Influence of Structural Disorder on the Magnetic Order in FeRhCr Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Details and Models
2.2. Experiment
3. Theoretical Results and Discussion
3.1. Structural and Magnetic Properties
3.2. Electronic Properties
4. Experimental Results
4.1. XRD Results
4.2. Electron Microscopy Results
4.3. Magnetic Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skokov, K.P.; Müller, K.-H.; Moore, J.D.; Liu, J.; Karpenkov, A.Y.; Krautz, M.; Gutfleisch, O. Influence of Thermal Hysteresis and Field Cycling on the Magnetocaloric Effect in LaFe11.6Si1.4. J. Alloys Compd. 2013, 552, 310–317. [Google Scholar] [CrossRef]
- Gueltig, M.; Wendler, F.; Ossmer, H.; Ohtsuka, M.; Miki, H.; Takagi, T.; Kohl, M. High-Performance Thermomagnetic Generators Based on Heusler Alloy Films. Adv. Energy Mater. 2017, 7, 1601879. [Google Scholar] [CrossRef]
- Nam, N.T.; Lu, W.; Suzuki, T. Exchange Bias of Ferromagnetic/Antiferromagnetic in FePt/FeRh Bilayers. J. Appl. Phys. 2009, 105, 07D708. [Google Scholar] [CrossRef]
- Zhou, T.J.; Cher, K.; Hu, J.F.; Yuan, Z.M.; Liu, B. The Concept and Fabrication of Exchange Switchable Trilayer of FePt/FeRh/FeCo with Reduced Switching Field. J. Appl. Phys. 2012, 111, 07C116. [Google Scholar] [CrossRef]
- Garcia-Sanchez, F.; Chubykalo-Fesenko, O.; Mryasov, O.N.; Chantrell, R.W. Multiscale Models of Hard-Soft Composite Media. J. Magn. Magn. Mater. 2006, 303, 282–286. [Google Scholar] [CrossRef]
- Thiele, J.-U.; Maat, S.; Fullerton, E.E. FeRh/FePt Exchange Spring Films for Thermally Assisted Magnetic Recording Media. Appl. Phys. Lett. 2003, 82, 2859–2861. [Google Scholar] [CrossRef]
- Komlev, A.S.; Zverev, V.I. Chapter 14—Magnetocaloric Effect for Medical Applications. In Magnetic Materials and Technologies for Medical Applications; Woodhead Publishing Series in Electronic and Optical Materials; Tishin, A.M., Ed.; Woodhead Publishing: Cambridge, UK, 2022; pp. 437–467. ISBN 978-0-12-822532-5. [Google Scholar]
- Scheibel, F.; Gottschall, T.; Taubel, A.; Fries, M.; Skokov, K.P.; Terwey, A.; Keune, W.; Ollefs, K.; Wende, H.; Farle, M.; et al. Hysteresis Design of Magnetocaloric Materials—From Basic Mechanisms to Applications. Energy Technol. 2018, 6, 1397–1428. [Google Scholar] [CrossRef]
- Gottschall, T.; Skokov, K.P.; Fries, M.; Taubel, A.; Radulov, I.; Scheibel, F.; Benke, D.; Riegg, S.; Gutfleisch, O. Making a Cool Choice: The Materials Library of Magnetic Refrigeration. Adv. Energy Mater. 2019, 9, 1901322. [Google Scholar] [CrossRef]
- Arreguín-Hernández, M.L.; Sánchez-Valdés, C.F.; Llamazares, J.L.S.; Ríos-Jara, D.; Pecharsky, V.K.; Blinov, M.I.; Prudnikov, V.N.; Kovalev, B.B.; Zverev, V.I.; Tishin, A.M. Magnetoelastic Transition and Magnetocaloric Effect in Induction Melted Fe100−xRhx Bulk Alloys with x = 50, 51. J. Alloys Compd. 2021, 871, 159586. [Google Scholar] [CrossRef]
- Chirkova, A.; Skokov, K.P.; Schultz, L.; Baranov, N.V.; Gutfleisch, O.; Woodcock, T.G. Giant Adiabatic Temperature Change in FeRh Alloys Evidenced by Direct Measurements under Cyclic Conditions. Acta Mater. 2016, 106, 15–21. [Google Scholar] [CrossRef]
- Lewis, L.H.; Marrows, C.H.; Langridge, S. Coupled Magnetic, Structural, and Electronic Phase Transitions in FeRh. J. Phys. D Appl. Phys. 2016, 49, 323002. [Google Scholar] [CrossRef]
- Komlev, A.S.; Makarin, R.A.; Gimaev, R.R.; Zverev, V.I. Magnetothermal Properties of Heavy Rare Earth Metals and Fe–Rh-Based Alloys. Mosc. Univ. Phys. 2022, 77, 690–712. [Google Scholar] [CrossRef]
- Gruner, M.E.; Hoffmann, E.; Entel, P. Instability of the Rhodium Magnetic Moment as the Origin of the Metamagnetic Phase Transition in α−FeRh. Phys. Rev. B 2003, 67, 064415. [Google Scholar] [CrossRef]
- Sandratskii, L.M.; Mavropoulos, P. Magnetic Excitations and Femtomagnetism of FeRh: A First-Principles Study. Phys. Rev. B 2011, 83, 174408. [Google Scholar] [CrossRef]
- Moruzzi, V.L.; Marcus, P.M. Antiferromagnetic-Ferromagnetic Transition in FeRh. Phys. Rev. B 1992, 46, 2864–2873. [Google Scholar] [CrossRef] [PubMed]
- Zarkevich, N.A.; Johnson, D.D. FeRh Ground State and Martensitic Transformation. Phys. Rev. B 2018, 97, 014202. [Google Scholar] [CrossRef]
- Jiménez, M.J.; Schvval, A.B.; Cabeza, G.F. Ab Initio Study of FeRh Alloy Properties. Comput. Mater. Sci. 2020, 172, 109385. [Google Scholar] [CrossRef]
- Kim, J.; Ramesh, R.; Kioussis, N. Revealing the Hidden Structural Phases of FeRh. Phys. Rev. B 2016, 94, 180407. [Google Scholar] [CrossRef]
- Adabifiroozjaei, E.; Maccari, F.; Schäfer, L.; Jiang, T.; Recalde-Benitez, O.; Chirkova, A.; Shayanfar, N.; Dirba, I.; Kani, N.A.; Shuleshova, O. The Premartensite and Martensite in Fe 50 Rh 50 System. arXiv 2023, arXiv:2305.01351. [Google Scholar]
- Chen, X.; Chen, Y.; Tang, Y. Study of Magnetocaloric Effect in LaFe11.5Si1.5 Alloys Prepared by Different Cooling Methods. Bull. Mater. Sci. 2014, 37, 849–854. [Google Scholar] [CrossRef]
- Zhang, C.L.; Nie, Y.G.; Shi, H.F.; Ye, E.J.; Han, Z.D.; Wang, D.H. Tuning Magnetostructural Transition and the Associated Giant Magnetocaloric Effect via Thermal Treatment in MnCoGe-Based Alloys. J. Magn. Magn. Mater. 2019, 469, 437–442. [Google Scholar] [CrossRef]
- Yan, A.; Müller, K.-H.; Schultz, L.; Gutfleisch, O. Magnetic Entropy Change in Melt-Spun MnFePGe. J. Appl. Phys. 2006, 99, 08K903. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, Q.; Wei, Z.; Liu, E.; Han, X.; Du, Z.; Li, L.; Xi, X.; Wang, W.; Wang, S.; et al. An Efficient Scheme to Tailor the Magnetostructural Transitions by Staged Quenching and Cyclical Ageing in Hexagonal Martensitic Alloys. Acta Mater. 2019, 174, 289–299. [Google Scholar] [CrossRef]
- Agarwal, S.; Stern-Taulats, E.; Mañosa, L.; Mukhopadhyay, P.K. Effect of Low Temperature Annealing on Magneto-Caloric Effect of Ni–Mn–Sn–Al Ferromagnetic Shape Memory Alloy. J. Alloys Compd. 2015, 641, 244–248. [Google Scholar] [CrossRef]
- Shishkin, D.A.; Volegov, A.S.; Andreev, S.V.; Baranov, N.V. Magnetic State and Magnetocaloric Properties of Rapidly Quenched Gd75M25 Alloys (M = Co, Ni). Phys. Met. Metallogr. 2012, 113, 460–465. [Google Scholar] [CrossRef]
- Wada, H.; Funaba, C.; Asano, T. Effects of Heat Treatment on the Magnetic Phase Transition and Magnetocaloric Properties of Mn1+δAs1−xSbx. Mater. Trans. 2006, 47, 486–491. [Google Scholar] [CrossRef]
- Cho, H.T.; Park, I.J.; Shim, I.-B.; Kim, C.S.; Kim, S.J. Heat-Treatment Effect in Mn0.997Fe0.003As for Magnetic Refrigeration Application. J. Korean Phys. Soc. 2012, 60, 1049–1051. [Google Scholar] [CrossRef]
- Walter, P.H.L. Exchange Inversion in Ternary Modifications of Iron Rhodium. J. Appl. Phys. 1964, 35, 938–939. [Google Scholar] [CrossRef]
- Barua, R.; Jiménez-Villacorta, F.; Lewis, L.H. Predicting Magnetostructural Trends in FeRh-Based Ternary Systems. Appl. Phys. Lett. 2013, 103, 102407. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamcis for Liquid Metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Open-Shell Transition Metals. Phys. Rev. B 1993, 48, 13115–13118. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Hafner, J. Ab-Initio Simulations of Materials Using VASP: Density-Functional Theory and Beyond. J. Comput. Chem. 2008, 29, 2044–2078. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Uebayashi, K.; Shimizu, H.; Yamada, H. Structure and Magnetism of Fe(Rh,Pd) Alloys. Mater. Trans. 2006, 47, 456–459. [Google Scholar] [CrossRef]
- Jiménez, M.J.; Komlev, A.S.; Gimaev, R.R.; Zverev, V.I.; Cabeza, G.F. Electronic and Thermoelectric Properties of FeRh Pd-Doped Alloys: Ab Initio Study. J. Magn. Magn. Mater. 2021, 538, 168258. [Google Scholar] [CrossRef]
- Yuasa, S.; Otani, Y.; Miyajima, H.; Sakuma, A. Magnetic Properties of Bcc FeRh1-xMx Systems. IEEE Transl. J. Magn. Jpn. 1994, 9, 202–209. [Google Scholar] [CrossRef]
- Yuasa, S.; Miyajima, H.; Otani, Y.; Sakuma, A. Magnetism of FeRh1−xPdx System—Band Calculation. J. Magn. Magn. Mater. 1995, 140–144 Pt 1, 79–80. [Google Scholar] [CrossRef]
- Komlev, A.S.; Karpenkov, D.Y.; Gimaev, R.R.; Chirkova, A.; Akiyama, A.; Miyanaga, T.; Hupalo, M.F.; Aguiar, D.J.M.; Carvalho, A.M.G.; Jiménez, M.J.; et al. Correlation between Magnetic and Crystal Structural Sublattices in Palladium-Doped FeRh Alloys: Analysis of the Metamagnetic Phase Transition Driving Forces. J. Alloys Compd. 2022, 898, 163092. [Google Scholar] [CrossRef]
- Orava, J.; Kosiba, K.; Han, X.; Soldatov, I.; Gutowski, O.; Ivashko, O.; Dippel, A.-C.; Zimmermann, M.V.; Rothkirch, A.; Bednarcik, J.; et al. Fast-Current-Heating Devices to Study in Situ Phase Formation in Metallic Glasses by Using High-Energy Synchrotron Radiation. Rev. Sci. Instrum. 2020, 91, 073901. [Google Scholar] [CrossRef] [PubMed]
- Ohnuma, I.; Gendo, T.; Kainuma, R.; Inden, G.; Ishida, K. Phase Equilibria and Thermodynamic Evaluation Approximating Short-Range Ordering Energy in the Fe–Rh Binary System. ISIJ Int. 2009, 49, 1212–1219. [Google Scholar] [CrossRef]
- Vinokurova, L.I.; Vlasov, A.V.; Pardavi-Horváth, M. Pardavi-Horváth Pressure Effects on Magnetic Phase Transitions in FeRh and FeRhIr Alloys. Phys. Status Solidi B 1976, 78, 353–357. [Google Scholar] [CrossRef]
- Wayne, R.C. Pressure Dependence of the Magnetic Transitions in Fe-Rh Alloys. Phys. Rev. 1968, 170, 523–527. [Google Scholar] [CrossRef]
- Zakharov, A.I.; Kadomtseva, A.M.; Levitin, R.Z.; Ponyatovskii, E.G. Magnetic and Magnetoelastic Properties of a Metamagnetic Fe–Rh Alloy. Sov. Phys. JETP 1964, 19, 1348–1353. [Google Scholar]
- Cong, D.Y.; Huang, L.; Hardy, V.; Bourgault, D.; Sun, X.M.; Nie, Z.H.; Wang, M.G.; Ren, Y.; Entel, P.; Wang, Y.D. Low-Field-Actuated Giant Magnetocaloric Effect and Excellent Mechanical Properties in a NiMn-Based Multiferroic Alloy. Acta Mater. 2018, 146, 142–151. [Google Scholar] [CrossRef]
- Qu, Y.; Sun, X.; Gui, W.; Li, R.; Nie, Z.; Gao, Z.; Cai, W.; Ren, Y.; Wang, Y.; Cong, D. Complete and Reversible Magnetostructural Transition Driven by Low Magnetic Field in Multiferroic NiCoMnIn Alloys. Acta Mater. 2023, 243, 118535. [Google Scholar] [CrossRef]
- Almeida, T.P.; Temple, R.; Massey, J.; Fallon, K.; McGrouther, D.; Moore, T.; Marrows, C.H.; McVitie, S. Quantitative TEM Imaging of the Magnetostructural and Phase Transitions in FeRh Thin Film Systems. Sci. Rep. 2017, 7, 17835. [Google Scholar] [CrossRef]
- Shabalkin, I.D.; Komlev, A.S.; Tsymbal, S.A.; Burmistrov, O.I.; Zverev, V.I.; Krivoshapkin, P.V. Multifunctional Tunable ZnFe2O4@MnFe2O4 Nanoparticles for Dual-Mode MRI and Combined Magnetic Hyperthermia with Radiotherapy Treatment. J. Mater. Chem. B 2023, 11, 1068–1078. [Google Scholar] [CrossRef]
- Paul, D.I. General Theory of the Coercive Force Due to Domain Wall Pinning. J. Appl. Phys. 1982, 53, 1649–1654. [Google Scholar] [CrossRef]
- Hadjipanayis, G.C.; Kim, A. Domain Wall Pinning versus Nucleation of Reversed Domains in R-Fe-B Magnets (Invited). J. Appl. Phys. 1988, 63, 3310–3315. [Google Scholar] [CrossRef]
Sample | emu/g | K | K | K | emu/(g × K) | (J kg−1 K−1) | Another Phase | Ref. |
---|---|---|---|---|---|---|---|---|
Fe49Rh51 SC | 110 | 316 (2 T) | 301 (2 T) | 17 | 11 (2 T) | 8.9 (2 T) | + | [10] |
Fe49Rh51 RC | 120 | 315 (2 T) | 299 (2 T) | 16 | 67 (2 T) | 13.9 (2 T) | + | [10] |
Fe48Cr3Rh49 SC | 103 | 221 (1.6 T) | 206 (1.6 T) | 15 | 7.6 (1.6 T) | 5.1 (1.5 T) | + | This work |
Fe48Cr3Rh49 RC | 111 | 210 (1.6 T) | 193 (1.6 T) | 17 | 51 (1.6 T) | 8.2 (1.5 T) | + | This work |
LaFe11.5Si1.5 SC | 120 | 202 (0.02 T) | 196 (0.02 T) | 6 | −1.31 (0.02 T) | 17.7 (2 T) | + | [21] |
LaFe11.5Si1.5 RC | 110 | 197.6 (0.02 T) | 192.2 (0.02 T) | 5.4 | −1.79 (0.02 T) | 14.9 (2 T) | + | [21] |
Mn0.92Co1.08Ge 0.2 K/min | 78 | 351 (1 T) | 363 (1 T) | 12 | −5.46 (1 T) | 30 (2 T) | - | [22] |
Mn0.92Co1.08Ge 5 K/min | 82 | 316 (1 T) | 334 (1 T) | 18 | −4.86 (1 T) | 12 (2 T) | - | [22] |
Mn1.1Fe0.9P0.76Ge0.24 SC | 130 | 299 (0.01 T) | 291 (0.01 T) | 8 | - | 12 (2 T) | + | [23] |
Mn1.1Fe0.9P0.76Ge0.24 melt-spun (RC) | 130 | 317 (0.01 T) | 309 (0.01 T) | 8 | - | 16 (2 T) | + | [23] |
MnCo0.962Fe0.038Ge SC | 120 | 479 | 443 | 36 | - | - | - | [24] |
MnCo0.962Fe0.038Ge RC | - | 440 | 410 | 30 | - | - | - | [24] |
Ni2Mn1.36Sn0.32Al0.32 SC | 40 | 240 (0.01 T) | 221 (0.01 T) | 19 | 0.054 (0.01 T) | 7 (1.5 T) | - | [25] |
Ni2Mn1.36Sn0.32Al0.32 RC | 35 | 239 (0.01 T) | 220 (0.01 T) | 19 | 0.047 (0.01 T) | 8 (1.5 T) | - | [25] |
Gd75Co25 SC | 160 | 130 | 130 | 0 | - | 5 (2 T) | - | [26] |
Gd75Co25 RC | 140 | 172 | 172 | 0 | - | 4.8 (2 T) | - | [26] |
Gd75Ni25 SC | 30 | 99 | 99 | 0 | - | 0.4 (2 T) | - | [26] |
Gd75Ni25 RC | 120 | 117 | 117 | 0 | - | 3.6 (2 T) | - | [26] |
Mn1.02As0.9Sb0.1 SC | 117 | - | 290 (1 T) | - | −16 (1 T) | - | + | [27] |
Mn1.02As0.9Sb0.1 RC | 119 | - | 293 (1 T) | - | −29 (1 T) | - | + | [27] |
Mn0.997Fe0.003As SC | 80 | 313 (0.02 T) | 301 (0.02 T) | 12 | −1.29 (0.02 T) | 20 (1.5 T) | + | [28] |
Mn0.997Fe0.003As RC | 80 | 308 (0.02 T) | 292 (0.02 T) | 16 | −1.91 (0.02 T) | 31 (1.5 T) | + | [28] |
Composition | a Å | b Å | c Å | dCr-Cr Å | µFe µB | µRh µB | µCr µB | Average Magn., µB/at | E/at, eV/at |
---|---|---|---|---|---|---|---|---|---|
Fe50Rh50 | 3.004 | 3.004 | 3.004 | x | 3.176 | 1.029 | x | 2.147 | −7.789 |
Fe48.1Rh50Cr1.9 | 3.002 | 3.002 | 3.002 | x | 3.148 | 0.975 | 0.165 | 2.023 | −7.793 |
Fe46.3Rh50Cr3.7 | 3.010 | 2.982 | 3.010 | 2.343 | 3.141 | 0.921 | −1.651 | 1.868 | −7.819 |
2.991 | 3.002 | 3.002 | 4.339 | 3.131 | 0.929 | 0.306 | 1.925 | −7.799 | |
2.999 | 2.999 | 2.999 | 5.193 | 3.128 | 0.934 | 0.212 | 1.943 | −7.798 | |
Fe44.4Rh50Cr5.6 | 3.016 | 2.989 | 2.989 | 4.221 4.221 8.442 | 3.120 | 0.898 | 0.337 | 1.871 | −7.806 |
Fe48.15Rh48.15Cr3.7 | 2.997 | 2.997 | 2.997 | 2.167 | 3.124 | 0.976 | 0.486 (at Rh site) −1.518 (at Fe site) | 1.971 | −7.832 (a) |
3.024 | 3.024 | 2.951 | 4.850 | 3.098 | 0.911 | −2.905 (at Rh site) −2.903 (at Fe site) | 1.823 | −7.841 (b) | |
3.000 | 3.000 | 3.000 | 7.793 | 3.106 | 0.947 | −2.974 (at Rh site) −3.086 (at Fe site) | 1.839 | −7.838 (c) | |
Fe48.1Rh46.3Cr5.6 | 2.986 | 2.994 | 2.994 | 2.338 2.338 4.047 | 3.075 | 0.956 | −0.410 (at Rh site) −0.422 (at Rh site) −0.153 (at Fe site) | 1.905 | −7.854 |
Fe50Rh48.1Cr1.9 | 3.000 | 3.000 | 3.000 | x | 3.122 | 0.993 | −3.076 | 1.997 | −7.815 |
Fe50Rh46.3Cr3.7 | 3.003 | 2.992 | 2.992 | 3.626 | 3.059 | 0.934 | −2.887 | 1.868 | −7.845 |
2.997 | 2.997 | 2.997 | 5.276 | 3.072 | 0.951 | −3.098 | 1.874 | −7.842 | |
2.997 | 2.997 | 2.997 | 5.258 | 3.073 | 0.952 | −3.102 | 1.874 | −7.842 | |
Fe50Rh44.4Cr5.6 | 2.992 | 2.992 | 2.992 | 3.928 3.928 3.928 | 2.990 | 0.847 | −2.891 −2.885 −2.878 | 1.711 | −7.874 |
System | a Å | b Å | c Å | dCr-Cr Å | µFe µB/at | µRh µB/at | µCr µB/at | E/at eV/at |
---|---|---|---|---|---|---|---|---|
Fe50Rh50 | 2.991 | 2.991 | 2.991 | x | 3.129 −3.052 | 0.075 | x | −7.757 |
2.734 | 2.734 | 3.504 | x | 2.830 −2.715 | 0.043 | x | −7.789 | |
Fe48.1Rh50Cr1.9 | 2.993 | 2.993 | 2.993 | x | 3.038 −3.134 | −0.072 | −2.893 (↑) | −7.777 |
2.769 | 3.082 | 3.082 | x | 2.722 −2.878 | −0.041 | −2.364 (↓) | −7.807 | |
Fe46.3Rh50Cr3.7 | 2.763 | 3.082 | 3.082 | 4.432 | 2.685 −2.889 | −0.040 | −2.174 (↑) −2.376 (↓) | −7.831 |
2.722 | 3.529 | 2.722 | 3.552 | 2.666 −2.796 | −0.047 | −2.000 (↓) 2.199 (↑) | −7.835 | |
3.236 | 2.718 | 2.957 | 5.291 | 2.434 −1.991 | −0.116 | −2.152 (↓) −2.200 (↑) | −7.832 | |
Fe44.4Rh50Cr5.6 | 3.533 | 2.719 | 2.719 | 3.711 | 2.578 −2.860 | −0.032 | −2.132 (↓) −2.111 (↑) −2.132 (↓) | −7.855 |
Fe48.15Rh48.15Cr3.7 | 2.969 | 2.969 | 2.969 | 2.733 | 2.666 −2.827 | −0.071 | −1.685 (at Fe site) 0.235 (at Rh site) | −7.821 |
2.721 | 2.953 | 3.229 | 4.567 | 2.566 −2.698 | −0.022 | −0.660 (at Rh site) −2.211 (at Fe site) | −7.842 | |
2.974 | 2.974 | 2.974 | 7.854 | 2.851 −2.802 | −0.015 | 1.451 (at Rh site) −1.985 (at Fe site) | −7.828 | |
Fe48.1Rh46.3Cr5.6 | 3.536 | 2.701 | 2.701 | 2.633 | 2.545 −2.622 | −0.025 | −1.296 (at Rh site) −1.173 (at Fe site) −1.289 (at Rh site) | −7.863 |
Fe50Rh48.1Cr1.9 | 2.986 | 2.986 | 2.986 | x | 3.010 −3.071 | −0.045 | −1.034 | −7.785 |
Fe50Rh46.3Cr3.7 | 3.228 | 2.703 | 2.994 | 4.176 | 2.974 −3.016 | −0.015 | −1.004 −1.002 | −7.849 |
2.982 | 2.982 | 2.982 | 5.170 | 2.708 −2.780 | −0.022 | −1.836 0.662 | −7.836 | |
2.966 | 2.966 | 2.966 | 7.217 | 2.709 −2.781 | −0.022 | −1.838 0.662 | −7.836 | |
Fe50Rh44.4Cr5.6 | 2.955 | 2.955 | 2.955 | 3.683 | 2.514 −2.680 | −0.094 | 0.648 | −7.856 |
Composition | dCr-Cr (Å) | FM—Majority (Up) | FM—Minority (dn) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
(EF) | Rh | Fe | Cr | (EF) | Rh | Fe | Cr | |||
Fe48.1Rh50Cr1.9 | x | 4.27 | 2.17 | 1.43 | 0.08 | 49.64 | 9.73 | 35.10 | 1.94 | 45.37 |
Fe46.3Rh50Cr3.7 | 2.343 | 22.74 | 9.84 | 4.69 | 6.77 | 68.37 | 13.41 | 47.07 | 4.32 | 45.63 |
Fe46.3Rh50Cr3.7 | 4.339 | 6.75 | 3.09 | 1.89 | 1.06 | 43.81 | 9.19 | 30.08 | 2.04 | 37.06 |
Fe46.3Rh50Cr3.7 | 5.193 | 18.59 | 6.76 | 2.76 | 7.99 | 57.26 | 10.86 | 39.05 | 4.17 | 38.67 |
Fe44.4Rh50Cr5.6 | 4.221 | 22.30 | 8.33 | 3.33 | 9.44 | 59.56 | 11.60 | 38.53 | 6.22 | 37.26 |
Fe50Rh48.1Cr1.9 | x | 4.05 | 2.02 | 1.40 | 0.09 | 59.41 | 10.69 | 44.08 | 1.37 | 55.36 |
Fe50Rh46.3Cr3.7 | 3.626 | 5.18 | 2.54 | 1.77 | 0.25 | 46.91 | 9.23 | 33.75 | 1.15 | 41.73 |
Fe50Rh46.3Cr3.7 | 5.276 | 4.62 | 2.29 | 1.59 | 0.18 | 54.61 | 9.25 | 39.92 | 2.41 | 49.99 |
Fe50Rh46.3Cr3.7 | 5.258 | 4.60 | 2.27 | 1.57 | 0.20 | 56.95 | 9.93 | 41.50 | 2.40 | 52.35 |
Fe50Rh44.4Cr5.6 | 3.928 | 6.11 | 3.06 | 2.08 | 0.41 | 45.07 | 8.94 | 30.56 | 2.94 | 38.96 |
Fe48.15Rh48.15Cr3.7 | 2.167 | 8.19 | 3.33 | 2.38 | 1.82 | 65.56 | 12.48 | 48.20 | 1.32 | 57.37 |
Fe48.15Rh48.15Cr3.7 | 4.850 | 4.86 | 2.47 | 1.59 | 0.26 | 57.41 | 13.45 | 39.70 | 1.11 | 52.55 |
Fe48.15Rh48.15Cr3.7 | 7.793 | 4.77 | 2.37 | 1.59 | 0.21 | 56.48 | 10.65 | 40.02 | 2.81 | 51.71 |
Fe48.1Rh46.3Cr5.6 | 2.338 | 12.00 | 4.26 | 2.97 | 3.91 | 43.92 | 8.13 | 31.14 | 2.11 | 31.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komlev, A.S.; Cabeza, G.F.; Chirkova, A.M.; Ukrainczyk, N.; Sherstobitova, E.A.; Zverev, V.I.; Gimaev, R.; Baranov, N.V.; Perov, N.S. Influence of Structural Disorder on the Magnetic Order in FeRhCr Alloys. Metals 2023, 13, 1650. https://doi.org/10.3390/met13101650
Komlev AS, Cabeza GF, Chirkova AM, Ukrainczyk N, Sherstobitova EA, Zverev VI, Gimaev R, Baranov NV, Perov NS. Influence of Structural Disorder on the Magnetic Order in FeRhCr Alloys. Metals. 2023; 13(10):1650. https://doi.org/10.3390/met13101650
Chicago/Turabian StyleKomlev, Aleksei S., Gabriela F. Cabeza, Alisa M. Chirkova, Neven Ukrainczyk, Elena A. Sherstobitova, Vladimir I. Zverev, Radel Gimaev, Nikolai V. Baranov, and Nikolai S. Perov. 2023. "Influence of Structural Disorder on the Magnetic Order in FeRhCr Alloys" Metals 13, no. 10: 1650. https://doi.org/10.3390/met13101650
APA StyleKomlev, A. S., Cabeza, G. F., Chirkova, A. M., Ukrainczyk, N., Sherstobitova, E. A., Zverev, V. I., Gimaev, R., Baranov, N. V., & Perov, N. S. (2023). Influence of Structural Disorder on the Magnetic Order in FeRhCr Alloys. Metals, 13(10), 1650. https://doi.org/10.3390/met13101650