Scholar] [CrossRef]
- Yang, H.Y.; Guo, X.W.; Chen, X.B.; Wang, S.H.; Wu, G.H.; Ding, W.J.; Birbilis, N. On the electrodeposition of nickel-zinc alloys from a eutectic-based ionic liquid. Electrochim. Acta 2012, 63, 131–138. [Google Scholar] [CrossRef]
- Bakkar, A.; Neubert, V. Electrodeposition onto magnesium in air and water stable ionic liquids: From corrosion to successful plating. Electrochem. Commun. 2007, 9, 2428–2435. [Google Scholar] [CrossRef]
- Wang, S.Y.; Si, N.C.; Xia, Y.P.; Liu, L. Influence of nano-SiC on microstructure and property of MAO coating formed on AZ91D magnesium alloy. Trans. Nonferrous Met. Soc. 2015, 25, 1926–1934. [Google Scholar] [CrossRef]
- Riyas, A.H.; Geethanjali, C.V.; Shibli, S.M.A. Tuning of η-phase layer with Zr/Al content to enhance corrosion resistance of zinc coating. Mater. Sci. Eng. B 2022, 277, 115609. [Google Scholar] [CrossRef]
- Raja, V.S.; Panday, C.K.; Saji, V.S.; Vagge, S.T.; Narasimhan, K. An electrochemical study on deformed galvanneal steel sheets. Surf. Coat. Tech. 2006, 201, 2296–2302. [Google Scholar] [CrossRef]
- McIntyre, J.M.; Pham, H.Q. Electrochemical impedance spectroscopy; A tool for organic coatings optimizations. Prog. Org. Coat. 1996, 27, 201–207. [Google Scholar] [CrossRef]
Parameters | Sample A | Sample B | Sample C | Sample D |
---|---|---|---|---|
Current density (mA·cm−2) | 4 | 8 | 12 | 16 |
Deposition time (min) | 15 | 7.5 | 5 | 3.75 |
Samples | Ecorr (mV) | icorr (μA·cm−2) | βa (mV/dec) | −βc (mV/dec) | Rp (Ω·cm2) |
---|---|---|---|---|---|
28 °C | −864 | 42.9 | 26.89 | 369.13 | 253.69 |
40 °C | −897 | 17.4 | 27.84 | 237.68 | 621.90 |
60 °C | −941 | 10.9 | 30.61 | 193.86 | 1053.11 |
80 °C | −1014 | 41.5 | 48.37 | 140.68 | 376.61 |
Samples | Ecorr (mV) | icorr (μA·cm−2) | βa (mV/dec) | −βc (mV/dec) | Rp (Ω·cm2) |
---|---|---|---|---|---|
4 mA·cm−2 | −941 | 10.9 | 30.61 | 193.86 | 1053.11 |
8 mA·cm−2 | −924 | 15.3 | 16.43 | 259.39 | 438.51 |
12 mA·cm−2 | −955 | 24.9 | 25.49 | 260.00 | 404.82 |
16 mA·cm−2 | −935 | 35.9 | 23.67 | 391.23 | 269.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhu, M.; Gan, M.; Wang, X.; Gu, C.; Tu, J. Rapid Electrodeposition and Corrosion Behavior of Zn Coating from a Designed Deep Eutectic Solvent. Metals 2023, 13, 172. https://doi.org/10.3390/met13010172
Chen J, Zhu M, Gan M, Wang X, Gu C, Tu J. Rapid Electrodeposition and Corrosion Behavior of Zn Coating from a Designed Deep Eutectic Solvent. Metals. 2023; 13(1):172. https://doi.org/10.3390/met13010172
Chicago/Turabian StyleChen, Jiayi, Mengjun Zhu, Mingtao Gan, Xiuli Wang, Changdong Gu, and Jiangping Tu. 2023. "Rapid Electrodeposition and Corrosion Behavior of Zn Coating from a Designed Deep Eutectic Solvent" Metals 13, no. 1: 172. https://doi.org/10.3390/met13010172
APA StyleChen, J., Zhu, M., Gan, M., Wang, X., Gu, C., & Tu, J. (2023). Rapid Electrodeposition and Corrosion Behavior of Zn Coating from a Designed Deep Eutectic Solvent. Metals, 13(1), 172. https://doi.org/10.3390/met13010172