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Abstract: Coal fly ash (CFA) is a technogenic waste formed during coal combustion in thermal
power plants (TPPs). The extraction of valuable components from CFA is complicated by the
presence of a large amount of amorphous glassy mass and iron. Herein, a novel method of CFA
desilication with complete extraction of the amorphous glassy mass without desilication product
(DSP) precipitation and simultaneous magnetic fraction recovery in one stage is presented. The
Fe recovery in the magnetic fraction using the proposed method was significantly improved from
52% to 68%. After conventional wet magnetic separation, followed by the proposed method for
desilication and magnetic fraction separation, the Fe recovery was increased to 73.8%. Because
of the absence of DSP precipitation, the Na2O content in the solid residue after desilication was
lower than 1 wt.%. The simultaneous desilication and magnetic separation of magnetite was achieved
by installing a belt of permanent magnets on the outer surface of the reactor, where the CFA was
leached by the highly concentrated NaOH solution. The effects of different parameters on the
extraction of Si, Al, and Fe from the raw CFA were elucidated by varying the liquid-to-solid ratio
(L:S ratio) from 5 to 10, the temperature from 100 to 120 ◦C, the leaching time from 10 to 30 min, and
the particle size from −50 µm to −73 µm. The optimal leaching parameters were determined to be
temperature = 110 ◦C, L:S ratio = 7.5, and leaching time = 20 min. The extraction of Si and Fe under
these conditions was higher than 66 and 73%, respectively. The Al extraction was lower than 10%.
The solid residue of NaOH leaching and the magnetic fraction were examined by X-ray diffraction,
X-ray fluorescence spectrometry, vibrating sample magnetometry, scanning electron microscopy with
energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller, and laser diffraction analyses.

Keywords: coal fly ash; alkaline leaching; iron extraction; kinetics; desilication; waste utilization

1. Introduction

Coal fly ash (CFA) is the most-abundant waste produced during coal combustion
worldwide. CFA formation is estimated to reach 2.2-billion t by 2025 [1,2]. The construction
industry can consume 30–70% of the CFA, depending on the country [3–5]. The remaining
CFA is disposed in landfills, thus causing severe environmental pollution [6–8]. CFA
contains high amounts of valuable components (such as Si, Al, Fe, and REEs), which can
be extracted using alkaline or acidic methods [9–11]. However, the high amount of silica
in the CFA presents technological challenges in terms of its chemical treatment. However,
an alumina/silica ratio (µSi = Al2O3/SiO2) above 1 renders the alkaline method of Al
extraction economically unfeasible [12,13]. Thus, acidic methods for CFA treatment have
recently been extensively studied [14–16]. The presence of valuable components in the
solid matrix of most refractory aluminosilicate–mullite formed during coal combustion at
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temperatures higher than 1200 ◦C requires high-pressure leaching [17,18] or preliminary
activation [19–21].

The preliminary treatment of CFA, such as desilication and magnetic fraction extrac-
tion, is suitable, enriching the valuable components in the CFA and reducing the reagent
consumption and temperatures of the leaching [22,23]. Using the desilication method,
silicon (Si) from an amorphous glassy mass that accounts for almost half of the mass of
the CFA is extracted into an alkaline solution, whereas Al, Fe, and REEs are enriched
in the solid residue [24–26]. The primary drawback of this method is the formation of
the sodalite desilication product (DSP) (Na6[Al6Si6O24] NaX, where X represents various
inorganic anions, which are primarily sulfate, carbonate, chloride, and aluminate) [13]. DSP
precipitates when Al and Si are present together in an alkaline solution. Owing to the DSP
precipitation, the solid residue Na2O content can reach 12–14 wt.% [15,27]. Thus, to reduce
the amount of sodalite in the solid residue, the preliminary acid extraction of the soluble
Al before desilication is suggested [28]. The use of the acid–alkali–acid leaching method
was reported by [29,30]. However, such methods have numerous washing steps, and the
inevitable neutralization of the acid and alkali cannot be avoided.

Another viable method for CFA enrichment is magnetic separation, which helps extract
more than half of the Fe contained in the CFA in the form of magnetite [31,32]. Furthermore,
research has revealed that REEs in CFA are enriched in the aluminosilicate phase [33,34],
and magnetite extraction helps increase the REE concentration in the nonmagnetic fraction.
Commonly, wet [35] or dry [36] magnetic separation is used to extract the magnetite from
the CFA before leaching. Nonetheless, the recovery of iron in the magnetic concentrate
using these methods is less than 60–70% [37] because some Fe is present as hematite and
some parts of the magnetite are encapsulated in the aluminosilicate solid matrix.

Our previous research demonstrated that, by varying the leaching time and the concen-
tration of the NaOH solution, Si can be maintained in the solution during preliminary de-
silication [22]; consequently, the formation of sodalite was avoided. However, the primary
disadvantages of this method are the high L:S ratios and co-dissolution of easily soluble Al
(up to 35 wt.%). In this study, the possibility of further reducing the L:S ratio of the process
without sodalite formation was investigated by combining desilication with magnetic
separation. In addition, the effects of different leaching parameters (temperature, L:S ratio,
time, and particle size) of pulverized coal (PC) furnace fly ash desilication using a highly
concentrated NaOH solution and permanent magnet field were investigated for the first
time. The solid residue obtained by the novel desilication technique was enriched with Al
and REEs, which are associated with the uncovered mullite agglomerates and can be easily
extracted by acid leaching with an extraction degree higher than 60–70% at atmospheric
pressure [12]. The low concentration of Na2O and Fe in this residue significantly reduced
the acid consumption. The chemical and phase compositions of the solid residues obtained
via the novel desilication method were analyzed using X-ray diffraction (XRD), X-ray fluo-
rescence spectrometry (XRF), and scanning electron microscopy, with energy-dispersive
X-ray spectroscopy (SEM-EDX). The physical properties of the residue were examined
using a vibrating sample magnetometer (VSM), the Brunauer–Emmett–Teller (BET) method,
and the laser diffraction (LD) method.

2. Materials and Methods
2.1. Raw Materials

The CFA used in these experiments was obtained from the Reftinskaya thermal power
plant in Asbest, Russia (GPS coordinates: 56.11◦ N, 61.70◦ W). Before the leaching experi-
ments, the raw CFA was subjected to a screening test. The chemical compositions of the
four size fractions of the CFA are listed in Table 1. Table 1 indicates that all the size fractions
had similar chemical compositions. However, the coarse particle size fraction had a low
amount of iron, and the smallest particle size fraction had the highest contents of alumina
and iron, which could be related to the lowest concentration of the amorphous glassy mass.
The lowest concentrations of Na2O and K2O in the −50 µm-sized fraction confirmed that
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these oxides were associated with aluminosilicates [38–40]. Figure 1 shows the XRD pattern
of the raw CFA.

Table 1. Chemical composition of the three size fractions of the raw coal fly ash (CFA) from the
Reftinskaya TPP.

Product
Components (wt.%)

SiO2 Al2O3 CaO Fe2O3 FeO TiO2 MgO Na2O K2O LOI * C

−50 µm 59.89 26.79 1.60 2.63 1.10 1.11 0.43 0.57 0.82 3.99 1.90
−61 µm 62.73 24.31 1.63 2.27 1.04 1.09 0.44 0.68 0.91 3.90 1.78
−73 µm 62.43 24.66 1.60 2.29 1.05 1.12 0.43 0.72 0.94 3.70 1.60
+73 µm 63.87 24.27 1.84 1.56 0.68 0.82 0.53 0.76 0.90 3.60 1.60

* LOI—loss on ignition at 1000 ◦C.
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ure 2b,d) with a high amount of Si, an amorphous glassy mass, and quartz were observed. 
Other analytical-grade chemical reagents were used in this study. 

Figure 1. XRD pattern of the raw CFA from the Reftinskaya TPP, Russia.

Evidently, the raw CFA consisted of an amorphous glassy mass (with the halo ranging
from 20◦ to 50◦), mullite, quartz, and a low amount of magnetite. However, according
to Table 1, some Fe was present in the raw CFA as hematite because the stoichiomet-
ric amount of FeO in the Fe3O4 was 31%. For example, according to the stoichiome-
try, the amount of Fe2O3 in magnetite should be 2.45 wt.%, not 2.63 wt.%. The mor-
phology and chemical composition of the CFA particles were determined by SEM-EDX
analysis (Figure 2). As shown in Figure 2d, the raw CFA consisted of spherical particles,
with a high amount of aluminum and silicon, and a smooth surface. Therefore, the mullite
was more likely to be covered by amorphous aluminosilicate. Additionally, irregular parti-
cles (Figure 2b,d) with a high amount of Si, an amorphous glassy mass, and quartz were
observed. Other analytical-grade chemical reagents were used in this study.

2.2. Experimental Procedure

The CFA was leached with NaOH in a 0.5 L thermostated reactor equipped with a
neodymium magnet (magnetic field strength, 0.6 T; dimensions, 10 mm × 5 mm × 2 mm;
Forceberg, Moscow, Russia) belt (Figure 3), which simultaneously enabled the separation
of iron. This reactor had an opening for stirring and allowed controlling the temperature
and recycling evaporated water through a water-cooled condenser.
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All the experiments were conducted at a stirring speed of 300 rpm. The raw CFA
was added to an alkaline solution with a concentration of 330 g L−1 Na2O, which enabled
using the atmospheric leaching process at a temperature of up to 120 ◦C and higher. Our
previous research [22] demonstrated that further increases in the concentration of the
solution did not lead to a significant enhancement of the Si extraction. The L:S ratio (L:S)
was varied from 5 to 10; the temperature of the leaching (T) was varied from 100 to 120 ◦C;
the leaching time (τ) was varied from 10 to 30 min; the particle size fraction (r0) ranged
from −50 µm to −73 µm. Different particle size fractions of the CFA were obtained using a
vibratory screening machine (PE-6700, ECROS, Saint-Petersburg, Russia). After leaching,
the pulp was filtered, and the solid residue was dried at 110 ◦C for 8 h before analysis.

To avoid the mutual influence of factors and reduce the number of experiments,
a Box–Benken plan was constructed using the “Statistica” software version 13 (TIBCO,
Hamburg, Germany). This plan included three blocks of 27 experiments with the varying of
the parameters at three levels. The output parameters were the extraction of aluminum and
silicon into the solution, the extraction of iron into the magnetic fraction, and the content of
Na2O in the solid residue.

A statistical-based automated neural network (SANN) was used to model the CFA
leaching using NaOH. A multilayer perceptron (MLP) approach was employed for the
SANN modeling in the Statistica 13 software. The best SANN model for the description
of the CFA leaching was MLP with R2 = 0.98 and the configuration 4.20.4, where 4 is the
number of input parameters, 20 is the number of hidden layers, and 4 is the number of
output layers.

2.3. Analysis

The chemical compositions of the raw CFA and residues after leaching were ana-
lyzed using powder XRF with an Axios MAX spectrometer (Malvern Panalytical Ltd.,
Almelo, The Netherlands). Tablet-shaped samples (diameter, 20 mm; mass, 300 mg) were
prepared for analysis via pressing, and polystyrene was used as a binder at a ratio of 5:1.
The metallic contents of the samples were calculated using the Super Q V.4 software.

The phase compositions of the raw CFA and residues after leaching were analyzed by
XRD using a Difrei-401 diffractometer (JSC Scientific Instruments, Saint Petersburg, Russia)
with a Cr-Kα radiator for 2θ angles ranging from 15◦ to 140◦. The X-ray source was operated
at an output of 25 kW and an exposure time of 30 min. The diffraction data were processed
using the Match 3! software version 3.15 (Crystal Impact GmbH, Bohn, Germany). The
surface morphology and elemental mapping of the raw materials and residues were investi-
gated using SEM-EDX on a Vega III microscope (Tescan, Brno, Czech Republic). The particle
size distribution of the raw CFA and the products of leaching was measured using the laser
diffractometer Bettersizer ST (Bettersize Instruments Ltd., Dandong, China). The specific
surface area (BET method) was analyzed using a NOVA 1200e (Quantachrome Instruments,
Boynton Beach, FL, USA). Magnetic field calculations were performed using finite-element
modeling in SolidWorks (Dassault Systèmes, Vélizy-Villacoublay, France). Conventional
wet magnetic separation was performed at 0.5 T and a solid concentration of 250 g L−1

using an MBSL magnetic separator (NPO Erga, Kaluga, Russia).
The following Equations (1) and (2) were used to calculate the Fe recovery after the

wet magnetic separation, simultaneous alkali leaching, and magnetic separation [39].

R = (γ × β)/α × 100%, (1)

where R is the recovery of Fe (%); γ is the yield of the magnetic fraction (%); and α and β

are the grade of Fe in the raw CFA and magnetic fraction, respectively (%).

E = [(R − γ)/(100 − α)] × 100%, (2)

where E is the efficiency index (%). If E > 75%, the enrichment process is highly efficient, if
50% < E < 75%, it is efficient, whereas if E < 25%, it is inefficient [40].
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The amounts of Si, Al, and Fe extracted from the CFA (X) into the solution were
estimated using Equation (3), as follows:

X = (m1 × X1 − m2 × X2)/(m1 × X1), (3)

where m1 is the mass of the original sample (g); X1 is the elemental content in the original
sample (%); m2 is the mass of the leaching residue (g); and X2 is the elemental content in
the leaching residue (%).

3. Results and Discussion
3.1. Effects of Leaching Parameters on Al, Si Extraction, Fe Recovery, and Na2O Content in the
Solid Residue

Leaching tests with simultaneous iron separation were conducted to determine the
effect of different parameters on the Si and Al extraction into solution, the degree of
Fe separation into the magnetic fraction, and the content of Na2O in the solid residue. The
experimental data and values predicted using the SANN model were in good agreement
(R2 = 0.98). The response surfaces predicted by the SANN for Si extraction, depending on
the leaching duration (τ, min), temperature (T, ◦C), L:S ratio (L:S), and initial particle size
fraction (r0, µm), are shown in Figure 4.
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Evidently, the Si extraction (Figure 4) was influenced predominantly by the leaching
time and temperature. An increase in the temperature from 100 ◦C to 120 ◦C led to an
increase in the Si extraction from 35 to 55% after 10 min of leaching and from 57% to
70% after 30 min of leaching (Figure 4a). An increase in the L:S ratio from 5 to 10 led to
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an increase in the Si extraction by 10% for all leaching durations (Figure 4b). Increasing
the r0 from −50 µm to −73 µm reduced the Si extraction from 62 to 60% after 30 min of
leaching (Figure 4c).

Additionally, the Al extraction (Figure 5) was also influenced predominantly by the
leaching time and temperature, which can be explained by the dissolution of the amorphous
glassy mass contained in the Si and the easily soluble Al [28].
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Figure 5a shows that, during the first 20 min of leaching at T = 120 ◦C, the Al extraction
degree exhibited an increasing trend. After 20 min of leaching, the Al began precipitating
in the form of a desilication product; this was confirmed by the increased content of Na2O
in the solid residue after 30 min of leaching at the higher temperature (Figure 6). However,
at the higher L:S ratio (Figure 5b), this phenomenon was absent, which was associated with
the retention of Si in the solution. Figure 5c shows that the median particle size had a low
effect on the Al extraction. A comparison of Figures 4a and 5a reveals that increasing the
Si extraction to higher than 50–60% resulted in an increase in the Al extraction to 10% and
higher, and the L:S ratio had a greater effect on the Al extraction than on the Si extraction
after 30 min of leaching. This was owed to the fact that the mullite (mineral with the high
Al content) began to dissolve.
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Figure 6a,b indicate that, after 30 min of leaching at a low L:S ratio (<7.5) and
T > 110 ◦C, the Na2O content in the solid residue was higher than 1 wt.%. This indi-
cates that the DSP began to form after the Si and Al concentrations in the solution reached
exact values. Furthermore, the effect of r0 on the Na2O content in the solid residue was
very low (Figure 6c).

The Fe recovery in the magnetic fraction was influenced primarily by leaching time
and L:S ratio (Figure 7a–c). This can be related to the dissolution of the amorphous glassy
mass from the surface of the magnetic particles and the higher specific surface area of the
magnets to the fly ash at high L:S ratios. Increasing the leaching temperature did not lead
to an increase in the Fe recovery after 30 min of leaching (Figure 7a). However, it had a
significant effect on the Si and Al extraction. This can be related to the dissolution at a
later stage of the mullite that did not cover the magnetite particles. The effect of r0 on
the Fe recovery was insignificant. However, the yields of the magnetic concentrates were
different: 3.75% for a size fraction of −50 µm and 4.75% for a size fraction of −73 µm. These
discrepancies were caused by differences in the chemical compositions of the magnetic
fractions, as presented in Section 3.2.
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Fe separation efficiency; (b) time and L:S ratio on the Fe separation efficiency; (c) time and r0 on the
Fe separation efficiency.

According to the results of the leaching parameter effects on the Al and Si extraction,
Fe recovery, and Na2O content in the solid residue, the optimal parameters of the leaching
can be suggested as: T = 110 ◦C, t = 20 min, and L:S = 7.5. At all r0 values, the Si and Fe
extractions were higher than 60%, whereas the Al extraction and Na2O content in the solid
residue were lower than 8% and 1 wt.%, respectively.

3.2. Solid Residue Characterization

Table 2 lists the physical properties of the raw CFA, nonmagnetic fraction, and mag-
netite concentrate obtained from the CFA −50 µm-sized fraction under optimal conditions.
Evidently, from Table 2, the specific surface area, total pore volume, and pore diameter of
the leaching products were much higher. The most-distinct changes were observed in the
median particle size: after desilication and elimination of the glassy mass from the surface
of the particles, the median particle size was considerably reduced, from 28 to 15–16 µm.
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Table 2. Physical properties and median particle size of the CFA (size fraction, −50 µm) nonmagnetic
fraction and magnetite concentrate obtained during CFA −50 µm-sized fraction leaching at T = 110
◦C, τ = 20 min, and L:S = 7.5.

Product Specific Surface Area
(BET) (m2 g−1)

Total Pore Volume
(cm3 g−1)

Pore Diameter
(nm)

Median Particle Size
(µm)

CFA −50 µm-sized fraction 5.70 12.0 15.2 28.30
Nonmagnetic fraction 15.12 28.0 23.5 14.59

Magnetic fraction 11.60 25.0 18.7 16.24

Table 3 presents a comparison of the chemical compositions of the nonmagnetic and
magnetic fractions obtained under optimal conditions. Evidently, the Al content in the
nonmagnetic concentrates approximately doubled, and a part of the aluminosilicate was
captured by the magnetic fraction. Moreover, the Fe content in the magnetic fractions
obtained from the −50 µm-sized fraction was much higher. The Fe content in the magnetic
concentrate obtained from this type of CFA by conventional magnetic separation did
not exceed 20 wt.% [41]. The XRD patterns of the nonmagnetic and magnetic fractions
obtained after NaOH leaching of the −50 µm particle size fraction of the raw CFA are
shown in Figure 8. Evidently, the magnetic fraction comprised magnetite and hematite, and
a low amount of quartz and mullite was entrapped in the concentrate. The nonmagnetic
fraction was a desilicated CFA with an amorphous glassy mass (with 2θ ranging from
20◦ to 50◦), and the magnetite was eliminated. In addition, the mullite peaks were higher
than those of the quartz, which indicates quartz co-dissolution.

Table 3. Chemical composition of nonmagnetic and magnetic concentrates obtained during desilica-
tion of the different particle size fractions of the raw CFA at T = 110 ◦C, τ = 20 min, and L:S = 7.5.

Product
Major Components (wt.%)

SiO2 Al2O3 CaO Fe2O3 TiO2 MgO Na2O K2O LOI * C

Nonmagnetic fraction −50 µm 37.00 43.04 3.51 2.50 1.92 0.87 0.98 0.08 7.20 2.60
Nonmagnetic fraction −73 µm 40.35 41.77 3.21 2.73 2.03 0.83 0.75 0.13 7.90 2.78

Magnetic fraction −50 µm 14.99 13.59 2.44 62.64 0.53 2.03 1.32 0.05 1.70 0.79
Magnetic fraction −73 µm 21.23 19.92 3.88 48.33 0.81 1.79 1.68 0.08 1.80 0.93

* LOI—loss on ignition at 1000 ◦C.
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Figure 9 and Table 4 show that high amounts of Al and Fe in the solid residue were
observed after desilication of the −73 µm-sized fraction; this can be attributed to the
encapsulation of aluminosilicate in the solid matrix of the magnetic spheres.
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capsulated inside the solid matrix (Spectral Number 2 in Figure 9a–d). Additionally, 

Figure 9. SEM-EDX images of the coarse magnetic fraction: (a) BSE image of the particles’ surface at a
magnitude of 2000× with the EDS points (yellow cross indicates place of EDX analysis, the elemental
compositions are shown in Table 4); (b–d) mapping of the elemental composition of the particles’
surface in Figure 9a; (e) BSE image of the magnetic sphere’s surface at a magnitude of 6000×; (f) BSE
image of the magnetic sphere’s surface at a magnitude of 8000×.
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Table 4. Elemental compositions (wt.%) of solid residue particles’ surface (listed spectral numbers
correspond to the points highlighted in Figure 9a).

Spectral Number O Al Si Fe Ti Ca Na Mg K

1 14.8 5.3 4.2 68.2 2.3 3.8 1.5 -
2 52.4 24.0 17.7 1.3 0.3 2.1 1.8 0.3
3 54.6 26.8 14.6 2.0 0.6 1.1 - - 0.2
4 28.9 1.3 1.1 65.6 - 0.6 - 1.0 -
5 30.9 5.9 4.0 53.6 0.8 2.2 - 1.6

The SEM-EDX analysis (Figure 9, Table 4) revealed that the aluminosilicate was
encapsulated inside the solid matrix (Spectral Number 2 in Figure 9a–d). Additionally,
aluminosilicate was physically trapped in the magnetic concentrate (Spectral Number 3).
Therefore, a larger particle size resulted in higher aluminosilicate co-extraction with the
magnetic concentrate. Consequently, the Fe2O3 content in the magnetic fraction obtained
after leaching the −73 µm particle size fraction was lower than that of the −50 µm-sized
fraction. Figure 9e,f display the morphologies of the magnetic particles.

The SEM-EDX analysis (Figure 10) revealed that, after Si extraction by NaOH leaching
at T = 110 ◦C, t = 20 min, and L:S = 7.5, the acicular mullite particles were exposed, and
some of the magnetic particles remained in the nonmagnetic fraction, which indicates
incomplete Fe separation. The incompleteness of Fe separation can be explained by the low
surface area of the magnets or the weak magnetic field. Thus, the spatial distribution of the
magnetic flow of the permanent magnets was evaluated, and a finite-element model of the
magnetic field in the reactor was constructed (Figure 11).
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Figure 10. SEM-EDX image of the magnetic sphere surface and mullite agglomerate sphere at a
magnitude of 20,000×.

As shown in Figure 11, the magnetic field did not extend deeply into the reactor. The
proposed permanent magnet design resulted in the capture of particles located directly near
the reactor wall. To overcome this shortcoming, the magnetic belt design will be enhanced
in future research, thus allowing harmonization of the flows.
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3.3. Effects of Leaching Parameters on Fe Recovery from the Nonmagnetic Fraction Obtained by
Conventional Magnetic Separation

Another method that can be used to enhance Fe recovery is double-magnetic separa-
tion. In the first stage of this method, the majority of the magnetite was recovered using
conventional magnetic separation.

Evidently (Figure 12), the Fe recovery after the elimination of the majority of the
magnetite by conventional magnetic separation was less dependent on the variations in the
leaching parameters. The difference in the Fe recovery achieved at L:S ratios varying from
5 to 10 and T < 110 ◦C for a leaching time of 10–30 min did not exceed 4–6% (Figure 12a,b);
this can be attributed to the higher ratio of the surface of the magnet to the magnetic
concentrate. However, a temperature higher than 110 ◦C and the size fraction significantly
influenced the Fe recovery. A high leaching temperature aids in increasing the dissolution
of aluminosilicate, whereas an increase in the particle size results in a higher amount of
aluminosilicate encapsulated in the magnetic spheres (Figure 9).
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Figure 12. Neural network response surfaces for double-magnetic separation. The effect of: (a) time
and temperature on the Fe recovery; (b) time and L:S ratio on the Fe recovery; (c) time and r0 on the
Fe recovery.

Considering the optimal conditions for desilication while maintaining a high silica
extraction (>65%) and low co-extraction of aluminum (<10%), the Fe recovery achieved for
the nonmagnetic fraction at T = 110 ◦C, t = 20 min, and L:S = 7.5 was 73.8%. The chemical
compositions of the obtained desilicated coal fly ash (DCFA) and magnetic fraction are
presented in Table 5. A comparison of the various Fe recovery methods using conven-
tional wet magnetic separation before and after desilication at the optimal parameters is
shown in Figure 13. As can be seen, the novel method of desilication with the simulta-
neous magnetic separation of the conventional non-magnetic fraction gave the best iron
recovery efficiency.

Table 5. Chemical composition of the non-magnetic fraction obtained after the double-Fe separation
process of the –50 µm particle size fraction of the raw CFA at T = 110 ◦C, τ = 20 min, and L:S = 7.5.

Product
Major Components (wt.%)

SiO2 Al2O3 CaO Fe2O3 TiO2 MgO Na2O K2O LOI C

Desilicated CFA 36.17 44.30 3.40 1.83 1.85 0.86 0.92 0.08 7.30 2.67
Magnetic fraction 15.81 14.89 2.54 60.15 0.50 2.01 1.5 0.05 1.70 0.85
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Figure 13. A comparison of the various Fe recovery methods’ efficiency using conventional wet
magnetic separation before and after desilication at the optimal parameters.

Figure 14 shows the magnetization measurements of the magnetic fraction obtained
after the double-Fe separation (followed by simultaneous desilication and separation).
Evidently, the magnetization reached a saturation value (Ms) of 25.6 emu g−1 at a magnetic
field of 15 kOe. This value is lower than that of pure magnetite (60–90 emu g−1), according
to previous research [42,43]. This can be explained by the high amount of aluminosilicate
that was co-extracted with the magnetite.
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Considering the obtained results, the following flowchart of CFA desilication with
simultaneous iron recovery can be proposed (Figure 15).
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4. Conclusions

CFA is a potential source for Al2O3 and REE extraction. However, this extraction is
complicated by the presence of a large amount of amorphous glassy mass and iron, which
results in a high amount of impurities in the pregnant solution and a lower extraction
degree when hydrochemical processes are considered for extraction. Desilication and
magnetic separation of CFA prior to leaching are common methods for CFA enrichment.
However, the conventional desilication and magnetic separation methods result in a high
Na2O content in the Al and REE concentrates and a low-grade magnetic fraction.

In this study, a novel method was proposed for the complete dissolution of the
amorphous glassy mass, with simultaneous magnetic separation. Evidently, the Fe recovery
into the magnetic fraction could be significantly improved from 52% for raw CFA to
68% after desilication. After two stages of magnetic separation (wet magnetic separation
followed by applying the novel method), the Fe recovery was increased to 73.8%. The
effects of the leaching parameters (leaching duration, temperature (T, ◦C), L:S ratio, and
initial particle size fraction) on the Al and Si extraction into a solution, the Fe recovery
in the magnetic fraction, and the Na2O content in the solid residue were evaluated. The
leaching time and initial particle size were found to have a significant effect on the leaching
efficiency. The SEM-EDX analysis revealed that a lower Fe recovery from the coarse particle
size fraction was related to the encapsulation of the aluminosilicate in the magnetic sphere
solid matrix. The optimal leaching parameters were determined as: temperature = 110 ◦C,
L:S ratio = 7.5, leaching time 20 min. The extraction of the Si and Fe under these conditions
was higher than 65% and 73%, respectively. The Al extraction and Na2O contents in the
solid residue were lower than 10% and 1 wt.%, respectively.
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