Martensite Decomposition and Ultrafine Grain Formation during Small Punch Creep Testing of Additively Manufactured Ti64
Abstract
:1. Introduction
2. Materials and Methods
3. Results & Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banerjee, D.; Williams, J.C. Perspectives on Titanium Science and Technology. Acta Mater. 2013, 61, 844–879. [Google Scholar] [CrossRef]
- Boyer, R.R. An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng. A 1996, 213, 103–114. [Google Scholar] [CrossRef]
- Dareh Baghi, A.; Nafisi, S.; Ebendorff-Heidepriem, H.; Ghomashchi, R. Microstructural Development of Ti-6Al-4V Alloy via Powder Metallurgy and Laser Powder Bed Fusion. Metals 2022, 12, 1462. [Google Scholar] [CrossRef]
- Barriobero-Vila, P.; Artzt, K.; Stark, A.; Schell, N.; Siggel, M.; Gussone, J.; Kleinert, J.; Kitsche, W.; Requena, G.; Haubrich, J. Mapping the geometry of Ti-6Al-4V: From martensite decomposition to localized spheroidization during selective laser melting. Scr. Mater. 2020, 182, 48–52. [Google Scholar] [CrossRef]
- Munk, J.; Breitbarth, E.; Siemer, T.; Pirch, N.; Häfner, C. Geometry Effect on Microstructure and Mechanical Properties in Laser Powder Bed Fusion of Ti-6Al-4V. Metals 2022, 12, 482. [Google Scholar] [CrossRef]
- Lucas, G.E. Review of small specimen test techniques for irradiation testing. Met. Mater Trans A 1990, 21, 1105–1119. [Google Scholar] [CrossRef]
- Manahan, M.P.; Argon, A.S.; Harling, O.K. The development of a miniaturized disk bend test for the determination of postirradiation mechanical properties. J. Nucl. Mater. 1981, 104, 1545–1550. [Google Scholar] [CrossRef]
- Dymáček, P. Recent developments in small punch testing: Applications at elevated temperatures. Theor. Appl. Fract. Mech. 2016, 86, 25–33. [Google Scholar] [CrossRef]
- Dobeš, F.; Dymáček, P.; Besterci, M. Estimation of the mechanical properties of aluminium and an aluminium composite after equal channel angular pressing by means of the small punch test. Mater. Sci. Eng. A 2015, 626, 313–321. [Google Scholar] [CrossRef]
- Bártková, D.; Langer, J.; Dymáček, P.; Válka, L. Determination of Mechanical Properties of Magnesium Alloys and Composites by Small Punch Testing. Appl. Mech. Mater. 2016, 821, 435–441. [Google Scholar] [CrossRef]
- Shen, Y.; Lv, S.; Zhou, Q.; Shi, L.; Sun, L.; Li, Z. Microstructure Characterization and Small Punch Test Analysis in Nickel-Based Alloy 617 by High Energy Neon Implantation. Metals 2022, 12, 438. [Google Scholar] [CrossRef]
- Dymáček, P.; Dobeš, F.; Jarý, M.; Jirásková, Y.; Pizúrová, N.; Friák, M. Small punch testing of Fe-Al based alloys with Ti and Nb additions. IOP Conf. Ser. Mater. Sci. Eng. 2020, 723, 012006. [Google Scholar] [CrossRef]
- Bruchhausen, M.; Austin, T.; Holmstrom, S.; Altstadt, E.; Dymacek, P.; Jeffs, S.; Lancaster, R.; Lacalle, R.; Matocha, K.; Petzova, J. European standard on small punch testing of metallic materials. In Proceedings of the ASME 2017—Pressure Vessels and Piping Conference, Waikoloa, HI, USA, 16–20 July 2017; p. 1A-2017. [Google Scholar] [CrossRef]
- NF EN 10371; Matériaux Métalliques—Méthode d’essai de Micro-Emboutissage. Association Française de Normalisation (AFNOR): La Plaine Saint-Denis, France, 2021.
- Tian, X.; Zhang, S.; Xu, H.; Li, T.; Yang, B.; Zhang, M. Assessment of Creep Properties Using Small Punch Test for a 9%Cr-Mo-Co-B Power Plant Steel. Metals 2021, 11, 1996. [Google Scholar] [CrossRef]
- Dobeš, F.; Dymáček, P. Fracture-based correlation of uniaxial and small punch creep data. Theor. Appl. Fract. Mech. 2016, 86, 34–38. [Google Scholar] [CrossRef]
- Dymáček, P. Short Term Creep Small Punch Testing of P91 and P92 Steels, Observations and Correlations with the Numerical Results. Key Eng. Mater. 2011, 465, 179–182. [Google Scholar] [CrossRef]
- Dobeš, F.; Milička, K. Application of creep small punch testing in assessment of creep lifetime. Mater. Sci. Eng. A 2009, 510–511, 440–443. [Google Scholar] [CrossRef]
- Holmström, S.; Li, Y.; Dymacek, P.; Vacchieri, E.; Jeffs, S.P.; Lancaster, R.J.; Omacht, D.; Kubon, Z.; Anelli, E.; Rantala, J.; et al. Creep strength and minimum strain rate estimation from Small Punch Creep tests. Mater. Sci. Eng. A 2018, 731, 161–172. [Google Scholar] [CrossRef]
- Peng, J.; Gao, M.; Zhang, H.; Geng, X.; Liu, X.; Pan, H. Small punch creep test reveals the differences of high-temperature creep behaviours for laser powder bed fusion and Rolled Inconel 718 alloys. Mater. Sci. Eng. A 2023, 886, 145698. [Google Scholar] [CrossRef]
- Lancaster, R.J.; Illsley, H.W.; Davies, G.R.; Jeffs, S.P.; Baxter, G.J. Modelling the small punch tensile behaviour of an aerospace alloy. Mater. Sci. Technol. 2016, 33, 1065–1073. [Google Scholar] [CrossRef]
- Lucon, E.; Benzing, J.; Hrabe, N. Small Punch Testing to Estimate Mechanical Properties of Additively Manufactured Ti-6Al-4V; US Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA, 2020. [CrossRef]
- Illsley, H.; Lancaster, R.; Jeffs, S.; Baxter, G. Small Punch Testing of Electron Beam Melted (EBM) Ti-6Al-4V. In Proceedings of the 13th World Conference on Titanium, San Diego, CA, USA, 16–20 August 2016; pp. 1401–1406. [Google Scholar] [CrossRef]
- Kim, Y.K.; Park, S.H.; Yu, J.H.; AlMangour, B.; Lee, K.A. Improvement in the high-temperature creep properties via heat treatment of Ti-6Al-4V alloy manufactured by selective laser melting. Mater. Sci. Eng. A 2018, 715, 33–40. [Google Scholar] [CrossRef]
- Viespoli, L.M.; Bressan, S.; Itoh, T.; Hiyoshi, N.; Prashanth, K.G.; Berto, F. Creep and high temperature fatigue performance of as build selective laser melted Ti-based 6Al-4V titanium alloy. Eng. Fail. Anal. 2020, 111, 104477. [Google Scholar] [CrossRef]
- Spigarelli, S.; Paoletti, C.; Cabibbo, M.; Cerri, E.; Santecchia, E. On the creep performance of the Ti-6Al-4V alloy processed by additive manufacturing. Addit. Manuf. 2022, 49, 102520. [Google Scholar] [CrossRef]
- Wang, H.; Chao, Q.; Yang, L.; Cabral, M.; Song, Z.Z.; Wang, B.Y.; Primig, S.; Xu, W.; Chen, Z.B.; Ringer, S.P.; et al. Introducing transformation twins in titanium alloys: An evolution of α-variants during additive manufacturing. Mater. Res. Lett. 2021, 9, 119–126. [Google Scholar] [CrossRef]
- Mahmud, A.; Huynh, T.; Zhou, L.; Hyer, H.; Mehta, A.; Imholte, D.D.; Woolstenhulme, N.E.; Wachs, D.M.; Sohn, Y. Mechanical Behavior Assessment of Ti-6Al-4V ELI Alloy Produced by Laser Powder Bed Fusion. Metals 2021, 11, 1671. [Google Scholar] [CrossRef]
- Lalé, M.; Viguier, B. Mechanical properties assessment of additively manufactured Ti64 alloy using Small Punch Tests. Mater. High Temp. 2023. submitted. [Google Scholar]
- Badea, L.; Surand, M.; Ruau, J.; Viguier, B. Creep Behavior of Ti-6Al-4V FROM 450 °C TO 600 °C. UPB Sci. Bull. Ser. B 2014, 76, 185–196. [Google Scholar]
- Dymáček, P.; Milička, K. Creep small-punch testing and its numerical simulations. Mater. Sci. Eng. A 2009, 510–511, 444–449. [Google Scholar] [CrossRef]
- Kappou, E.; Holmstrom, S. Small Punch Creep Tests for Grade 92 Forgings; EUR 29360 EN; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Lancaster, R.J.; Jeffs, S.P.; Haigh, B.J.; Barnard, N.C. Derivation of material properties using small punch and shear punch test methods. Mater. Des. 2022, 215, 110473. [Google Scholar] [CrossRef]
- Dumontet, N.; Connétable, D.; Malard, B.; Viguier, B. Elastic properties of the α’ martensitic phase in the Ti-6Al-4V alloy obtained by additive manufacturing. Scr. Mater. 2019, 167, 115–119. [Google Scholar] [CrossRef]
- Wu, S.Q.; Lu, Y.J.; Gan, Y.L.; Huang, T.T.; Zhao, C.Q.; Lin, J.J.; Guo, S.; Lin, J.X. Microstructural evolution and microhardness of a selective-laser-melted Ti–6Al–4V alloy after post heat treatments. J. Alloys Compd. 2016, 672, 643–652. [Google Scholar] [CrossRef]
- Semiatin, S.L. An Overview of the Thermomechanical Processing of α/β Titanium Alloys: Current Status and Future Research Opportunities. Met. Mater Trans A 2020, 51, 2593–2625. [Google Scholar] [CrossRef]
- Zherebtsov, S.; Murzinova, M.; Salishchev, G.; Semiatin, S.L. Spheroidization of the lamellar microstructure in Ti–6Al–4V alloy during warm deformation and annealing. Acta Mater. 2011, 59, 4138–4150. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, J.H.; Yeom, J.-T.; Oh, C.-S.; Semiatin, S.L.; Lee, C.S. Formation of a submicrocrystalline structure in a two-phase titanium alloy without severe plastic deformation. Scr. Mater. 2013, 68, 996–999. [Google Scholar] [CrossRef]
- Gu, J.L.; Sun, X.J.; Bai, B.Z.; Chen, N.P. Microstructural evolution during fabrication of ultrafine grained alpha+beta titanium alloy. Mater. Sci. Technol. 2001, 17, 1516–1524. [Google Scholar] [CrossRef]
- Chao, Q.; Hodgson, P.D.; Beladi, H. Ultrafine Grain Formation in a Ti-6Al-4V Alloy by Thermomechanical Processing of a Martensitic Microstructure. Met. Mater. Trans. A 2014, 45, 2659–2671. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lalé, M.; Malek, B.; Viguier, B. Martensite Decomposition and Ultrafine Grain Formation during Small Punch Creep Testing of Additively Manufactured Ti64. Metals 2023, 13, 1657. https://doi.org/10.3390/met13101657
Lalé M, Malek B, Viguier B. Martensite Decomposition and Ultrafine Grain Formation during Small Punch Creep Testing of Additively Manufactured Ti64. Metals. 2023; 13(10):1657. https://doi.org/10.3390/met13101657
Chicago/Turabian StyleLalé, Mathieu, Benaissa Malek, and Bernard Viguier. 2023. "Martensite Decomposition and Ultrafine Grain Formation during Small Punch Creep Testing of Additively Manufactured Ti64" Metals 13, no. 10: 1657. https://doi.org/10.3390/met13101657
APA StyleLalé, M., Malek, B., & Viguier, B. (2023). Martensite Decomposition and Ultrafine Grain Formation during Small Punch Creep Testing of Additively Manufactured Ti64. Metals, 13(10), 1657. https://doi.org/10.3390/met13101657