Effect of Alcohol on the Mechanical and Electrical Properties of Ultrasonic Spot Welded Cu/Cu Joints
Abstract
:1. Introduction
2. Experimental Work
2.1. Base Materials and Welding Condition
2.2. Macro-/Microstructure Characterization
2.3. Mechanical Property, Temperature and Electric Resistance Characterization
3. Results and Discussion
3.1. Welding Interface Temperature
3.2. Joint Cross Section and Microstructure
3.3. Joint Electric Resistance and the Corresponding Peak Temperature
3.4. Joint Mechanical Properties
3.4.1. Vickers Micro-Hardness
3.4.2. Lap Shear Strength
3.5. Fracture Behavior
3.5.1. Top and Side Views of the Optical Image of the Fracture Path
3.5.2. Fracture Morphology
4. Conclusions
- (1)
- Comparing to the joints processed by USW without alcohol, the processing with alcohol results in an obvious increase in the welding interface temperature, effective thickness, bond density, plastic deformation zone width, and lap shear strength of the joints. The joint resistance and the corresponding peak temperature at the weld zone, and the micro-hardness of the joint zone, on the contrary, significantly decrease.
- (2)
- While the joint processed without alcohol at 0.55 MPa welding pressure fails in the brittle cleavage fracture mode, the joint processed with alcohol fracture by a mixed mechanism occurs on the entire fracture surface.
- (3)
- Discontinuous dynamic recrystallization occurs at the welding interface and promotes the migration of grain boundaries across the contact interface, leading to the formation of the metallurgical bonding between the two Cu sheets. It is beneficial to enhance the joint mechanical strength.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
USW | Ultrasonic spot welding |
USWed | Ultrasonic spot welded |
References
- Kumar, N.; Masters, I.; Das, A. In-depth evaluation of laser-welded similar and dissimilar material tab-to-busbar electrical interconnects for electric vehicle battery pack. J. Manuf. Process. 2021, 70, 78–96. [Google Scholar] [CrossRef]
- Sadeghian, A.; Iqbal, N. A review on dissimilar laser welding of steel-copper, steel-aluminum, aluminum-copper, and steel-nickel for electric vehicle battery manufacturing. Opt. Laser Technol. 2022, 146, 107595. [Google Scholar] [CrossRef]
- Kang, B.; Cai, W.; Tan, C. Dynamic response of battery tabs under ultrasonic welding. J. Manuf. Sci. Eng.-T ASME 2013, 135, 051013. [Google Scholar] [CrossRef]
- Das, A.; Ashwin, T.R.; Barai, A. Modelling and characterisation of ultrasonic joints for Li-ion batteries to evaluate the impact on electrical resistance and temperature raise. J. Energy Storage 2019, 22, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Dhara, S.; Das, A. Impact of ultrasonic welding on multi-layered Al-Cu joint for electric vehicle battery applications: A layer-wise microstructural analysis. Mater. Sci. Eng. A 2020, 791, 139795. [Google Scholar] [CrossRef]
- Das, A.; Masters, I.; Williams, D. Process robustness and strength analysis of multi-layered dissimilar joints using ultrasonic metal welding. Int. J. Adv. Manuf. Technol. 2019, 101, 881–900. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.S.; Shao, C.; Kim, T.H.; Hu, S.J.; Kannatey-Asibu, E.; Cai, W.W.; Spicer, J.P.; Abell, J.A. Characterization of ultrasonic metal welding by correlating online sensor signals with weld attributes. J. Manuf. Sci. Eng.-T ASME 2014, 136, 051019. [Google Scholar] [CrossRef]
- Lee, S.S.; Kim, T.H.; Hu, S.J.; Cai, W.W.; Abell, J.A.; Li, J. Characterization of joint quality in ultrasonic welding of battery tabs. J. Manuf. Sci. Eng.-T ASME 2013, 135, 021004. [Google Scholar] [CrossRef]
- Lee, S.S.; Kim, T.H.; Hu, S.J.; Cai, W.W.; Abell, J.A. Analysis of weld formation in multilayer ultrasonic metal welding using high-speed images. J. Manuf. Sci. Eng.-T ASME 2015, 137, 031016. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, Y. Characterization of multilayer ultrasonic welding based on the online monitoring of sonotrode displacement. J. Manuf. Process. 2020, 54, 138–147. [Google Scholar] [CrossRef]
- Li, Y.; Chu, Z.; Li, X.; Pan, Y.; Yamaguchi, T.; Wang, W. Swirl-like Cu-Sn phase formation and the effects on the ultrasonic spot welded joint of Sn-coated Cu plates. J. Mater. Process. Technol. 2021, 288, 116911. [Google Scholar] [CrossRef]
- Ma, Q.; Ma, J.; Zhou, J.; Ji, H. Intrinsic dependence of welding quality and recrystallization on the surface-contacted micro-asperity scale during ultrasonic welding of Cu-Cu joints. J. Mater. Res. Technol. 2022, 17, 353–364. [Google Scholar] [CrossRef]
- Shin, H.; de Leon, M. Mechanical performance and electrical resistance of ultrasonic welded multiple Cu-Al layers. J. Mater. Process. Technol. 2017, 241, 141–153. [Google Scholar] [CrossRef]
- Das, A.; Barai, A.; Masters, I.; Williams, D. Comparison of tab-to-busbar ultrasonic joints for electric vehicle Li-ion battery applications. World Electr. Veh. J. 2019, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Patel, V.K.; Bhole, S.D.; Chen, D.L. Influence of ultrasonic spot welding on microstructure in a magnesium alloy. Scr. Mater. 2011, 65, 911–914. [Google Scholar] [CrossRef]
- Lu, Y.; Song, H.; Taber, G.A.; Foster, D.R.; Daehn, G.S.; Zhang, W. In-situ measurement of relative motion during ultrasonic spot welding of aluminum alloy using Photonic Doppler Velocimetry. J. Mater. Process. Technol. 2016, 231, 431–440. [Google Scholar] [CrossRef]
- Balz, I.; Rosenthal, E.; Reimer, A.; Turiaux, M.; Schiebahn, A.; Reisgen, U. Analysis of the thermo-mechanical mechanism during ultrasonic welding of battery tabs using high-speed image capturing. Weld. World 2019, 63, 1573–1582. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, W. Tribological properties of alcohols as lubricating additives for aluminum-on-steel contact. Wear 1998, 218, 244–249. [Google Scholar] [CrossRef]
- Kajdas, C. About an anionic-radical concept of the lubrication mechanism of alcohols. Wear 1987, 116, 167–180. [Google Scholar] [CrossRef]
- Ni, Z.L.; Liu, Y.; Wang, Y.H.; He, B.Y. Interfacial bonding mechanism and fracture behavior in ultrasonic spot welding of copper sheets. Mater. Sci. Eng. A 2022, 833, 142536. [Google Scholar] [CrossRef]
- Sriraman, M.R.; Babua, S.S.; Short, M. Bonding characteristics during very high power ultrasonic additive manufacturing of copper. Scr. Mater. 2010, 62, 560–563. [Google Scholar] [CrossRef]
- Shayakhmetova, E.R.; Murzinova, M.A.; Zadorozhniy, V.S.; Nazarov, A.A. Microstructure of joints processed by ultrasonic consolidation of nickel sheets. Metals 2022, 12, 1865. [Google Scholar] [CrossRef]
- Shayakhmetova, E.R.; Murzinova, M.A.; Nazarov, A.A. Ultrasonic welding of nickel with coarse and ultrafine grained structures. Metals 2021, 11, 1800. [Google Scholar] [CrossRef]
- Su, Z.; Zhu, Z.; Zhang, Y.; Zhang, H.; Xiao, Q. Recrystallization behavior of a pure Cu connection interface with ultrasonic welding. Metals 2021, 11, 61. [Google Scholar] [CrossRef]
- Lin, J.; Lai, Z.; Otsuki, T.; Yen, H.; Nambu, S. Gradient microstructure and interfacial strength of CoCrFeMnNi high-entropy alloy in solid-state ultrasonic welding. Mater. Sci. Eng. A 2021, 825, 141885. [Google Scholar] [CrossRef]
- Hughes, D.A.; Dawson, D.B.; Korellis, J.S.; Weingarten, L.I. Near surface microstructures developing under large sliding loads. J. Mater. Eng. Perform. 1994, 3, 459–475. [Google Scholar] [CrossRef]
- Li, Y.S.; Tao, N.R.; Lu, K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 2008, 56, 230–241. [Google Scholar] [CrossRef]
- Gunduz, I.E.; Ando, T.; Shattuck, E.; Wong, P.Y.; Doumanidis, C.C. Enhanced diffusion and phase transformations during ultrasonic welding of zinc and aluminum. Scr. Mater. 2005, 52, 939–943. [Google Scholar] [CrossRef]
- Arimoto, K.; Sasaki, T.; Doi, Y.; Kim, T. Ultrasonic bonding of multi-layered foil using a cylindrical surface tool. Metals 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Cai, W. The effect of horn knurl geometry on battery tab ultrasonic welding quality: 2D finite element simulations. J. Manuf. Process. 2017, 28, 428–441. [Google Scholar] [CrossRef]
- Wang, T.; Sinha, S.; Komarasamy, M.; Shukla, S.; Williams, S.; Mishra, R.S. Ultrasonic spot welding of dissimilar Al 6022 and Al 7075 alloys. J. Mater. Process. Technol. 2020, 278, 116460. [Google Scholar] [CrossRef]
- Liu, H.J.; Shen, J.J.; Huang, Y.X.; Kuang, L.Y.; Liu, C.; Li, C. Effect of tool rotation rate on microstructure and mechanical properties of friction stir welded copper. Sci. Technol. Weld. Join. 2009, 14, 577–583. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Ni, Z.; Nazarov, A.A.; Ye, F. Effect of Alcohol on the Mechanical and Electrical Properties of Ultrasonic Spot Welded Cu/Cu Joints. Metals 2023, 13, 21. https://doi.org/10.3390/met13010021
Yang J, Ni Z, Nazarov AA, Ye F. Effect of Alcohol on the Mechanical and Electrical Properties of Ultrasonic Spot Welded Cu/Cu Joints. Metals. 2023; 13(1):21. https://doi.org/10.3390/met13010021
Chicago/Turabian StyleYang, Jiajia, Zenglei Ni, Ayrat A. Nazarov, and Fuxing Ye. 2023. "Effect of Alcohol on the Mechanical and Electrical Properties of Ultrasonic Spot Welded Cu/Cu Joints" Metals 13, no. 1: 21. https://doi.org/10.3390/met13010021
APA StyleYang, J., Ni, Z., Nazarov, A. A., & Ye, F. (2023). Effect of Alcohol on the Mechanical and Electrical Properties of Ultrasonic Spot Welded Cu/Cu Joints. Metals, 13(1), 21. https://doi.org/10.3390/met13010021