Prediction and Optimization of Wear Depth on Rectangular Tube Surface in Roll Forming
Abstract
:1. Introduction
2. Analysis of Rectangular Tube Forming
2.1. Principle of Roll Forming
2.2. Force Analysis of Particles on the Tube
3. Finite Element Model
3.1. Flow Stress Model
3.2. Calculation Model of Wear Depth
3.3. Simulation Model
3.4. Testing Verification
4. Prediction and Optimization of Rectangular Tube Surface Wear
4.1. Influences of Process Parameters on Surface Wear
4.2. Prediction Model and Variance Analysis of Wear Depth
4.3. Optimization of the Regression Model
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hiroshi, O.; Liu, J.Y. Cold Roll Forming Technology; Chemical Industry Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Halmos, G.T. Roll Forming Handbook; Chemical Industry Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Wang, Y.J.; Jia, Z.; Ji, J.J.; Wei, B.; Heng, Y.; Liu, D. Determining the wear behavior of H13 steel die during the extrusion process of pure nickel. Eng. Fail. Anal. 2022, 134, 106053. [Google Scholar] [CrossRef]
- Kumar, P.; Joshi, R.S.; Singla, R.K. Sliding wear behaviour of CP titanium laminates produced by large strain extrusion machining. Wear 2021, 477, 203774. [Google Scholar] [CrossRef]
- Bang, J.; Kim, M.; Bae, G.; Song, J.; Kim, H.-G.; Lee, M.-G. Quantitative Evaluation of Tool Wear in Cold Stamping of Ultra-High-Strength Steel Sheets. Met. Mater. Int. 2022. [Google Scholar] [CrossRef]
- Bang, J.; Kim, M.; Bae, G.; Kim, H.-G.; Lee, M.-G.; Song, J. Efficient Wear Simulation Methodology for Predicting Nonlinear Wear Behavior of Tools in Sheet Metal Forming. Materials. 2022, 15, 4509. [Google Scholar] [CrossRef]
- Peng, Z.S.; Ji, H.C.; Huang, X.M.; Wang, B.Y.; Xiao, W.C.; Wang, S.F. Numerical analysis and parameter optimization of wear characteristics of titanium alloy cross wedge rolling die. Metals 2021, 11, 1998. [Google Scholar] [CrossRef]
- Ji, H.C.; Song, G.; Song, C.Z.; Li, J.S.; Pei, W.C.; Wang, B.Y. Analysis of the wear characteristics of multi-directional die forging and forming dies for a railway wagon bogie adapter. Int. J. Adv. Manuf. Technol. 2022, 123, 2351–2370. [Google Scholar] [CrossRef]
- Huang, H.; Chen, X.; Fan, B.; Jin, Y.; Shu, X. Initial billet temperature influence and location investigation on tool wear in cross wedge rolling. Int. J. Adv. Manuf. Technol. 2015, 79, 1545–1556. [Google Scholar] [CrossRef]
- Kragelsky, I.V.; Dobychin, M.N.; Kombalov, V.S. Friction and Wear: Calculation Methods; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Archard, J. Contact and rubbing of flat surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Sobis, T.; Engel, U.; Geiger, M. A theoretical study on wear simulation in metal forming processes. J. Mater. Process. Technol. 1992, 34, 233–240. [Google Scholar] [CrossRef]
- Eriksen, M. The influence of die geometry on tool wear in deep drawing. Wear 1997, 207, 10–15. [Google Scholar] [CrossRef]
- Lee, R.S.; Jou, J.L. Application of numerical simulation for wear analysis of warm forging die. J. Mater. Process Technol. 2003, 140, 43–48. [Google Scholar] [CrossRef]
- Cora, O.N.; Koc, M. Experimental investigations on wear resistance characteristics of alternative die materials for stamping of advanced high-strength steels (AHSS). Int. J. Mach. Tools Manuf. 2009, 49, 897–905. [Google Scholar] [CrossRef]
- Pereira, M.P.; Weiss, M.; Rolfe, B.F.; Hilditch, T.B. The effect of the die radius profile accuracy on wear in sheet metal stamping. Int. J. Mach. Tools Manuf. 2013, 66, 44–53. [Google Scholar] [CrossRef]
- Li, T.T.; Zhao, G.Q.; Zhang, C.S.; Guan, Y.J.; Sun, X.M.; Li, H.K. Effect of process parameters on die wear behavior of aluminum alloy rod extrusion. Mater Manuf Processes. 2013, 28, 312–318. [Google Scholar] [CrossRef]
- Zhang, C.S.; Zhao, G.Q.; Li, T.T.; Guan, Y.J.; Chen, H.; Li, P. An investigation of die wear behavior during aluminum alloy 7075 tube extrusion. J. Tribol. T Asme. 2013, 135, 011602. [Google Scholar] [CrossRef]
- Xu, W.J.; Li, W.H.; Wang, Y.S. Experimental and theoretical analysis of wear mechanism in hot-forging die and optimal design of die geometry. Wear 2014, 318, 78–88. [Google Scholar] [CrossRef]
- Hawryluk, M.; Kaszuba, M.; Gronostajski, Z.; Polak, S.; Ziemba, J. Identification of the relations between the process conditions and the forging tool wear by combined experimental and numerical investigations. CIRP J. Manuf. Sci. Technol. 2020, 30, 87–93. [Google Scholar] [CrossRef]
- Farzad, H.; Ebrahimi, R. An investigation of die profile effect on die wear of plane strain extrusion using incremental slab method and finite element analysis. Int. J. Adv. Manuf. Technol. 2020, 111, 627–644. [Google Scholar] [CrossRef]
- Ogbezode, J.E.; Ajide, O.O. Tool wear analysis of C-shaped equal channel reciprocating extrusion process of AISI-H13 steel die using finite element method. J. Braz. Soc. Mech. Sci. 2021, 43, 568. [Google Scholar] [CrossRef]
- Davoudi, M.; Nejad, A.F.; Koloor, S.S.R.; Petrů, M. Investigation of effective geometrical parameters on wear of hot forging die. J. Mater. Res. Technol. 2021, 15, 5221–5231. [Google Scholar] [CrossRef]
- Bayoumi, L.S. Cold drawing of regular polygonal tubular sections from round tubes. Int. J. Mech. Sci. 2001, 43, 2541–2553. [Google Scholar] [CrossRef]
- Fu, Z.Q. Research on Continuous Roll Forming Process and the Computer Aided Design System of Shape Tube; Yanshan University: Qinhuangdao, China, 2014. (In Chinese) [Google Scholar]
- Du, F.S.; Xing, M.L.; Wang, H.J.; Fu, Y.T.; Pei, X.Y. Influence of pass parameters and pass configuration on rectangular tube forming. J. Plast. Eng. 2022, 29, 65–71. (In Chinese) [Google Scholar]
- Chang, Y.; Wang, N.; Wang, B.T.; Li, X.D.; Wang, C.Y.; Zhao, K.M.; Dong, H. Prediction of bending springback of the medium-Mn steel considering elastic modulus attenuation. J. Manuf. Process. 2021, 67, 345–355. [Google Scholar] [CrossRef]
- Lin, G.Y.; Feng, D.; Zheng, X.Y.; Yang, W.; Sun, L.P. Analysis of influence of extrusion times on total die wear based on Archard theory. J. Cent. South Univ. 2009, 40, 1245–1251. (In Chinese) [Google Scholar]
- Luo, Z.; Sun, M.; Zhang, Z.; Lu, C.; Zhang, G.; Fan, X. Finite element analysis of circle-to-rectangle roll forming of thick-walled rectangular tubes with small rounded corners. Int. J. Mater. Form. 2022, 15, 73. [Google Scholar] [CrossRef]
- Hong, S.; Lee, S.; Kim, N. A parametric study on forming length in roll forming. J. Mater. Process Technol. 2001, 113, 774–778. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Li, X.B.; Zhao, Z.L.; Jiang, C.; Zhao, H. Process Optimization and Formation Analysis of Friction Plug Welding of 6082 Aluminum Alloy. Metals 2020, 10, 1454. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Ni | Cr |
---|---|---|---|---|---|---|
Parameters | H (HV) | K | |||||||
---|---|---|---|---|---|---|---|---|---|
values | 199,046 | 270.61 | 200 | 684.93 | 0.48 | 502.26 | 0.087 | 2.36 |
Parameters | Friction Coefficient of Flat Roller | Friction Coefficient of Vertical Roller | Flat Roller Angular velocity | Diameter of the Circular Tube | Thickness of the Circular Tube | Diameter of the Second Pass at the Top of the Flat Roller | Flat Roller Diameter of the 5th Pass |
---|---|---|---|---|---|---|---|
values | 0.2 | 0.001 | 2 rad/s | 47 mm | 3 mm | 158 mm | 164 mm |
Process No. | A | B | C | Wear Index (mm) |
---|---|---|---|---|
1 | 0.15 | 1.5 | 0.01 | 0.000207997 |
2 | 0.2 | 2 | 0.001 | 0.000306506 |
3 | 0.2 | 1.5 | 0.0055 | 0.000200535 |
4 | 0.25 | 1.5 | 0.01 | 0.000194054 |
5 | 0.15 | 1.5 | 0.001 | 0.000217845 |
6 | 0.2 | 1.5 | 0.0055 | 0.000200535 |
7 | 0.2 | 1.5 | 0.0055 | 0.000200535 |
8 | 0.15 | 2 | 0.0055 | 0.000304261 |
9 | 0.2 | 1 | 0.01 | 0.000125557 |
10 | 0.25 | 2 | 0.0055 | 0.000293714 |
11 | 0.25 | 1 | 0.0055 | 0.000127219 |
12 | 0.25 | 1.5 | 0.001 | 0.000200883 |
13 | 0.15 | 1 | 0.0055 | 0.000109441 |
14 | 0.2 | 1 | 0.001 | 0.000106302 |
15 | 0.2 | 2 | 0.01 | 0.000318103 |
16 | 0.2 | 1.5 | 0.0055 | 0.000200535 |
17 | 0.2 | 1.5 | 0.0055 | 0.000200535 |
Source | SS | DF | MS | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 7.182 × 10−8 | 9 | 7.980 × 10−9 | 95.06 | <0.0001 | significant |
A | 7.006 × 10−11 | 1 | 7.006 × 10−11 | 0.83 | 0.3914 | |
B | 7.108 × 10−8 | 1 | 7.108 × 10−8 | 846.6 | <0.0001 | |
C | 2.512 × 10−11 | 1 | 2.512 × 10−11 | 0.3 | 0.6014 | |
AB | 2.006 × 10−10 | 1 | 2.006 × 10−10 | 2.39 | 0.1661 | |
AC | 2.279 × 10−12 | 1 | 2.279 × 10−12 | 0.027 | 0.8738 | |
BC | 1.466 × 10−11 | 1 | 1.466 × 10−11 | 0.17 | 0.6885 | |
6.712 × 10−13 | 1 | 6.712 × 10−13 | 7.994 × 10−3 | 0.9313 | ||
3.059 × 10−10 | 1 | 3.059 × 10−10 | 3.64 | 0.0979 | ||
1.078 × 10−10 | 1 | 1.078 × 10−10 | 1.28 | 0.2945 | ||
Residual | 5.877 × 10−10 | 7 | 8.396 × 10−11 | |||
Lack of fit | 5.877 × 10−10 | 3 | 1.959 × 10−10 | |||
Pure Error | 0.000 | 4 | 0.000 | |||
Cor Total | 7.241 × 10−8 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, M.; Liu, J.; Wang, Y.; Wang, Z.; Fu, Y.; Du, F. Prediction and Optimization of Wear Depth on Rectangular Tube Surface in Roll Forming. Metals 2023, 13, 68. https://doi.org/10.3390/met13010068
Xing M, Liu J, Wang Y, Wang Z, Fu Y, Du F. Prediction and Optimization of Wear Depth on Rectangular Tube Surface in Roll Forming. Metals. 2023; 13(1):68. https://doi.org/10.3390/met13010068
Chicago/Turabian StyleXing, Menglong, Jiyan Liu, Yuhao Wang, Zhanrui Wang, Yutao Fu, and Fengshan Du. 2023. "Prediction and Optimization of Wear Depth on Rectangular Tube Surface in Roll Forming" Metals 13, no. 1: 68. https://doi.org/10.3390/met13010068
APA StyleXing, M., Liu, J., Wang, Y., Wang, Z., Fu, Y., & Du, F. (2023). Prediction and Optimization of Wear Depth on Rectangular Tube Surface in Roll Forming. Metals, 13(1), 68. https://doi.org/10.3390/met13010068