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Abstract: The mechanical properties of Al-Si-Mg-Cu cast alloys are heavily determined by Cu content
due to the precipitation of relating strengthening precipitates during the aging treatment. In this study,
the microstructures and mechanical properties of Al-9Si-0.5Mg-xCu (x = 0, 0.9, 1.5, and 2.1 wt.%)
alloys were investigated to elucidate the effect of Cu content on the evolution of their mechanical
properties. After T6 (480 ◦C + 6 h− 530 ◦C + 4 h, 175 ◦C + 10 h) treatment, Mg-rich and Cu-rich phases
were dissolved in the matrix; the main aging-precipitates of the alloys change from the needle-like
β′ ′ phases in the base alloy to the granular Q′ phases in the 0.9Cu alloy, the granular Q′ phase in
the 1.5Cu alloy, the granular Q′ phase, and θ′ platelets in the 2.1Cu alloy. The increase of Cu level
results in difference of the type, number density, and morphology of the nanoscale precipitated phase.
Because of precipitation strength, the yield strength was increased by 103–130 MPa depending on the
Cu contents. The precipitation strengthening effect of the precipitates was quantitatively evaluated
by the Orowan mechanism. The aging-treated Al-9Si-0.5Mg-2Cu alloy shows the good strength
and ductility: yield strength 351 MPa, ultimate tensile strength 442 MPa, and elongation 8.4%. The
morphologies of fracture surfaces of the alloys also were observed.

Keywords: Al-Si-Mg-Cu alloy; Cu content; microstructure; precipitate; mechanical properties

1. Introduction

Al-Si cast aluminum alloys are extensively used in the automobile field due to their
superior castability, satisfactory mechanical and physical properties, and low coefficient of
thermal expansion [1–4]. Adding Mg to Al-Si alloys plays a role in solid solution strength-
ening and precipitation hardening of aging treatment [5–7]. Cu can significantly increase
the mechanical properties of Al-Si-Mg alloys with the formation of nanoscale θ′ and Q′

precipitates during aging [7–10]. Unlike that of Al-Si-Mg and Al-Si-Cu cast alloys, the
precipitation strengthening of the Al-Si-Mg-Cu alloy is mainly related to the β′ ′, θ′, and/or
Q′ phases; meanwhile, the type and volume fraction of Mg and/or Cu-rich precipitates are
closely related to heat-treatment conditions and Cu level [7,9,10]. However, the enhanced
strength of the Al-Si-Mg alloys with Cu addition is usually at the expense of their ductility.
In addition, the addition of Cu can decrease the melting point and eutectic temperature of
Al-Si-Mg alloys, leading to an increase in the solidification range of the alloys and facilitat-
ing porosity formation. Simultaneously, with the increase in Cu content, the precipitates in
Al-Si-Mg alloys constantly change in type, morphology, quantity, and size [7,9–13]. Some
useful understandings have been reported in the properties and precipitation behavior
change with Cu addition in these quaternary alloys [4,7,8]. Shang [12] systematically
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analyzed the phase component of these alloys with a wide Cu level (0.01–4.5 wt.%) and dis-
cussed the effect of precipitates on mechanical properties. The previous works mainly focus
on the strengthen effect of θ′ precipitates in high-Cu/low-Mg Al-Si-Mg-Cu alloy. When
Mg content increases and ratio of Cu/Mg decreases, the Q′ nano-phase may show a high
fraction after aging treatment, which may change the aging-strengthen effect. However,
the work on systematic observation and characterization needs to be conducted in greater
detail in low-ratio of Cu/Mg alloy, including the effects of precipitates on the hardening
behavior of these alloys.

Therefore, the current study mainly evaluates the effect of Cu content on the mi-
crostructural evolution and mechanical properties of Al-9Si-0.5Mg-xCu alloys (Cu/Mg:
0–4) and discusses the contribution of precipitates to the hardening behavior of Al-Si-Mg-
xCu alloys.

2. Materials and Methods
2.1. Material Preparation

Commercial-purity Al (99.9%), pure Mg (99.95%), pure Cu (99.9%), Al-20%Si master
alloys (all compositions quoted in this article are in weight percentage unless otherwise
mentioned), and Al-10%Sr alloy as metamorphic eutectic Si were used to prepare Al-Si-
Mg-Cu alloys in a 50 kW resistance furnace. Commercial-purity Al and Al-20%Si were
first melted in the resistance furnace. The melt was heated to 740 ◦C and held at that
temperature for 30 min to ensure all components were sufficiently mixed. Then, pure Cu
and Mg were added into the melt at 750 ◦C and held for 20 min, followed by slag removal.
The Al-10%Sr alloy was added into alloy melts at 730 ◦C. The alloy melt was ultimately
poured into a water-cooled copper mold (25 × 100 × 200 mm3, Figure 1) to form an as-cast
ingot [14–16].
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Figure 1. Schematic of the sample position for microstructural and tensile tests.

2.2. Material Characterization

The measured compositions of the designed Al-Si-Mg-xCu alloys, which were noted
as A1, A2, A3, and A4 were measured using an SPECTROLAB stationary metal analyzer
(SPECTROLAB M12, Kleve, Germany). The results are listed in Table 1.

Table 1. Composition of the Al-Si-Mg-Cu alloys [wt.%].

Alloy Si Mg Cu Fe Sr Other Al

A1 8.53 0.43 0.01 0.116 0.0195 <0.01 Bal.
A2 8.52 0.42 0.89 0.116 0.0196 <0.01 Bal.
A3 8.51 0.44 1.43 0.117 0.0219 <0.01 Bal.
A4 8.54 0.43 2.08 0.117 0.0211 <0.01 Bal.
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Compositional analysis and microstructural evaluation were conducted on samples
near the center of the Φ10 mm tensile rods (the red area in Figure 1). The phase compositions
of the as-cast alloys were analyzed using a X-ray diffraction (XRD) to identify the phase
composition of the alloys with CuKα1 radiation by using PW3040/60X diffractometers.
The samples were etched for 2–10 s by using 0.5% hydrofluoric acid for scanning electron
microscopy (SEM) characterization using a Phenom X1 scanning electron microscopy (SEM)
equipped with X-ray energy dispersive spectroscopy (EDS). The secondary dendrite arm
spacing (SDAS) was measured by the intercept method. Quantitative measurements of
the SDAS were conducted by optical microscopy using image analysis software (MEDIA
CYBERNETICS, Rockville, MD, USA), at least 50 dendrites were measured and their
average value is considered as the representation of SDAS [17].

Transmission electron microscope (TEM) samples of the region near the fracture were
prepared by sectioning the tensile specimens in the transverse direction. The section near
the center of the specimen was polished by hand to approximately 50 µm before a standard
3 mm disc was punched out. Then, the samples were placed on a Gatan 695 PIPS ion beam
thinner (Gatan, Inc., Pleasanton, CA, USA). A FEI Tolos F200x (TEM, Tolos F200x, FEI
Ltd., Pleasanton, CA, USA) transmission electron microscope equipped with the energy
dispersive X-ray spectrometer was operated at an accelerating voltage of 200 kV. All images
were taken along the <001>Al zone axis in order to characterize the cross-sections and
side views of the precipitates. The average length (l) was calculated using 500 precipitates
growing along [100] Al and [010] Al in total. The average area of cross-section of the
precipitates (Acs) were calculated in 60 HRTEM images.

2.3. Mechanical Testing

All samples were treated with the solution at 480 ◦C − 6 h + 530 ◦C − 4 h, followed
by cold water quenching (about 20 ◦C). Aging treatments were then performed at 175 ◦C
for 10 h. The tensile property of the samples was tested on a DNS-300 universal experi-
mental machine produced by Changchun Machinery Research Institute at a tensile rate of
1 mm/min. The extensometer with a gauge length of 25 mm was used. At least five tensile
test specimens were tested for each alloy.

3. Results and Discussions
3.1. As-Cast Microstructures

Figure 2 presents the backscattered SEM images of the as-cast alloys. All alloys
have α-Al dendritic microstructure, eutectic Si, and eutectic Mg/Cu-containing phases.
Secondary dendrite arm spacing was calculated by Image-Pro Plus (6.0, Media Cybernetics,
Inc, Rockville, MD, USA), and the values of the A1–A4 alloys were 22.76 mm, 18.66 mm,
18.02 mm, and 18.25 mm, respectively. As shown in Figure 2a, in the absence of Cu, several
black Chinese character-shaped phases are present in the as-cast A1 alloy, and the Energy
Dispersive Spectrometer (EDS) result indicates that the composition of the back phase is
Al-1.79 at.%Mg-6.06 at.%Si, indicating the Mg2Si phase [4,5]. With Cu content increasing
to 0.9 wt.%, the quantity of Mg2Si phase decreases. The bright phases are observed in
the A2 alloy. The bright phases are dispersed in the eutectic silicon region (Figure 2b).
The EDS analysis indicates that the bright phase is Al-15.69 at.%Cu-12.46 at.%Mg-12.05
at.%Si. In A3 alloy, the bright phases increase and the Al2Cu phases are observed, the
composition is Al-29.01 at.%Cu. With the Cu content further increasing from 1.5 to 2.1 wt.%,
the bright Al2Cu phase increases (Figure 2d). Moreover, the Fe-containing phases were
observed in the four alloys (Figure 2), the composition of the Fe-rich phase are: Al-26.38
at.%Si-12.13 at.%Mg-3.78 at.%Fe in A1 alloy, Al-26.22 at.%Si-14.76 at.%Mg-4.29 at.%Fe in
A2 alloy, Al-25.45 at.%Si-17.19 at.%Mg-5.59 at.%Fe in A3 alloy, and Al-27.56 at.%Si-11.35
at.%Mg-3.42 at.%Fe in A4 alloy.
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XRD patterns of the as-cast alloys are presented in Figure 3. The A1 alloy consisted
of α-Al, Si, and Mg2Si phases, which is consistent with the microstructural observation
in Figure 2a. Compared with that of the A1 alloy, in A3 and A4 alloys, the diffraction
peaks of Q-AlCuMgSi and θ-Al2Cu phases were observed, indicating that the Cu addition
results in the formation of Q and θ phases. These results are consistent with Figure 2c,d.
Therefore, the phase composition of the Al-Si-Mg-Cu alloy system was closely related to
the Cu content; meanwhile, the content of each phase was also determined by the Cu and
Mg contents [6–10]. In A2 alloys, the XRD results do not show the diffraction peaks of Q
and θ phases, but the microstructure in Figure 2b indicates the presence of Q and θ phases.
The low fractions of Q and θ phases in low-Cu A2 alloy may result that they hardly be
detected by XRD. Moreover, the XRD results indicate the presence of Al8Mg3FeSi6 phase in
A1–A4 alloys.

3.2. Microstructures after T6 Treatment

Heat treatment can affect the microstructural features of Al-Si-Cu-Mg alloys [4,11].
Figure 4 presents the SEM-mapping images of the alloys after T6 treatment. Compared with
the as-cast state (Figure 2), the Cu-containing phases were mostly dissolved into the α-Al
matrix after solid solution treatment. The residual bright phases after solution treatment are
mainly Fe-containing phases, which show the same distribution of Mg and Fe in Figure 4a,b
and can be identified as the AlFeMgSi phase. In Figure 4c,d, it indicates that the other
Fe-containing phase of small quantity show in A3 and A4 alloys. Moreover, the slight
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Cu/Mg-containing phases is residual in high-Cu level A4 alloy. Except the dissolution of
Mg and Cu into the matrix, the eutectic Si happens evident spheroidization and dispersion,
as shown in Si mapping images of Figure 4.
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The TEM micrographs of the alloys after aging treatment are shown in Figure 5. The
comparison of the TEM images of the A1–A4 alloys indicates that the nano-precipitates
precipitated during aging process show a higher number density with increasing Cu level.
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By contrast, the lamellar precipitates were observed in A4 alloy. Here, the lamellar precipi-
tates are mainly Cu-containing phases, may be the sheet θ′ platelets specifically [7,8]. The
number density of precipitates is listed in Table 2. The number density of the precipitates
was estimated by η = 3 N, where N is the precipitate cross-section in the image. The factor
3 comprises the three growth directions of the precipitates [13]. In Table 2, the increase in
Cu content improves the number density of the precipitates in the aging-treated alloys.
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Table 2. Number density of precipitate in aging-treated samples.

Alloy n (Number Density/ × 1022 m−3) l (Average Length/nm) Acs (Average Area of the
Cross-Section/nm2)

A1 6.56 22.41 16.6501
A2 6.98 22.85 17.8293
A3 8.01 24.52 19.6582
A4 8.21 27.59 22.3276

Figure 6 presents the TEM results for the precipitates in A1 alloy after aging treat-
ment. This precipitate shows the monoclinic structure with lattice parameters of a = 1.51 and
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c = 0.67 nm (Figure 6b), in addition to the orientation relationships of (200)precipitate//(301)Al
(Figure 6b) and [010]precipitate//[010]Al (Figure 6c,d). These results indicate that these pre-
cipitates are β” phases [13,18], and no other precipitates are observed. This precipitate is
regarded as the most common one in the aged Al alloy. HRTEM images (Figure 6b–d) show
that the precipitate is coherent with the Al matrix.
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Figure 7 shows the TEM image and the corresponding FFT pattern of the precipitate in
A2 alloy. The HRTEM image and FFT pattern indicate that β” precipitates are in the aged
A2 alloy. A closer check of A2 alloy reveals that the precipitation of another nanophase
(Figure 8) in addition to the extensive β” phase (Figure 7). This precipitate shows an angle
of 120◦ between its a and b axes, and exhibits a typical dense stacked hexagonal lattice
(HCP) crystal structure. The lattice parameter of this precipitate is a = 1.032 nm, which is
obtained using an internal standard method. The precipitate interface was largely parallel
to the three crystal faces of the Al matrix—(501)Al, (103)Al, and (506)Al—but was mostly
distributed along <510>Al with an orientation relationship of (2110)precipitate//(501)Al,
[0001]precipitate//[010]Al. On the basis of previously reported literature data [19], this
precipitate in A2 alloy is identified as granular Q′ phases. In general, the main precipitates
in A2 alloy are the needle-like β” phase and the granular Q′ phase. It can be seen from
Figures 7 and 8 that the precipitates are coherent with the Al matrix.
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image, (c) corresponding FFT, (d) schematic pattern.

Figure 9 shows the TEM images and the corresponding FFT pattern of the granular
precipitate in the aged A3 alloy. The Q′ nano-phase also can be observed, but no precipitate
of other type was observed. Combined with the results in Figure 8, this result indicates
that large quantity of Q′ phases can be identified in A3 alloy. The size of the Q′ phase is
approximately the same as in A2 alloy, and the predominant precipitates in the aged A3
alloy are the granular Q′ phases, and it is coherent with the Al matrix. As can be seen
in Figure 10, the precipitates in A4 alloy have a crystal structure, lattice parameter, and
orientation relationship similar to those of the Q′ phase.
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Figure 11 shows the TEM images of the lamellar precipitates in A4 alloy, which
indicates that these precipitates are distributed along {200} Al. A closer examination shows
that the precipitates exhibit the crystal structure and lattice parameters: a = 0.404 nm,
c = 0.58 nm, and an orientation relationship of (200)precipitate//(200)Al, [010]precipitate//[010]Al.
Therefore, this nano-phase is identified as θ′ [7,20], and the predominant precipitates
in the aged A4 alloy are Q′ and θ′. Additionally, normally, the reduction of interfacial
energy causes the precipitates to be compact, while reduction of elastic energy leads to
the formation of the plate shape. The ratio between the bulk elastic driving force and
the interfacial energy is size dependent, and thus, the tendency towards plate formation
depends on the precipitate size. The shape formation of smaller precipitates is mostly
driven by interface reduction and therefore the precipitates tend to be more spherical when
the interfacial energy is assumed to be isotropic. Combined with Figure 5, the precipitated
phase was gradually changed from short rod to granulate to lamellar with increasing
Cu content.
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In summary, the types of aging-precipitate changes with the change of Cu level in
alloys, which transforms from needle-like β′ ′ in A1 alloy to granular Q′ and needle-like
β′ ′ in A2 alloy. A3 alloy mostly consists of granular Q′ phase. When Cu level increases to
2.08%, the Q′ and θ′ are the main precipitates in aged A4 alloy.

3.3. Tensile Properties

The ultimate tensile strength (UTS), 0.2% yield strength (YS), and the elongation to
fracture of the solution- and aging-treated alloys are listed in Table 3. The strength of the
studied alloys increases, and the elongation slightly decreases with increasing of Cu level.
Figure 12 presents the engineering stress–strain curves of the alloys under quenching and
aging conditions. Under solution-treated state, the YS increases from 161 to 221 MPa and
the UTS increases from 275 to 363 MPa when Cu content increases from 0–2%. Meanwhile,
the solution-treated alloys of A1–A4 show the high elongations of 16–18%. After aging
treatment, the YS and UTS markedly improve in A1–A4 alloys. With increasing Cu content,
the YS increases from 264 to 351 MPa, UTS increases from 322 to 442 MPa, and the elongation
decreases from 10 to 8.4%.

Table 3. Tensile properties of the designed alloys under different conditions.

Alloy
Quenching State Aging Treatment

UTS (MPa) YS (MPa) A25 (%) UTS (MPa) YS (MPa) A25 (%)

A1 275 ± 5.2 161 ± 4.2 18.5 ± 1.2 322 ± 4.2 264 ± 4.6 10 ± 1.1
A2 335 ± 5.3 194 ± 4.4 17.1 ± 1.3 343 ± 5.7 299 ± 3.5 8.7 ± 0.8
A3 347 ± 4.5 201 ± 3.3 16.4 ± 0.9 394 ± 6.1 321 ± 4.1 8.6 ± 0.7
A4 363 ± 4.2 221 ± 4.5 16.1 ± 1.6 442 ± 5.3 351 ± 4.9 8.4 ± 0.6
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Comparing the tensile properties of the alloys treated under different conditions, the
change in strength of the alloys with different Cu contents can attribute to solid-solution
and aging strengthening. In solution-treated samples, the increase of Cu content results
in a higher solution content, which shows a higher solution strengthen effect. The YS and
UTS of solution-treated samples gradually increase when Cu content increases. After aging
treatment, the mechanical properties of the alloys markedly increase; the aging-treatment
is more effective than solution treatment on influence of strength in the Al-Si-Mg-xCu cast
alloy. Moreover, it indicates that the elongations of aging-treatment samples decrease due
to the inverted relationship between strength and ductility.

Notably, the yield strengths of the Al-Si-Mg-xCu alloys markedly improve after aging
treatment. The improvement in yield strength can be attributed to the nano-precipitates
of the β”, Q′, and θ′ phases. The contribution of the precipitates to yield strength can be
calculated by the Ashby–Orowan equation [13]:

σD =
0.84MGb

2π(1− υ)1/2λ
In

r
b

, (1)

where M is the Taylor factor, M = 3.1, G and b were the shear modulus (2.65 × 1010 N/m2)
and the Burgers vector of dislocations in the Al matrix (2.84 × 10−10 m), and v is the
Poisson’s ratio for Al (0.33). The interspacing of the precipitates λ depends on the radius r
and volume fraction Vf of the precipitates, as follows:

λ = r

(
2π

3v f

) 1
2

, (2)

Volume fraction (Vf) of precipitates:

Vf = nlAcs, (3)

where n is the number density of precipitates, l is the average length of dispersoids, and Acs
is the average area of the cross-section of precipitates. According to Equations (2)–(4), the
increase of yield strength caused by precipitates is calculated, which is listed in Table 4.

Table 4. Differences in the yield strength of the samples between quenching and aging and the
contribution to yield strength from precipitates calculated by the Orowan mechanism.

Alloy
Yield Strength

after Quenching (MPa)
Yield Strength after

Aging (MPa)

Improvement in Yield
Strength (MPa) (by

Experiment)

Precipitates
Contribution to Yield

Strength (MPa) (by
Orowan Mechanism)

A1 161 ± 4.2 264 ± 4.6 103 119.5
A2 194 ± 4.4 299 ± 3.5 105 125.0
A3 201 ± 3.3 321 ± 4.1 120 128.1
A4 221 ± 4.5 351 ± 4.9 130 135.8

As can be seen from Table 4, the calculated data agree well with the improved exper-
imental data of yield strength after aging process. However, the measured increase is a
little bit lower than the calculated increase in yield strength contributed by the precipitates.
This difference can be explained by the decrease of solute strengthening, since the solute
concentration in solid solution decreases during aging process [13,21,22].

According to the Orowan bypass mechanism, the yield strength increment (∆σs) shows
the relationship with the f and r (Equation (4)), where α is a constant for the material, f
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is the second-phase particle (aging precipitates) volume percentage, and r is the average
radius of the second phase particle (aging precipitates) [13,22]:

∆σs ∝ α· f 1/2·r−1 (4)

This relationship was used to analyze variation tendency of yield strength increment
with the precipitate size, as shown in Figure 13. It indicates that the increasing effect of
the aging precipitates on the yield strength is proportional to f 1/2·r−1. Therefore, the
increment of the yield strength is increased with the increase of f 1/2·r−1 in Figure 13, which
is consistent with the Orowan mechanism.
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are occupied by dimples formed by spheroidizing and dispersive Si particles. These dis-
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ing process, which is important for high ductility of Al-Si-Mg-Cu cast alloy. In the loading-
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formed in the Al matrix, represented by the yellow arrows in Figure 14. Moreover, the 
fracture surfaces in T6-treated samples do not show the residual Cu- and Fe-containing 
phases, avoiding adverse effect on the ductility by coarse intermetallic. Therefore, the 
elongations of aging-treated samples are higher than 8%, which can meet the engineering 
application requirements of Al-Si-Cu-Mg casting alloy. 

Figure 13. The variation tendency of yield strength increments with the f 1/2·r−1.

Figure 14 shows the fracture surfaces of the alloys after T6 treatment. The casting
defect does not be observed in the fracture surfaces. The fracture surfaces of the four
alloys are occupied by dimples formed by spheroidizing and dispersive Si particles. These
dispersive Si particles can result in the fine and homogeneous dimples during one-axis
loading process, which is important for high ductility of Al-Si-Mg-Cu cast alloy. In the
loading-bearing process, most granular Si particles were pulled out in dimples, and dimples
formed in the Al matrix, represented by the yellow arrows in Figure 14. Moreover, the
fracture surfaces in T6-treated samples do not show the residual Cu- and Fe-containing
phases, avoiding adverse effect on the ductility by coarse intermetallic. Therefore, the
elongations of aging-treated samples are higher than 8%, which can meet the engineering
application requirements of Al-Si-Cu-Mg casting alloy.
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4. Conclusions

The microstructures and mechanical properties of Al-9Si-0.5Mg alloys with Cu addi-
tion were investigated. The following conclusions are drawn from this study.

(1) With the Cu level increasing and Cu/Mg ratio changing, the mechanical properties
including yield and ultimate tensile strengths improve after solution and aging treat-
ments in A1–A4 alloys, the increase of Cu content results in higher solution and aging
strengthen effects and affects the aging precipitates. The aging-treated Al-9Si-0.5Mg-
2Cu alloy shows a better strength and ductility: yield strength 351 MPa, ultimate
tensile strength 442 Mpa, and elongation 8.4%.

(2) With the Cu level increasing, the types of main precipitates in the aging-treated
samples changes from the needle-like β” phase in base alloy to the β” and granular
Q′ phase in the 0.9%Cu alloy. When Cu content further increases to 1.5% and 2.1%,
the types of main precipitates show the Q′ phase in the 1.5%Cu alloy, and the Q′

and θ′ phases in the 2.1%Cu alloy. After aging, the increase in Cu level leads to the
increase in the volume fraction, number density, and average cross-sectional area of
the precipitates.
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