Study of Al Addition on Sintered CuCrFeNiTi as a Potential Alloy for Automotive Components
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Phase Analysis
3.2. Lattice Constants and Microhardness
3.3. Morphology and Porosity
3.4. Chemical Analyses by EDS-SEM
4. Conclusions
- ○
- High-entropy alloys of the CrCuFeNiTiAlx (x = 0%, 0.5%, 1%, 2.5%, 5%) type were synthesized following a powder metallurgy method. The solid-state process was proved as an effective experimental route to produce high-entropy alloys since milling induces finer particle size and high lattice distortion, facilitating the metal atoms’ diffusion during sintering. Furthermore, sintering promotes metal diffusion during sintering.
- ○
- Based on microstructural results, the CrCuFeNiTi alloy synthesized by solid-state route is composed of a Cu-Fe-Ni SS, Ti-enrich phase and chromium oxide-type phase. The Al content increases the volume fraction of the chromium oxide-type phase. In addition, the preference distribution of Al in the Ti-enrich phase was observed.
- ○
- The HEA alloy that achieved the highest hardness is the one with the highest Al content. These alloys harden significantly with the addition of Al due to the increase of the chromium oxide-type phase, and the strong atomic bonding between Al and other elements, due to the larger atomic radius of Al. This phenomenon is also related to the reduction in porosity as a function of aluminum content.
Author Contributions
Funding
Conflicts of Interest
References
- Gorsse, S.; Tancret, F. Current and emerging practices of CALPHAD toward the development of high entropy alloys and complex concentrated alloys. J. Mater. Res. 2018, 33, 2899–2923. [Google Scholar] [CrossRef]
- Kauffmann, A.; Stüber, M.; Leiste, H.; Ulrich, S.; Schlabach, S.; Szabó, D.V.S.; Seils, S.; Gorr, B.; Chrn, H.; Seifert, H.J.; et al. Combinatorial exploration of the high entropy alloy system Co-Cr-Fe-Mn-Ni. Surf. Coat. Technol. 2017, 325, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L.; Hu, Y.H.; Hsieh, C.A. Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 2009, 481, 768–775. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375, 213–218. [Google Scholar] [CrossRef]
- Huang, P.K.; Yeh, J.W.; Shun, T.T.; Chen, S.K. Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 2004, 6, 74–78. [Google Scholar] [CrossRef]
- Cavalieria, F.J.; Zenklusen, F.; Cardona, A. Determination of wear in internal combustion engine valves using the finite element method and experimental tests. Mech. Mach. Theory 2016, 104, 81–99. [Google Scholar] [CrossRef]
- Alves, S.A.; Fernández-Lopéz, P.; Lopéz-Ortega, A.; Fernández, X.; Quintana, I.; San-José, J.T.; Bayón, R. Enhanced tribological performance of cylinder liners made of cast aluminum alloy with high silicon content through plasma electrolytic oxidation. Surf. Coat. Technol. 2022, 433, 128146. [Google Scholar] [CrossRef]
- Koli, S.; Shete, H. Failure Analysis and Optimization Of Rocker Arm. Int. J. Eng. Sci. Res. Technol. 2020, 9. [Google Scholar] [CrossRef]
- Li, Z.; Raabe, D. Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties. JOM 2017, 69, 2099–2106. [Google Scholar] [CrossRef]
- Schuh, B.; Mendez-Martin, F.; Völker, B. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 2015, 96, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Abu-Odeh, A.; Galvan, E.; Kirk, T.; Mao, H.; Chen, Q.; Mason, P.; Malak, R.; Arróyave, R. Efficient exploration of the high entropy alloy composition-phase space. Acta Mater. 2018, 152, 41–57. [Google Scholar] [CrossRef]
- Manzoni, A.M.; Singh, S.; Daoud, H.M.; Popp, R.; Völkl, R.; Glatzel, U.; Wanderka, N. On the path to optimizing the Al-Co-Cr-Cu-Fe-Ni-Ti high entropy alloy family for high temperature applications. Entropy 2016, 18, 104. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.H.; Zhou, P.F.; Wu, W.Q.; Diao, H.Y.; Gao, M.C.; Song, M.; Liaw, P.K. Microstructure, mechanical and corrosion behaviors of AlCoCuFeNi-(Cr,Ti) high entropy alloys. Mater Des. 2017, 116, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ludwig, A.; Savan, A.; Springer, H. Combinatorial metallurgical synthesis and processing of high-entropy alloys. J. Mater. Res. 2018, 33, 3156–3169. [Google Scholar] [CrossRef]
- Yurkova, A.I.; Chernyavskii, V.V.; Gorban’, V.F. Structure and mechanical properties of high-entropy AlCuNiFeTi and AlCuNiFeCr alloys produced by mechanical activation followed by pressure sintering. Powder Metall. Met. Ceram. 2016, 55, 152–163. [Google Scholar] [CrossRef]
- Baglyuk, G.A.; Marich, M.V.; Mamonova, A.A.; Gripachevskii, A.N. Features of structurization during sintering of compacts from a multicomponent Ti-Cr-Fe-Ni-Cu Charge. Powder Metall. Met. Ceram. 2016, 54, 543–547. [Google Scholar] [CrossRef]
- Sriharitha, R.; Murty, B.S.; Kottada, R.S. Phase formation in mechanically alloyed AlxCoCrCuFeNi (x = 0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics 2013, 32, 119–126. [Google Scholar] [CrossRef]
- Borkar, T.; Chaudhary, V.; Gwalani, B.; Choudhuri, D.; Mikler, C.V.; Soni, V.; Alam, T.; Ramanujan, R.V.; Banerjee, R. A combinatorial approach for assessing the magnetic properties of high entropy alloys: Role of Cr in AlCoxCr1-xFeNi. Adv. Eng. Mater. 2017, 19, 1700048. [Google Scholar] [CrossRef]
- Vorobiov, S.I.; Kondrakhova, D.M.; Nepijko, S.A.; Poduremne, D.V.; Shumakova, N.I.; Protsenko, I.Y. Crystalline structure, electrophysical and magnetoresistive properties of high entropy film alloys. J. Nano-Electron. Phys. 2016, 8, 03026. [Google Scholar] [CrossRef]
- ASTM C1327 (2015); Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics. ASTM International: West Conshohocken, PA, USA, 2019.
- Zhou, Y.J.; Zhang, Y.; Wang, Y.L.; Chen, G.L. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 2007, 90, 181904. [Google Scholar] [CrossRef]
- Shackelford, J.F.; Han, Y.-H.; Kim, S.; Kwon, S.-H. CRC Materials Science and Engineering Handbook, 4th ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Lei, Z.; Liu, X.; Wu, Y.; Wang, H.; Jiang, S.; Wang, S.; Hui, X.; Wu, Y.; Gault, B.; Kontis, P.; et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018, 563, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Rost, C.M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E.C.; Hou, D.; Jones, J.L.; Curtarolo, S.; Maria, J.P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 8485–8490. [Google Scholar] [CrossRef] [Green Version]
- Shivam, V.; Basu, J.; Pandey, V.K.; Shadangi, Y.; Mukhopadhyay, N.K. Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 2018, 29, 2221–2230. [Google Scholar] [CrossRef]
- Zhang, K.; Fu, Z. Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys. Intermetallics 2012, 22, 24–32. [Google Scholar] [CrossRef]
Phase | JCPDS Card Numbers | Chemical Formula | 0 | 0.5 | 1.0 | 2.5 | 5.0 |
---|---|---|---|---|---|---|---|
FCC | 03-065-6291 | Solid-solution | x | x | x | x | x |
BCC | 00-019-0850 | Solid-solution | x | x | x | x | x |
HCP | 00-018-0388 | Solid-solution | x | x | x | x | x |
Chrome oxide | 00-006-050 | Cr2O3 | x | x | x | x | |
Copper oxide | 00-034-1354 | Cu2O | x |
Element | Spec. 40 | Spec. 41 | Spec. 44 | Spec. 71 | Spec. 73 | Spec. 74 | Spec. 76 |
---|---|---|---|---|---|---|---|
Al | ND | ND | ND | 1.1 ± 0.1 | ND | 19.6 ± 0.1 | 20.1 ± 0.2 |
Cr | 15.2 ± 0.1 | 9.5 ± 0.4 | 17.7 ± 0.3 | 7.7 ± 0.3 | 90.3 ± 0.2 | 5.3 ± 0.2 | 6.4 ± 0.1 |
Cu | 12.8 ± 0.4 | 9.7 ± 0.3 | 4.6 ± 0.2 | 10.7 ± 0.3 | ND | 2.9 ± 0.1 | 3.9 ± 0.2 |
Fe | 38.8 ± 0.4 | 3.5 ± 0.2 | 2.0 ± 0.1 | 57.7 ± 0.2 | 1.9 ± 0.1 | 0.9 ± 0.1 | 2.5 ± 0.1 |
Ni | 30.5 ± 0.3 | 5.2 ± 0.3 | 2.2 ± 0.1 | 19.5 ± 0.3 | 1.4 ± 0.3 | 1.2 ± 0.2 | 3.4 ± 0.2 |
Ti | 0.5 ± 0.1 | 47.6 ± 0.3 | 25.9 ± 0.3 | 0.4 ± 0.1 | ND | 26.3 ± 0.4 | 16.3 ± 0.2 |
O | 2.2 ± 0.1 | 24.5 ± 0.1 | 47.6 ± 0.4 | 3.0 ± 0.2 | 6.4 ± 0.4 | 43.8 ± 0.4 | 47.5 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha-Rangel, E.; Estrada-Guel, I.; Castillo-Robles, J.A.; Rodríguez-García, J.A.; Garay-Reyes, C.G.; Villalobos-Aragón, A.; Gómez-Esparza, C.D.; Calles-Arriaga, C.A.; Martínez-Sánchez, R. Study of Al Addition on Sintered CuCrFeNiTi as a Potential Alloy for Automotive Components. Metals 2023, 13, 77. https://doi.org/10.3390/met13010077
Rocha-Rangel E, Estrada-Guel I, Castillo-Robles JA, Rodríguez-García JA, Garay-Reyes CG, Villalobos-Aragón A, Gómez-Esparza CD, Calles-Arriaga CA, Martínez-Sánchez R. Study of Al Addition on Sintered CuCrFeNiTi as a Potential Alloy for Automotive Components. Metals. 2023; 13(1):77. https://doi.org/10.3390/met13010077
Chicago/Turabian StyleRocha-Rangel, Enrique, Ivanovich Estrada-Guel, José A. Castillo-Robles, José A. Rodríguez-García, Carlos G. Garay-Reyes, Alejandro Villalobos-Aragón, Cynthia D. Gómez-Esparza, Carlos Adrián Calles-Arriaga, and Roberto Martínez-Sánchez. 2023. "Study of Al Addition on Sintered CuCrFeNiTi as a Potential Alloy for Automotive Components" Metals 13, no. 1: 77. https://doi.org/10.3390/met13010077
APA StyleRocha-Rangel, E., Estrada-Guel, I., Castillo-Robles, J. A., Rodríguez-García, J. A., Garay-Reyes, C. G., Villalobos-Aragón, A., Gómez-Esparza, C. D., Calles-Arriaga, C. A., & Martínez-Sánchez, R. (2023). Study of Al Addition on Sintered CuCrFeNiTi as a Potential Alloy for Automotive Components. Metals, 13(1), 77. https://doi.org/10.3390/met13010077