Improved Process for Separating TiO2 from an Oxalic-Acid Hydrothermal Leachate of Vanadium Slag
Abstract
:1. Introduction
2. Experimental
2.1. Co-Extraction of Vanadium, Titanium, and Chromium from Vanadium Slag
2.2. Recovery of Oxalic Acid from Leachate through Cooling Crystallization
2.3. Separation of TiO2 from Oxalic-Acid Recovered Leachate
3. Results and Discussion
3.1. Practicability of the Design for Recovery of Oxalic Acid and Separation of TiO2
3.2. Optimization of the Oxalic-Acid Recovering Process
3.3. Optimization of the TiO2 Separating Process
4. Conclusions
- (1)
- Adding some HCl to the pregnant leachate can further improve the recovery extent and rate of oxalic acid. When 15 vol% HCl was added, the recovery percent of oxalic acid reached about 35% after cooling crystallization at 5 °C for 3 h, which is about seven times higher than the recovery percent when not adding HCl and about two times higher than the recovery percent when adding 5 vol% HCl.
- (2)
- The adding of HCl in the pregnant leachate does not result in negative effects on the hydrothermal precipitation of TiO2 from the leachate. Additionally, it helps to ameliorate the quality of the precipitated TiO2. When 15 vol% HCl was added, the TiO2 product with a purity higher than 99.2% was obtained.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Fu, G.; Chu, M.S. An effective and cleaner process to recovery iron, titanium, vanadium, and chromium from Hongge vanadium titanomagnetite with hydrogen-rich gases. Ironmak. Steelmak. 2021, 48, 33–39. [Google Scholar] [CrossRef]
- Li, W.; Fu, G.; Chu, M.S. Reduction kinetics of hongge vanadium titanomagnetite-oxidized pellet with simulated shaft furnace gases. Steel Res. Int. 2017, 88, 1600228. [Google Scholar] [CrossRef]
- Rorie, G.; Aleksandar, N. The extraction of vanadium from titanomagnetites and other sources. Miner. Eng. 2020, 146, 106106. [Google Scholar]
- Sun, H.Y.; Wang, J.S.; Han, Y.H. Reduction mechanism of titanomagnetite concentrate by hydrogen. Int. J. Miner. Process. 2013, 125, 122–128. [Google Scholar] [CrossRef]
- Kushnarev, A.V.; Mironov, K.V.; Zagainov, S.A. Improvement in vanadium-containing titanomagnetite processing technology. Mater. Sci. Eng. 2020, 996, 012062. [Google Scholar] [CrossRef]
- Tang, W.D.; Yang, S.T.; Xue, X.X. Effect of Titanium on the Smelting Process of Chromium-Bearing Vanadium Titanomagnetite Pellets. JOM 2021, 73, 1362–1370. [Google Scholar] [CrossRef]
- Wang, S.; Guo, Y.F.; Zheng, F.Q. Behavior of vanadium during reduction and smelting of vanadium titanomagnetite metallized pellets. Trans. Nonferrous Met. Soc. China 2020, 30, 1687–1696. [Google Scholar] [CrossRef]
- Smirnov, L.A.; Kushnarev, A.V.; Fomichev, M.S. Oxygen-converter processing of vanadium-bearing hot metal. Steel Transl. 2013, 43, 587–592. [Google Scholar] [CrossRef]
- Goncharov, K.V.; Agamirova, A.S.; Olyunina, T.V. Reduction Roasting of a Titanomagnetite Concentrate with the Formation of a Titanium–Vanadium Slag Suitable for the Subsequent Recovery of Vanadium and Titanium. Russ. Metall. 2022, 2022, 707–713. [Google Scholar] [CrossRef]
- Jiao, K.X.; Chen, C.L.; Zhang, J.L. Analysis of titanium distribution behaviour in vanadium-containing titanomagnetite smelting blast furnace. Can. Metall. Q. 2018, 57, 274–282. [Google Scholar] [CrossRef]
- Smirnov, L.A.; Rovnushkin, V.A.; Smirnov, A.L. Conversion of vanadium hot metal in a flux-free converter process. Steel Transl. 2015, 45, 356–360. [Google Scholar] [CrossRef]
- Li, M.; Xiao, L.; Liu, J.J. Effective Extraction of Vanadium and Chromium from High Chromium Content Vanadium Slag by Sodium Roasting and Water Leaching. Mater. Sci. Forum 2016, 863, 144–148. [Google Scholar] [CrossRef]
- Gao, F.; Du, H.; Wang, S.N. A Comparative Study of Extracting Vanadium from Vanadium Titano-Magnetite Ores: Calcium Salt Roasting Vs Sodium Salt Roasting. Miner. Process. Extr. Metall. Rev. 2022, 43, 1–13. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhang, W.; Zhang, L. Mechanism of vanadium slag roasting with calcium oxide. Int. J. Min-Eral Process. 2015, 138, 20–29. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, T.; Liu, Y. Extraction behavior of vanadium and chromium by calcification roasting-acid leaching from high chromium vanadium slag: Optimization using response surface methodology. Miner. Process. Extr. Metall. Rev. 2019, 40, 56–66. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, T.; Wang, J.P. Cleaner extraction of vanadium from vanadium-chromium slag based on MnO2 roasting and manganese recycle. J. Clean. Prod. 2020, 261, 121205. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, T.A.; Dreisinger, D.; Lv, C.; Lv, G.; Zhang, W. Recovery of vanadium from calcification roasted-acid leaching tailing by enhanced acid leaching. J. Hazard. Mater. 2019, 369, 632–641. [Google Scholar] [CrossRef]
- Li, H.Y.; Wang, C.J.; Yuan, Y.H. Magnesiation roasting-acid leaching: A zero-discharge method for vanadium extraction from vanadium slag. J. Clean. Prod. 2020, 260, 121091. [Google Scholar] [CrossRef]
- Chen, D.S.; Zhao, L.S.; Liu, Y.H. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. J. Hazard. Mater. 2013, 244, 588–595. [Google Scholar] [CrossRef]
- Lee, J.C.; Kurniawan; Kim, E.Y. A review on the metallurgical recycling of vanadium from slags: Towards a sustainable vanadium production. J. Mater. Res. Technol. 2021, 12, 343–364. [Google Scholar] [CrossRef]
- Dong, Z.H.; Zhang, J.; Yan, B.J. Co-extraction of vanadium titanium and chromium from vanadium slag by oxalic acid hydrothermal leaching with synergy of Fe powder. Metall. Mater. Trans. B 2021, 52, 3961–3969. [Google Scholar] [CrossRef]
- Dong, Z.H.; Zhang, J.; Yan, B.J. A new approach for the comprehensive utilization of vanadium slag. Metall. Mater. Trans. B 2022, 53, 2198–2208. [Google Scholar] [CrossRef]
- Dong, Z.H.; Zhang, J.; Yan, B.J. Hydrothermal separation of titanium vanadium and chromium from a pregnant oxalic acid leachate. Materials 2022, 15, 1538. [Google Scholar] [CrossRef] [PubMed]
Elements | V | Ti | Cr | Fe | Mn | Si | Ca | Mg | Al |
---|---|---|---|---|---|---|---|---|---|
Concentration (g/L) | 2.42 | 2.30 | 1.14 | 0.31 | 0.79 | 0.47 | 0.42 | 0.29 | 0.35 |
Elements | Fe | Ca | Si | Others |
---|---|---|---|---|
Content (wt. %) | 0.03 | 0.02 | 0.06 | trace |
Components | TiO2 | V2O5 | Cr2O3 | Fe2O3 | MnO | SiO2 | CaO | MgO | Al2O3 |
---|---|---|---|---|---|---|---|---|---|
Content (wt. %) | 96.6 | 1.08 | 0.01 | 0.29 | 0.22 | 1.19 | 0.24 | 0.05 | 0.26 |
Components | TiO2 | V2O5 | Cr2O3 | Fe2O3 | MnO | SiO2 | CaO | MgO | Al2O3 |
---|---|---|---|---|---|---|---|---|---|
Content (wt. %) | 95.7 | 2.44 | 0.10 | 0.24 | 0.15 | 1.27 | 0.04 | 0.03 | <0.01 |
Sample | TiO2 | V2O5 | Cr2O3 | Fe2O3 | MnO | SiO2 | CaO | MgO | Al2O3 |
---|---|---|---|---|---|---|---|---|---|
No HCl added | 96.6 | 1.08 | 0.01 | 0.29 | 0.22 | 1.19 | 0.24 | 0.05 | 0.26 |
5 vol% HCl added | 96.4 | 0.09 | 0.06 | 0.1 | 0.04 | 2.81 | 0.29 | 0.03 | 0.11 |
10 vol% HCl added | 98.1 | 0.08 | 0.03 | 0.1 | 0.02 | 1.37 | 0.15 | 0.03 | 0.04 |
15 vol% HCl added | 99.2 | 0.07 | 0.03 | 0.1 | 0.01 | 0.36 | 0.11 | 0.04 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Q.; Li, M.; Gao, G.; Zhang, W.; Zhang, J.; Yan, B. Improved Process for Separating TiO2 from an Oxalic-Acid Hydrothermal Leachate of Vanadium Slag. Metals 2023, 13, 20. https://doi.org/10.3390/met13010020
Miao Q, Li M, Gao G, Zhang W, Zhang J, Yan B. Improved Process for Separating TiO2 from an Oxalic-Acid Hydrothermal Leachate of Vanadium Slag. Metals. 2023; 13(1):20. https://doi.org/10.3390/met13010020
Chicago/Turabian StyleMiao, Qingdong, Ming Li, Guanjin Gao, Wenbo Zhang, Jie Zhang, and Baijun Yan. 2023. "Improved Process for Separating TiO2 from an Oxalic-Acid Hydrothermal Leachate of Vanadium Slag" Metals 13, no. 1: 20. https://doi.org/10.3390/met13010020
APA StyleMiao, Q., Li, M., Gao, G., Zhang, W., Zhang, J., & Yan, B. (2023). Improved Process for Separating TiO2 from an Oxalic-Acid Hydrothermal Leachate of Vanadium Slag. Metals, 13(1), 20. https://doi.org/10.3390/met13010020