The Effect of Soaking Time on Mechanical Properties of Roll-Bonded AA3003 and AA4045 Used for Heat Exchangers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Experimental Procedure
2.3. Test Method
3. Results and Discussion
3.1. Microstructure—As-Received and Not Roll-Bonded
3.2. Roll-Bonding Interface Microstructure
3.3. Vickers Hardness
4. Conclusions
- The laboratory hot roll-bonding process for the production of the AA3003/4045 aluminum sheets has been successfully developed (Off-line TMP), i.e., complete bonding was achieved in the interface after roll-bonding.
- The as-received microstructure for AA3003 showed a coarse grain structure, and decreased after soaking for 38 h; however, a slight increase in grain size was shown at the 45 h soaking period.
- Coarsening of the α-Al(Mn,Fe)Si dispersoids at 505 °C was only observed at 45 h soaking time, which was, as expected, accompanied by a slight decline in hardness.
- The α-Al(Mn,Fe)Si was found to be the dominant dispersoid precipitate in the modified AA3003 core.
- The hardness trend with soaking time was found to be similar to that after soaking, cold working, and annealing, with an increase in hardness in the latter possibly due to strain hardening (from cold-rolling).
- Longer residence times in the preheat furnace coarsen Mn-bearing dispersoids. This results in early recrystallisation and a slightly lower hardness.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirsch, J. (Ed.) Virtual Fabrication of Aluminum Products; WILEY-VCH: Weinheim, Germany, 2006; pp. 19–26. [Google Scholar]
- Backerud, L.; Krol, E.; Tamminen, J. Solidification Characteristics of Aluminium Alloys: Wrought Alloys; Skanaluminium, Universitetsforlaget AS: Oslo, Norway, 1986; Volume 1, pp. 93–97. [Google Scholar]
- Li, Y.J.; Arnberg, L. Quantitative study on the precipitation behavior of dispersoids in DC-cast AA3003 alloy during heating and homogenization. Acta Mater. 2003, 51, 3415–3428. [Google Scholar] [CrossRef]
- Li, Y.J.; Muggerud, A.M.F.; Olsen, A.; Furu, T. Precipitation of partially coherent α-Al (Mn,Fe)Si dispersoids and their strengthening effect in AA 3003 alloy. Acta Mater. 2012, 60, 1004–1014. [Google Scholar] [CrossRef]
- Li, Y.J.; Zhang, W.Z.; Marthinsen, K. Precipitation crystallography of plate-shaped Al 6(Mn,Fe) dispersoids in AA5182 alloy. Acta Mater. 2012, 60, 5963–5974. [Google Scholar] [CrossRef]
- Bolt, P.J.; Lamboo, N.A.; Rozier, P.J. Feasibility of warm drawing of aluminium products. J. Mater. Process. Technol. 2001, 115, 118–121. [Google Scholar] [CrossRef]
- Pimenta, F.C., Jr.; Arruda, A.C.; Padilha, A.F. Resistance to recrystallization in Al-1% Mn alloys. Z. Für Met. 1986, 77, 522–528. [Google Scholar]
- Nagahama, K.; Miki, I. Precipitation during recrystallization in Al-Mn and Al-Cr alloys. Trans. Jpn. Inst. Met. 1974, 15, 185–192. [Google Scholar] [CrossRef]
- Sun, N.; Patterson, B.R.; Suni, J.P.; Simielli, E.A.; Weiland, H.; Allard, L.F. Microstructural evolution in twin roll cast AA3105 during homogenization. Mater. Sci. Eng. A 2006, 416, 232–239. [Google Scholar] [CrossRef]
- Sun, N.; Patterson, B.R.; Suni, J.P.; Doherty, R.D.; Weiland, H.; Kadolkar, P.; Blue, C.A.; Thompson, G.B. Effect of Heating Rate on Recrystallization of Twin Roll Cast Aluminum. Met. Mater. Trans. A 2008, 39, 165–170. [Google Scholar] [CrossRef]
- Mikhaylovskaya, A.V.; Mochugovskiy, A.G.; Kotov, A.D.; Yakovtseva, O.A.; Gorshenkov, M.V.; Portnoy, V.K. Superplasticity of clad aluminium alloy. J. Mater. Process. Technol. 2017, 243, 355–364. [Google Scholar] [CrossRef]
- Buthelezi, T. Review—Low Mechanical Properties on 9031 Clad Tubestock; Confidential Technical Report; 2015. [Google Scholar]
- Schäuble, K. Silica Passivation Layer on Aluminium Brazing Sheets. Ph.D. Thesis, Universität zu Köln, Köln, Germany, 2010. [Google Scholar]
- OIM, Analysis Version 7.2. User Manual. TexSEM Laboratories Inc.: Draper, UT, USA, 2013.
- Da Silva Junior, M.E.; Da Silva, C.V.; Araújo, H.R.; De Araújo, R.R.L.; Yadava, Y.P.; De Araujo Filho, O.O. Manufacturing and characterization of AA3003 aluminum alloy Powders by synthesis of elementary powders by techniques of High energy ball milling. Int. J. Dev. Res. 2022, 12, 58757–58761. [Google Scholar] [CrossRef]
- Pan, S.; Qian, F.; Li, C.; Wang, Z.; Li, Y. Synergistic strengthening by nano-sized α-Al(Mn,Fe)Si and Al3Zr dispersoids in a heat-resistant Al–Mn–Fe–Si–Zr alloy. Mater. Sci. Eng. A 2021, 819, 141460. [Google Scholar] [CrossRef]
- Hamerton, R.G.; Cama, H.; Meredith, M.W. Development of the coarse intermetallic particle population in wrought aluminium alloys during ingot casting and thermomechanical processing. Mater. Sci. Forum 2000, 331, 143–154. [Google Scholar] [CrossRef]
- Mansouri, H.; Eghbali, B.; Afrand, M. Producing multi-layer composite of stainless steel/aluminum/copper by accumulative roll bonding (ARB) process. J. Manuf. Process. 2019, 46, 298–303. [Google Scholar] [CrossRef]
- Khan, H.A.; Asim, K.; Akram, F.; Hameed, A.; Khan, A.; Mansoor, B. Roll Bonding Processes: State-of-the-Art and Future Perspectives. Metals 2021, 11, 1344. [Google Scholar] [CrossRef]
- Frolov, Y.; Haranich, Y.; Bobukh, O.; Remez, O.; Voswinkel, D.; Grydin, O. Deformation of expanded steel mesh inlay inside aluminum matrix during the roll bonding. J. Manuf. Process. 2020, 58, 857–867. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Yu, H.; Su, L.; Xu, G.; Pan, J.; You, T.; Zhang, G.; Sun, K.; He, L. Investigation on bonding strength of steeln aluminum clad sheet processed by horizontal twin-roll casting, annealing and cold rolling. Mater. Des. 2016, 112, 263–274. [Google Scholar] [CrossRef]
- Akramifard, H.; Mirzadeh, H.; Parsa, M. Cladding of aluminum on AISI304L stainless steel by cold roll bonding: Mechanism, Microstructure, and Mechanical Properties. Mater. Sci. Eng. 2014, 613, 232–239. [Google Scholar] [CrossRef]
- Akramifard, H.; Mirzadeh, H.; Parsa, M. The effect of annealing treatment on mechanical properties of aluminum clad steel sheet. Mater. Sci. Eng. 2014, 613, 232–239. [Google Scholar] [CrossRef]
- Jamaati, R.; Toroghinejad, M. Investigation of the parameters of the cold roll bonding (CRB) process. Mater. Sci. Eng. 2010, 527, 2320–2326. [Google Scholar] [CrossRef]
- Soltani, M.; Jamaati, R.; Toroghinejad, M. The influence of TiO2 nano-particles on bond strength of cold roll bonded aluminum strips. Mater. Sci. Eng. 2012, 550, 367–374. [Google Scholar] [CrossRef]
- Alexander, D.T.L.; Greer, A.L. Nucleation of the Al6(Fe, Mn)-to-α-Al–(Fe, Mn)–Si transformation in 3XXX aluminium alloys. I. Roll-bonded diffusion couples. Philos. Mag. 2004, 84, 3051–3070. [Google Scholar] [CrossRef]
- Yu, C.Y.; Sun, P.L.; Kao, P.W.; Chang, C.P. Mechanical properties of submicron-grained aluminum. Scr. Mater. 2005, 52, 359–363. [Google Scholar] [CrossRef]
- Wang, J.; Horita, Z.; Furukawa, M.; Nemoto, M.; Tsenev, N.K.; Valiev, R.Z.; Ma, Y.; Langdon, T.G. An investigation of ductility and microstructural evolution in an Al—3% Mg alloy with submicron grain. J. Mater. Res. 1993, 8, 2810–2818. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, G.; Sun, Y.; Zhang, L.; Huang, Z.; Wang, J.; Liu, C. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling. Materials 2016, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Pokova, C.M.; Lacaze, J. Enhanced AW3003 Aluminum Alloys for Heat Exchangers. In WDS’11 Proceedings of Contributed Papers, Part III, Proceedings of the 20th Annual Conference of Doctoral Students—WDS 2011, Prague, Czech Republic, 31 May–3 June 2011; MatfyzPress: Prague, Czech Republic, 2011; pp. 141–146. ISBN 978-80-7378-186-6. [Google Scholar]
- Liu, Q.; Huang, X.; Lloyd, D.J.; Hansen, N. Microstructure and strength of commercial purity aluminum (AA1200) cold rolled to large strains. Acta Mater. 2002, 50, 3789–3802. [Google Scholar] [CrossRef]
- Kumar, R.; Gupta, A.; Dandekar, T.R.; Khatirkar, R.K. Microstructure and texture development in AA3003 aluminium alloy. Mater. Today Commun. 2020, 24, 100965. [Google Scholar] [CrossRef]
- Estrin, Y.; Vinogradov, A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013, 61, 782–817. [Google Scholar] [CrossRef]
- Zhao, Y.; Liao, X.; Jin, Z.; Valiev, R.; Zhu, Y. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 2004, 52, 4589–4599. [Google Scholar] [CrossRef]
Material | Elements wt.% | ||||||
---|---|---|---|---|---|---|---|
Si | Fe | Cu | Mn | Mg | Cr | Al | |
AA3003 | 0.06 | 0.20 | 0.42 | 1.50 | 0.21 | 0.01 | Bal |
AA4045 | 10.10 | 0.15 | - | 0.02 | 0.01 | - | Bal |
Condition | Average Grain Size (μm) | Stdev |
---|---|---|
As-received | 90.82 | 8.12 |
35 h | 88.44 | 13.27 |
38 h | 77.11 | 7.66 |
40 h | 83.79 | 5.72 |
45 h | 86.91 | 4.63 |
Condition | Fe (wt.%) | Mn (wt.%) |
---|---|---|
As-received | 9.69 ± 3.57 | 13.32 ± 4.54 |
20 h | 12.44 ± 4.12 | 15.94 ± 3.23 |
30 h | 10.45 ± 2.65 | 13.91 ± 2.50 |
38 h | 13.05 ± 4.39 | 14.92 ± 4.21 |
40 h | 12.51 ± 2.10 | 14.17 ± 3.05 |
45 h | 9.80 ± 6.67 | 11.54 ± 5.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moema, J.S.; Siyasiya, C.W.; Morudu, V.K.; Buthelezi, T. The Effect of Soaking Time on Mechanical Properties of Roll-Bonded AA3003 and AA4045 Used for Heat Exchangers. Metals 2023, 13, 1636. https://doi.org/10.3390/met13101636
Moema JS, Siyasiya CW, Morudu VK, Buthelezi T. The Effect of Soaking Time on Mechanical Properties of Roll-Bonded AA3003 and AA4045 Used for Heat Exchangers. Metals. 2023; 13(10):1636. https://doi.org/10.3390/met13101636
Chicago/Turabian StyleMoema, Joseph S., Charles W. Siyasiya, Veronica K. Morudu, and Thokozani Buthelezi. 2023. "The Effect of Soaking Time on Mechanical Properties of Roll-Bonded AA3003 and AA4045 Used for Heat Exchangers" Metals 13, no. 10: 1636. https://doi.org/10.3390/met13101636
APA StyleMoema, J. S., Siyasiya, C. W., Morudu, V. K., & Buthelezi, T. (2023). The Effect of Soaking Time on Mechanical Properties of Roll-Bonded AA3003 and AA4045 Used for Heat Exchangers. Metals, 13(10), 1636. https://doi.org/10.3390/met13101636