Effects of Micro-Shot Peening on the Stress Corrosion Cracking of Austenitic Stainless Steel Welds
Abstract
:1. Introduction
2. Materials and Experimental Procedures
3. Results
3.1. Microstructural Observation of the Welds
3.2. 3D Contour Profiles of the Ground Substrate and Micro-Shot Peened Samples
3.3. Amount of the Ferromagnetic Phase Determined by Ferrite Scope
3.4. The Micro-Hardness Distributions of the Micro-Shot Peened Welds
3.5. EBSD Analysis of the Non-Peened Welds
3.6. EBSD Analysis of the Micro-Shot Peened Welds
3.7. Strain Distribution around the Fusion Boundary of the Welds
3.8. The Determinations of Residual Stress of the Welds by XRD
3.9. Surface Features of the Tested Samples after Salt Spray
4. Discussion
5. Conclusions
- Under the same bending strain, the FZs of the austenitic SS welds showed higher strain hardening and martensitic transformation than the other zones in the laser welds, especially in the 304 FZ. The lower number of slip bands in the 316 weld than in the 304 weld implied a higher resistance to dislocation motions in the former than in the latter, resulting in forming smaller amounts of α′-martensite in the former. The preferential dissolution of α′-martensite and δ ferrite in the FZ of a 304 weld was detrimental to the pitting corrosion and SCC resistance in a salt spray.
- The strain distribution maps around the FB of the U-bend welds showed that the regions in the 304 weld with intense slip bands and embedded α′-martensite had high local strain. In addition, the 316 weld showed a low strain intensity relative to that of the 304 weld under the same bending strain. High local strain along the FBs of the two welds was observed, especially in the 304 weld. The surface features of the corroded 304 and 316 welds confirmed the ease of pitting and cracking along the FBs in a salt spray.
- Micro-shot peening resulted in the formation of a nanograined structure, induced martensite and introduced residual compressive stress in the severe micro-shot peened layer. Extensive formation of α′-martensite was harmful to the pitting resistance of the austenitic SSs in a salt spray. The coarse pits and microfissures that formed in the non-peened 304 FZ were replaced by numerous fine pits in the peened 304 FZ. The high local strain at the FB was the cause of the high pitting and cracking susceptibility relative to other zones in the austenitic SS weld in a salt spray. The fine-grained structure and imposed residual compressive stress suppressed the microcrack initiation at the FB of the 304 and 316 laser welds in a salt spray.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SS | stainless steel |
SCC | stress corrosion cracking |
WM | weld metal |
HAZ | heat-affected zone |
SEM | scanning electron microscope |
EBSD | electron backscatter diffraction |
ND | normal direction |
RD | rolling direction |
TD | transverse direction |
FN | ferrite number |
FZ | fusion zone |
BM | base metal |
FB | fusion boundary |
BC | band contrast |
IPF | inverse pole figure |
References
- Bagherifard, S.; Slawik, S.; Fernández-Pariente, I.; Pauly, C.; Mücklich, F.; Guagliano, M. Nanoscale surface modification of AISI 316L stainless steel by severe shot peening. Mater. Des. 2016, 10, 68–77. [Google Scholar] [CrossRef]
- Jayalakshmi, M.; Huilgol, P.; Bhat, B.R.; Udaya Bhat, K. Insights into formation of gradient nanostructured (GNS) layer and deformation induced martensite in AISI 316 stainless steel subjected to severe shot peening. Surf. Coat. Technol. 2018, 344, 295–302. [Google Scholar] [CrossRef]
- Unal, O.; Varol, R. Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening. Appl. Surf. Sci. 2015, 351, 289–295. [Google Scholar] [CrossRef]
- He, Y.; Lee, H.S.; Yang, C.W.; Lee, J.H.; Shin, K. Microstructural Evolution of A Nanostructure of Shot Peened 304 Stainless Steel Upon Heat Treatment. Sci. Adv. Mater. 2017, 9, 1942–1946. [Google Scholar] [CrossRef]
- Ni, Z.; Wang, X.; Wang, J.; Wu, E. Characterization of the phase transformation in a nanostructured surface layer of 304 stainless steel induced by high-energy shot peening. Phys. B Condens. Matter 2003, 334, 221–228. [Google Scholar] [CrossRef]
- Yu, H.; Dong, J.L.; Yoo, D.H.; Shin, K.; Jung, J.S.; Pyoun, Y.; Cho, I. Effect of Ultrasonic and Air Blast Shot Peening on the Microstructural Evolution and Mechanical Properties of SUS304. J. Korean Phys. Soc. 2009, 54, 1161–1166. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Z.; Hou, J.; Barber, G.C.; Qin, F. Tribological behavior of shot peened/austempered AISI 5160 steel. Tribol. Int. 2020, 145, 106197. [Google Scholar] [CrossRef]
- Zhan, K.; Zhang, Y.; Zhao, S.; Yang, Z.; Zhao, B.; Ji, V. Tribological Behavior and Corrosion Resistance of S30432 Steel after Different Shot Peening Processes. J. Mater. Eng. Perform. 2022, 31, 1250–1258. [Google Scholar] [CrossRef]
- Bagherifard, S.; Hickey, D.J.; Luca, A.C.; Malheiro, V.N.; Markaki, A.E.; Guagliano, M.; Webster, T.J. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Biomaterials 2015, 73, 185–197. [Google Scholar] [CrossRef]
- Kumar, N.; Chaudhari, G.P.; Meka, S.R. Influence of Ultrasonic Shot Peening on Microstructure, Mechanical, and Electrochemical Behavior of 316 Stainless Steel. J. Mater. Eng. Perform. 2021, 31, 2364–2380. [Google Scholar] [CrossRef]
- Suh, M.-S.; Suh, C.-M.; Pyun, Y.-S. Very high cycle fatigue characteristics of a chrome-molybdenum steel treated by ultrasonic nanocrystal surface modification technique. Fatigue Fract. Eng. Mater. Struct. 2013, 36, 769–778. [Google Scholar] [CrossRef]
- Sledz, M.; Stachowicz, F.; Zielecki, W. The effect of shot peening on the fatigue strength of steel sheets. Kov. Mater.–Met. Mater. 2015, 53, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.K.; Fitzpatrick, M.E.; Wang, Q.Y.; Pyoun, Y.S.; Amanov, A. Effect of ultrasonic nanocrystal surface modification on residual stress and fatigue cracking in engineering alloys. Fatigue Fract. Eng. Mater. Struct. 2017, 41, 844–855. [Google Scholar] [CrossRef]
- Segurado, E.; Belzunce, J.; Fernández, I. Enhanced Fatigue Behavior in Quenched and Tempered High-Strength Steel by Means of Double Surface Treatments. J. Mater. Eng. Perform. 2019, 28, 2094–2102. [Google Scholar] [CrossRef]
- Masaki, K.; Ochi, Y.; Matsumura, T. Initiation and propagation behaviour of fatigue cracks in hard-shot peened Type 316L steel in high cycle fatigue. Fatigue Fract. Eng. Mater. Struct. 2004, 27, 1137–1145. [Google Scholar] [CrossRef]
- Sano, Y.; Obata, M.; Kubo, T.; Mukai, N.; Yoda, M.; Masaki, K.; Ochi, Y. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Mater. Sci. Eng. A 2006, 417, 334–340. [Google Scholar] [CrossRef]
- Amanov, A.; Karimbaev, R.; Maleki, E.; Unal, O.; Pyun, Y.-S.; Amanov, T. Effect of combined shot peening and ultrasonic nanocrystal surface modification processes on the fatigue performance of AISI 304. Surf. Coat. Technol. 2019, 358, 695–705. [Google Scholar] [CrossRef]
- Odnobokova, M.; Belyakov, A.; Enikeev, N.; Kaibyshev, R.; Valiev, R.Z. Microstructural changes and strengthening of austenitic stainless steels during rolling at 473 K. Metals 2020, 10, 1614. [Google Scholar] [CrossRef]
- Droste, M.; Henkel, S.; Biermann, H.; Weidner, A. Influence of plastic strain control on martensite evolution and fatigue life of metastable austenitic stainless steel. Metals 2022, 12, 1222. [Google Scholar] [CrossRef]
- Yu, C.; Shiue, R.-K.; Chen, C.; Tsay, L.-W. Effect of low-temperature sensitization on hydrogen embrittlement of 301 stainless steel. Metals 2017, 7, 58. [Google Scholar] [CrossRef]
- Chung, Y.-H.; Chen, T.-C.; Lee, H.-B.; Tsay, L.-W. Effect of Micro-Shot Peening on the Fatigue Performance of AISI 304 Stainless Steel. Metals 2021, 11, 1408. [Google Scholar] [CrossRef]
- Kikuchi, S.; Nakamura, Y.; Nambu, K.; Ando, M. Effect of Shot Peening Using Ultra-Fine Particles on Fatigue Properties of 5056 Aluminum Alloy under Rotating Bending. Mater. Sci. Eng. A 2016, 652, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-S.; Kim, D.-S.; Jung, J.-S.; Pyoun, Y.-S.; Shin, K. Influence of peening on the corrosion properties of AISI 304 stainless steel. Corros. Sci. 2009, 51, 2826–2830. [Google Scholar] [CrossRef]
- Wei, X.; Zhu, D.; Ling, Y.; Dai, M. Influence of Wet Micro-Shot Peening on Surface Properties and Corrosion Resistance of AISI 304 Stainless Steel. Int. J. Electrochem. Sci. 2018, 13, 4198–4207. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Zhu, Y.; Bai, Y.; Yang, B. Improved corrosion resistance of 316LN stainless steel performed by rotationally accelerated shot peening. Appl. Surf. Sci. 2019, 481, 1305–1312. [Google Scholar] [CrossRef]
- Okido, S.; Yoshimura, T.; Enomoto, K.; Saito, H.; Morinaka, R.; Ishikawa, T. Preventive Effect of Shot Peening on Stress Corrosion Cracking. Mater. Sci. Res. Int. 2002, 8, 193–198. [Google Scholar] [CrossRef]
- Naito, A.; Takakuwa, O.; Soyama, H. Development of peening technique using recirculating shot accelerated by water jet. Mater. Sci. Technol. 2012, 28, 234–239. [Google Scholar] [CrossRef]
- Park, I.; Kim, E.-Y.; Yang, W. Microstructural Investigation of Stress Corrosion Cracking in Cold-Formed AISI 304 Reactor. Metals 2021, 11, 7. [Google Scholar] [CrossRef]
- Sreevidya, N.; Abhijith, S.; Albert, S.K.; Vinod, V.; Banerjee, I. Failure analysis of service exposed austenitic stainless steel pipelines. Eng. Fail. Anal. 2020, 108, 104337. [Google Scholar] [CrossRef]
- Luo, Y.; Gu, W.; Wei, P.; Jin, Q.; Qin, Q.; Yi, C. A Study on Microstructure, Residual Stresses and Stress Corrosion Cracking of Repair Welding on 304 Stainless Steel: Part I-Effects of Heat Input. Materials 2020, 13, 2416. [Google Scholar] [CrossRef]
- Lu, B.-T.; Chen, Z.-K.; Luo, J.-L.; Patchett, B.M.; Xu, Z.-H. Stress corrosion crack initiation and propagation in longitudinally welded 304 austenitic stainless steel. Corros. Eng. Sci. Technol. 2003, 38, 69–75. [Google Scholar] [CrossRef]
- Lu, J.; Hultman, L.; Holmström, E.; Antonssom, K.H.; Grehk, M.; Li, W.; Vitos, L.; Golpayegani, A. Stacking fault energies in austenitic stainless steels. Acta Mater. 2016, 111, 39–46. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, W. Stacking fault energy prediction for austenitic steels: Thermodynamic modeling vs. machine learning. Eng. Struct. Mater. 2020, 21, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Román, A.; Campillo, B.; Martínez, H.; Flores, O. Prediction of the stacking fault energy in austenitic stainless steels using an artificial neural network. Int. J. Eng. Tech. Res. 2019, 9, 31–38. [Google Scholar] [CrossRef]
- Hadji, M.; Badji, R. Microstructure and Mechanical Properties of Austenitic Stainless Steels After Cold Rolling. J. Mater. Eng. Perform. 2002, 11, 145–151. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Chen, T.-C.; Huang, R.-T.; Tsay, L.-W. Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray. Materials 2017, 10, 187. [Google Scholar] [CrossRef] [Green Version]
- Ling, X.; Ma, G. Effect of ultrasonic impact treatment on the stress corrosion cracking of 304 stainless steel welded joints. J. Press. Vessel. Technol. ASME 2009, 131, 051502. [Google Scholar] [CrossRef]
- Lu, Z.; Shi, L.; Zhu, S.; Tang, Z.; Jiang, Y. Effect of high energy shot peening pressure on the stress corrosion cracking of the weld joint of 304 austenitic stainless steel. Mater. Sci. Eng. A 2015, 637, 170–174. [Google Scholar]
- Abdullah, A.; Malaki, M.; Eskandari, A. Strength enhancement of the welded structures by ultrasonic peening. Mater. Des. 2012, 38, 7–18. [Google Scholar]
Specimen | Sa 1 | Sp 2 | Sv 3 |
---|---|---|---|
Ground 304 | 0.016 | 0.108 | 0.205 |
Ground 316 | 0.016 | 0.092 | 0.459 |
Micro-shot peened 304 | 0.209 | 1.672 | 1.301 |
Micro-shot peened 316 | 0.208 | 1.305 | 1.444 |
Specimen | BM | Micro-Shot Peened BM | FZ | Micro-Shot Peened FZ |
---|---|---|---|---|
304 | 0.00 | 0.82 ± 0.25 | 1.76 ± 0.21 | 4.41 ± 0.58 |
316 | 0.00 | 0.27 ± 0.12 | 0.54 ± 0.11 | 2.10 ± 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, C.-Y.; Chen, T.-C.; Tsay, L.-W. Effects of Micro-Shot Peening on the Stress Corrosion Cracking of Austenitic Stainless Steel Welds. Metals 2023, 13, 69. https://doi.org/10.3390/met13010069
Kang C-Y, Chen T-C, Tsay L-W. Effects of Micro-Shot Peening on the Stress Corrosion Cracking of Austenitic Stainless Steel Welds. Metals. 2023; 13(1):69. https://doi.org/10.3390/met13010069
Chicago/Turabian StyleKang, Chia-Ying, Tai-Cheng Chen, and Leu-Wen Tsay. 2023. "Effects of Micro-Shot Peening on the Stress Corrosion Cracking of Austenitic Stainless Steel Welds" Metals 13, no. 1: 69. https://doi.org/10.3390/met13010069
APA StyleKang, C. -Y., Chen, T. -C., & Tsay, L. -W. (2023). Effects of Micro-Shot Peening on the Stress Corrosion Cracking of Austenitic Stainless Steel Welds. Metals, 13(1), 69. https://doi.org/10.3390/met13010069