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Abstract: A two-dimensional transient inverse heat-conduction problem (2DIHCP) was established
to determine the mold heat flux using observed temperatures. The sequential regularization method
(SRM) was used with zeroth-, first-, and second-order spatial regularization to solve the 2DIHCP. The
accuracy of the 2DIHCP was investigated under two strict test conditions (Case 1: heat flux with
time-spatial periodically varying, and Case 2: that with sharp variations). The effects of the number of
future time steps, regularization parameters, order of regularization, discrete grids, and time step size
on the accuracy of the 2DIHCP were analyzed. The results showed that the minimum relative error
(epred) of the predicted Case 1 heat flux is 5.05%, 5.39%, and 5.88% for zeroth-, first-, and second-order
spatial regularization, respectively. The corresponding values for the predicted Case 2 heat flux are
6.31%, 6.30%, and 6.36%. Notably, zeroth- and first-order spatial regularization had higher accuracy
than second-order spatial regularization, while zeroth-order spatial regularization was comparable to
first-order. Additionally, first-order spatial regularization was more accurate in reconstructing heat
flux containing sharp spatial variations. The CPU time of the predicted Case 2 heat flux is 1.71, 1.71,
and 1.70 s for zeroth-, first-, and second-order spatial regularization, respectively. The corresponding
values for the predicted Case 1 heat flux are 6.18, 6.15, and 6.17 s. It is noteworthy that the choice of
spatial regularization order does not significantly impact the required computing time. Lastly, the
minimum epred of Case 2 heat flux with zeroth-order spatial regularization is 7.96%, 6.42%, and 7.87%
for time step sizes of 1/fs, 1/2fs, and 1/5fs, respectively. The accuracy of the inverse analysis displays
an initial improvement followed by degradation as the time step size decreases. A recommended
time step size is 1/2fs, where fs denotes the temperature-sampling rate.

Keywords: continuous casting; heat transfer; inverse problem; accuracy; sequential regularization
method

1. Introduction

Many surface defects found in the final rolled product can often be traced back
to heat transfer in the continuous casting mold during the early stages of molten steel
solidification [1–3]. The mold heat flux, especially at the mold meniscus area, is highly
complex due to the transient nature of the infiltration of lubricant liquid mold flux, intense
fluid flow, and mold oscillation. This complexity poses a significant challenge in obtaining a
clear and comprehensive understanding of all the dynamics within the system. Fluctuations
in the mold heat flux reflect the solidification processes within the mold, and precise
measurement of the mold heat flux is crucial to ensuring the quality of the continuous
casting slab [2,4–9].

Modern software makes calculating the mold temperature field by solving the Fourier
heat transfer partial differential equation (PDE) with given initial and boundary conditions
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easy. However, accurately determining the boundary conditions, such as the mold heat flux,
can be difficult and often requires estimation from measured temperatures. The measured
temperatures cannot be used to directly measure heat flux at the meniscus due to the
transient temperature field in the copper mold, especially at the mold meniscus area, where
significant heat flows longitudinally upward to the cold top of the mold.

Mathematically, the calculation of heat flux from observed temperatures is a common
inverse problem that involves finding the heat flux with the highest probability of minimiz-
ing the difference between the calculated temperatures T and the observed temperatures
Y [10–12]. This type of inverse heat-conduction problem can be seen as an optimization
problem with Fourier heat transfer partial differential equation constraints [13]. Never-
theless, inverse problems are often categorized as ill-posed problems, which means that
there may not exist a solution or the solution may not be unique. As a result, stabilization
techniques are necessary to obtain reliable results for the inverse problem [13].

Stabilization techniques for inverse problems have two main categories: gradient-
based methods and stochastic-based methods. Gradient-based methods include the
Levenberg–Marquardt method [12,14–16], the function specification method [17], and
the conjugate gradient method [18–20]. Stochastic-based methods encompass the Bayesian
method [21], the fuzzy inference method [22], and the deep neural network algorithms [23].
Additionally, for transient heat transfer phenomena, the choice of time domain for utilizing
measurements plays a crucial role in classifying the solution method. There are three
proposed time domains: (1) only to the present time, (2) to the present time plus a few
future time steps, and (3) the complete time domain. Methods based on the time domains
(1) and (2) are sequential. Methods based on time domains (1) and (2) are sequential. The
first method, using measurements only up to the present time (1), is often referred to as
the Stolz method. In the second method (2), a few future temperatures are considered,
originally proposed by Beck [11], and the associated algorithms are termed sequential.
However, sequential methods based on time domains (1) and (2) tend to become unstable
when small-time steps are used in the analysis. On the other hand, the whole-time domain
approach (3) is powerful because it allows for very small-time steps, but it may not be as
computationally efficient. Most stabilization techniques, such as function specification and
regularization methods, can be applied in both sequential and whole-domain estimation
forms [18–20,24].

In the continuous casting research community, Brimacomb et al. [25] employed the
whole-domain zeroth-order regularization method to estimate mold heat flux under two-
dimensional steady-state thermal conditions. Thomas et al. [26] introduced an inverse heat-
conduction problem aimed at extracting insights into heat transfer at the meniscus based on
thermocouple measurements. This model facilitates a deeper understanding of heat trans-
fer dynamics at the meniscus during continuous steel casting. Yao and Wang et al. [27–30]
developed a two-dimensional transient inverse heat transfer problem for calculating sec-
ondary cooling heat transfer using a nonlinear estimation approach. This inverse problem-
based analysis enhances comprehension of nonuniform heat transfer in continuous round
billet casting by enabling the identification of the unknown thermal resistance between the
billet and the mold. Goldschmit et al. [31,32] devised an inverse analysis model employ-
ing regularization techniques to assess mold heat fluxes based on temperatures recorded
by thermocouples embedded in the mold wall. Talukdar et al. [33] formulated a steady
inverse heat-conduction model utilizing the conjugate gradient method to ascertain the
heat flux across the surface of a continuous casting mold from observed temperatures.
Wang et al. [19] developed a two-dimensional transient inverse heat-conduction problem
using the whole-time domain conjugate gradient method to estimate the mold heat flux.
Jayakrishna et al. [34] pioneered a three-dimensional steady-state inverse heat-conduction
problem for parameter estimation, aiming to capture the mold heat flux. Indeed, Beck’s
sequential function specification method has gained widespread acceptance and demon-
strated its effectiveness in resolving one-dimensional inverse heat-conduction problems
aimed at determining the heat flux of continuous casting mold [35,36]. This method oper-
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ates on the assumption that the heat flux remains constant or follows a linear function over
a specified number of future time steps. By selecting an appropriate number of future time
steps, the stability of the solution in the time domain can be enhanced [27,37]. However,
the sequential function specification method tends to exhibit instability when small-time
steps are employed in the inverse analysis, particularly when reconstructing heat flux for
two- and three-dimensional heat transfer problems with spatiotemporal variations [38–40].

Precisely online, determining the mold heat flux remains a focal point of research and
presents a substantial challenge [41–44]. The heat flux in the mold exhibits variations in
both the vertical and horizontal directions across the mold surface [24,45–47]. Monitoring
the temperature of the continuous casting mold typically involves the use of numerous
thermal sensors, such as thermocouples and fiber-optic temperature sensors [48]. Advances
in continuous casting technology have given rise to fast mold thermal monitoring systems
with temperature-sampling rates exceeding 10 Hz. These systems offer more detailed
insights into mold breakout, the infiltration of liquid mold flux into the mold/shell gap,
and the solidification behavior of liquid steel [49,50]. Subsequently, the requirements for
addressing the inverse problem of online reconstructing mold heat flux using observed
temperatures can be summarized as follows: ensuring the numerical solution’s stability,
achieving rapid heat flux reconstruction, and effectively handling the discontinuous func-
tional form of the unknown. Initially, the sequential method is considered more suitable
than the whole-time domain approach due to the latter’s inherent feedback time delay
during heat flux calculation. However, it is worth noting that the increased temperature-
sampling rate resulting from the small-time step in the sequential method may lead to
reduced accuracy in heat flux reconstruction [11,38]. Moreover, the functional form of
the known boundary heat flux may exhibit discontinuities. Fachinotti et al. [51] have
emphasized that regularization methods enable accurate capture of jump discontinuities
within the unknown function.

The aim of this study is to establish a two-dimensional transient inverse heat-conduction
problem (2DIHCP) using the sequential regularization method (SRM) to determine the
mold heat flux from temperature data. This method introduces spatial regularizations to
enhance the sequential approach [51–54]. Subsequently, the effectiveness of the proposed
SRM-based IHCP was validated under stringent test conditions. Finally, an exploration
was conducted to assess the influence of several factors, including the number of future
time steps, regularization parameters, order of regularization, discrete grids, and time step
size, on the accuracy of heat flux reconstruction.

2. Mathematic Model
2.1. Direct Problem Description

Figure 1 shows the computational domain Ω for 2DIHCP. The rectangular area, ABCD,
with a height (AB) of H* and a width (BC) of W*, consists of four boundary conditions
represented by Γ1 (DA), Γ2 (AB), Γ3 (BC), and Γ4 (CD). Two columns of T-type thermocou-
ples are embedded in the mold wall with w1 and W away from the mold’s hot surface,
respectively. The thermocouples at the first column are allowed to be located randomly
within the computational area Ω and should be located as close as possible to the boundary
Γ2 [11,27]. The temperature history of the first column of thermocouples is denoted as
T ∈ RM and will be used to formulate the inverse problem for determining the mold
surface heat flux. The temperature of the second column of thermocouples located on the
boundary Γ4 (CD) provides the temperature boundary condition f*(t*), which is calculated
by interpolating the linear relationship between the two nearby measured temperatures
for the nodes located between the two thermocouples. The application of a boundary
condition for Γ4 in this treatment method is more advantageous than using an empirical
formula to estimate the heat transfer coefficient by convection of the water coolant, as the
turbulent flow of the cooling water renders it challenging to measure accurately [9,55]. This
thermocouple arrangement in the mold was chosen based on the study of Badri et al. [9,56].
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Figure 1. Mold simulator apparatus and the locations of thermocouples inside the mold wall.

The mold heat transfer model is based on the following assumptions: (1) transverse
heat flow perpendicular to the plane of interest is negligible [25], and (2) since the tem-
perature of the mold wall ranges from 300 to 600 K [56], it is assumed that the material
properties of the mold, such as heat capacity, density, and thermal conductivity, remain
constant. Therefore, the heat transfer within the rectangular area ABCD of the mold, as
shown in Figure 1, is considered to be two-dimensional. The problem of predicting the
thermal field in a longitudinal section (ABCD) is referred to as the direct problem, and it
is governed by the Fourier heat transfer partial differential equation with corresponding
thermal boundary conditions.

ρc
∂T∗

∂t∗
= λ∆T∗, in domain Ω∗ = [0, W∗]× [0, H∗] (1)

−λ
∂T∗

∂n

∣∣∣∣
Γ1∪Γ2∪Γ3

= q∗, unknown (2)

T∗(Γ4, t∗) = f ∗(t∗), measured (3)

T∗(x∗, y∗, 0) = T∗ini (4)

where ρ is the density in kg·m−3, c represents the specific heat in J·kg, T* is the temperature
in K, t* is the time in seconds, and λ is the thermal conductivity in W·m−1·K−1. q* is
the heat flux to be estimated for the boundary conditions of Γ1, Γ2, and Γ3 with the unit
in W·m−2, n is the outer normal of the boundary, and f*(t*) is the temperature boundary
condition on Γ4 with the unit in K.

It should be noted that the heat flux q* is unknown, leading to an underdetermined
heat transfer problem that cannot be directly solved using Equations (1)–(4). In cases
where the heat flux boundary conditions are not known but temperature measurements
are available, an inverse heat-conduction problem should be formulated to address the
underdetermined heat transfer issue.
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2.2. Description of the Inverse Problem

In this study, the sequential regularization method (SRM) [57–59] is employed to
solve the inverse heat-conduction problem for the determination of heat flux using the
observed temperatures. The SRM approach involves two steps: (1) Temporarily assuming
the heat fluxes are equal, qj = qj+1 = . . . = qj+r−1, for r future time steps from tj to tj+r−1;
and (2) estimating qj for the time interval [tj, tj+r−1] by minimizing the square difference
between the calculated temperatures T and the observed temperatures Y. Therefore, the
inverse heat-conduction problem can be formulated as an optimization problem with PDE
constraints [13]. That is,

min s =
∫ tj+r−1

tj

x

Ω

[Y− T]2δ(x− xm)δ(y− ym)dΩdt + Rc(qj), (5)

s.t.
∂T
∂t

= ∆T, tj ≤ t ≤ tj+r−1in Ω = [0, W]× [0, H] (6)

−∂T
∂n

∣∣∣∣
Γ1∪Γ2∪Γ3

= qj, to be estimated (7)

T(Γ4, t) = f (t), measured (8)

T
(
x, y, tj

)
= Tini. (9)

All of the variables in the Equations (5)–(9) are dimensionless. The dimensionless
quantities were defined as follows,

T =
T∗ − Tre f

∆T
, Y =

Y∗ − Tre f

∆T
, ∆T =

qre f Lre f

λ
, qj =

qj∗

qre f
, (x, y) =

(x∗, y∗)
Lre f

, t =
λt∗

ρcL2
re f

.

where r (≥1) is the number of future time steps. The Dirac delta function, δ(x), is defined
such that it is equal to unity at x = 0 and is zero everywhere else. (xm, ym) represents the
location of thermocouples. To solve the direct problem of the partial differential equation
described by Equations (6)–(9), the finite difference method is used. This method involves
discretizing the computational domain (Ω), represented by the rectangular area ABCD,
into a grid of uniform size nx × ny. The boundaries Γ1, Γ2 and Γ3 are divided into n1 (=nx),

n2 (=ny) and n3 (=nx) divisions, respectively. Then, the unknown heat flux qj (=[qj
1, qj

2, qj
3]T)

∈ RN at time tj is a vector with N (=n1 + n2 + n3) components. qj
1, qj

2, and qj
3 are vectors of

dimensions n1 × 1, n2 × 1 and n3 × 1, corresponding to the heat fluxes on Γ1, Γ2, and Γ3,
respectively. qj

n is the n-th component of heat flux qj at the time tj.

qj = [

qj
1︷ ︸︸ ︷

qj
1, qj

2, · · · , qj
n1 , qj

n1+1, qj
n1+2, · · · , qj

n1+n2︸ ︷︷ ︸
qj

2

,

qj
3︷ ︸︸ ︷

qj
n1+n2+1, qj

n1+n2+2, · · · , qj
N ]

T (10)

The right-hand side of Equation (5) contains a spatial regularization term, Rc(qj), which
is used to reduce the spatial variation in the predicted heat flux [60]. There are three types of
spatial regularizations: zeroth, first, and second order. Table 1 contains the standard forms
of integration, Rc(qj), and their corresponding discrete form approximations, Rd(qj), for
those three different orders of spatial regularization. The regularization parameter, denoted
by α‘ (>0), is used to control the strength of regularization [38–49,57,59,61]. It should be
noted that the heat flux, q, may be discontinuous at the intersection points of neighboring
boundaries, such as points A and B in Figure 1. Therefore, the spatial regularizations for
the heat flux of Γ1, Γ2, and Γ3 might be addressed separately.
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Table 1. Three different orders of spatial regularization methods.

Regularization
Method Integral Form Rc(qj)

Equivalent Discrete Form
Rd(qj):=α

∥∥hdqj
∥∥2

Derivative Operator
hd=blkdiag(hd,1,hd,2,hd,3),

i = 1, 2 3

Zeroth order
(d = 0) α′

3
∑

i=1

∫
Γi

(
qj
)2d
→
x α

[
n1
∑

n=1
(qj

n)
2
+

n1+n2
∑

n=n1+1
(qj

n)
2
+

N
∑

n=n1+n2+1
(qj

n)
2
]

hd,i =


1

1
. . .

1


ni×ni

First order
(d = 1) α′

3
∑

i=1

∫
Γi

(
∂qj

∂
→
x

)2

d
→
x

α


n1−1

∑
n=1

(qj
n − qj

n+1)
2
+

n1+n2−1

∑
n=n1+1

(qj
n − qj

n+1)
2

+
N−1
∑

n=n1+n2+1
(qj

n − qj
n+1)

2

 hd,i =


1 −1

1 −1
. . . . . .

1 −1


(ni−1)×ni

.

Second order
(d = 2) α′

3
∑

i=1

∫
Γi

(
∂2qj

∂
→
x

2

)2

d
→
x

α


n1−1

∑
n=2

(qj
n−1 − 2qj

n + qj
n+1)

2
+

n1+n2−1

∑
n=n1+2

(qj
n−1 − 2qj

n + qj
n+1)

2

+
N−1
∑

n=n1+n2+2
(qj

n−1 − 2qj
n + qj

n+1)
2

 hd,i =


1 −2 1

1 −2 1
. . . . . .

1 −2 1


(ni−2)×ni

2.3. Method of Solving the Inverse Problem

The discrete form analogous to the objective function Equation (5) could be rewritten
as follows.

s =
r

∑
i=1

∥∥∥Yj+i−1 − Tj+i−1
∥∥∥2

+ α
∥∥∥hdqj

∥∥∥2
. (11)

Yj = [Y j
1, Y j

2, · · · , Y j
M]

T
(12)

Tj = [T j
1, T j

2, · · · , T j
M]

T
(13)

hd = blkdiag(hd,1, hd,2, hd,3) (14)

where both Yj and Tj are M × 1 temperature vectors at time tj, and M is the number of

measurements. Y j
m and T j

m are the measured and the calculated temperature at the position
(xm, ym) of temperature measurement at time tj, respectively. ||·|| denotes the standard
Euclidean norm. The parameter d represents the order of spatial regularization. hd is a dth-
order derivative operator acting on the respective boundary heat flux (Table 1) [11,62,63]. α
(>0) is the regularization parameter. There are various classical methods for selecting the
regularization parameter, such as L-curve methods and Morozov’s discrepancy principle,
which can be found in the literature [61–65]. However, the main focus of this study is to
investigate the effects of the influences of a number of future time steps, regularization
parameters, order of regularization, discrete grids, and time step size on the 2DIHCP
accuracy. Therefore, the influence of the regularization parameter is determined through a
trial-and-error approach in order to provide recommendations and guidance for selecting
the appropriate α value.

In zeroth-order regularization (d = 0), hdqj indicates the magnitude of heat fluxes,
and α||hdq||2 penalizes the amplitude of the heat flux. In first-order regularization
(d = 1), hdqj can be interpreted as an approximation of the gradient of the heat flux. In
second-order regularization (d = 2), hdqj can be interpreted as an approximation of the
second derivative of the heat flux. Herein, the first-order regularization constrains solutions
with large gradients, and the second-order regularization penalizes solutions that have
considerable second derivatives. The performances of those three different regularization
methods, along with the influence of the regularization parameter on the accuracy of the
inverse problem calculation, will be discussed in further detail in Section 4.

Expanding the temperature field in a Taylor series about an assumed heat flux q*.

Tj+i−1 = T̃
j+i−1

+ Ji(q
j − q∗). (15)
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T̃
j+i−1

is the temperature calculated using the assumed heat flux q*. Usually, q* is an a
priori estimate of qj. To our knowledge, q* can be set to zero if no a priori information about
the heat flux is available, which will consequently reduce the computations required [11].
Jj is called the M × N sensitivity coefficient matrix at time tj and is defined as follows.

Jj =

[
∂T(qj)

∂qj

]T

=


J j
1,1 J j

1,2 · · · J j
1,N

J j
2,1 J j

2,2 · · · J j
2,N

...
...

. . .
...

J j
M,1 J j

M,2 · · · J j
M,N

, where J j
m,n =

∂T j
m

∂qj
n

. (16)

To minimize the objective function given by Equation (11), it can be achieved by taking
the partial derivative of Equation (11) with respect to the vector of qj, setting it to zero, and
substituting from Equation (15). This yields an estimator for unknown heat flux qj.

qj =

(
r

∑
i=1

JT
i Ji + αhT

dhd

)−1{ r

∑
i=1

JT
i (Y

j+i−1 − T̃
j+i−1

) +
r

∑
i=1

JT
i Jiq

∗
}

. (17)

2.3.1. Sensitivity Coefficient Matrix

The sensitivity coefficient J j
m,n represents the temperature rise at the sensor location

(xm, ym) in response to a unit step change in the heat flux at point (xn, yn) on boundaries
Γ1, Γ2, and Γ3, at time tj. According to the definition of sensitivity coefficient Equation (16),
the sensitivity coefficient problem can be obtained by taking the partial derivative of
Equations (6)–(9) with respect to a heat flux component qj

n, then yielding the governing
sensitivity coefficient problem.

∂J
∂t

=
∂2 J
∂x2 +

∂2 J
∂y2 , 0 < t ≤ tr in Ω = [0, W]× [0, H] (18)

− ∂J
∂n

∣∣∣∣
Γ1,∪Γ2∪Γ3

=

{
1, (x, y) = (xn, yn)
0, others

(19)

J|
Γ4

= 0 (20)

J(x, y, 0) = 0 (21)

2.3.2. Stopping Criteria

If there is no measurement error in the temperature, the traditional stopping criteria
for Equation (5) and/or Equation (11) are given by [64],

r

∑
i=1

∥∥∥Yj+i−1 − Tj+i−1
∥∥∥2
≤ ε1 (22)

∥∥∥∥∥ r

∑
i=1

JT
i (Y

j+i−1 − T̃
j+i−1

)

∥∥∥∥∥ ≤ ε2 (23)

where ε1 and ε2 are user-prescribed tolerances.

2.3.3. Algorithm for Sequential Regularization Method

The algorithm of the sequential regularization method (SRM) solving the inverse
problem is summarized in Table 2. The complete code base of this study is made available
to the wider research community [66]. It is worth noting that the sensitivity coefficient
matrix can be computed only once if Equations (18)–(21) are linear at step 5. Moreover,
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updating the heat flux qj using Equation (17) only once at step 8 might be sufficient in most
cases to achieve accurate results.

Table 2. Algorithm for solving 2DIHCP by sequential regularization method.

Algorithm Sequential regularization method for the inverse problem

0: Initialize the order of spatial regularization d, the number of future time steps r, the values
for ε1 and ε2; set the time step j is 1 and the regularization parameter α is 100; input the
measured temperature Y, and the number of discrete grids.

1: while α > 10−12 do
2: while j does not reach the end of the time step do
3: Take an initial guess for the heat flux q*, then qj = q*.
4: Solve the direct problem given by Equations (6)–(9) with the guess heat flux qj for T̃ in the

time interval [tj, tj+r−1].
5: Solve the sensitivity coefficient problem given by Equations (18)–(21) for the sensitivity

coefficient matrix Jj during the time from 0 to tr.
6: if the stopping criteria given by Equations (22) and (23) are satisfied
7: qj could be regarded as the predicted heat flux at time tj.
8: else
9: Update qj using Equation (17) with T̃ and Jj, and return to Step 4.

10: end if
11: Replace j by j + l.
12: endwhile
13: Replace α by 0.2α, and set j is 1.
14: endwhile

3. Model Verification
3.1. Validation for Solving Direct Problem and Sensitivity Coefficient Problem

In this study, the Crank–Nicolson (CN) semi-implicit scheme is employed to solve the
partial differential equations of heat-conduction problem Equations (6)–(9) and the sensi-
tivity coefficient problem given by Equations (18)–(21). This use of the CN semi-implicit
difference scheme for solving heat-conduction problems has been well documented in the
literature [67,68]. Prior to applying this method to inverse calculations, it is important to
verify its accuracy in solving partial differential equations using the finite difference method
(FDM). To do so, FDM numerical calculations for a two-dimensional heat transfer problem
were compared with the analytical solution from a textbook [69]. The results of the FDM
calculations were found to be in agreement with those of the analytical solution, indicating
that FDM can accurately solve the partial differential equations related to heat conduction.

3.2. Validation for Inverse Problem

To ensure the reliability of the algorithm used for determining the boundary heat flux
from temperature measurements, it is necessary to validate the process.

3.2.1. Methodology of Validation

The validation process involves the following steps: (1) Specify the analytic expression
for a pre-set heat flux gexa(Γ2,t) on the boundary Γ2. (2) Specify the location of temperature
sensors in the computation domain. As shown in Figure 1, The direct problem in this
study involves the conduction of heat within a copper rectangular area labeled ABCD,
with dimensions of 21 mm × 8 mm (height × width) and an initial temperature of 0 K.
The boundaries Γ1, Γ3, and Γ4 are insulated. The domain Ω comprises two columns of
2 × 8 thermocouples. The first column consists of eight thermocouples spaced 3 mm apart
in the vertical direction and located 3 mm away from AB. The second column comprises
eight thermocouples spaced 3 mm apart in the vertical direction and situated on the
boundary on the boundary Γ4 (CD). (3) Generate the simulated measured temperature data.
The pre-set heat flux gexa(Γ2,t) is applied on the boundary Γ2. Then, the direct problem
given by Equations (6)–(9) is solved to compute the temperature. The temperatures of
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the thermocouples are measured at intervals of 0.1 s, where the sampling frequency of
temperature fs is 10 Hz. (4) The reconstruction of heat flux. Substitute the measured
temperatures into the above inverse problem algorithm (Table 2) to estimate the heat flux
(gpred), and (5) evaluate the accuracy of the inverse analysis. The following relative error
between the exact and the reconstructed result is employed to evaluate the accuracy of heat
flux estimations [69],

epred =

∥∥∥gexa(x, t)− gpred(x, t)
∥∥∥

‖gexa(x, t)‖ × 100% (24)

where gexa and gpred are the exact and the predicted heat fluxes, respectively. A high value
of the relative error, epred, indicates that the reconstructed heat flux is of lower accuracy. It
is important to note that having a temperature residual (||Y−T||) equal to zero does not
guarantee that the relative error between the reconstructed and exact heat flux is also zero.
In other words, even if the calculated temperatures closely match the measured ones, the
reconstructed heat flux may not necessarily match the exact heat flux due to the inherent
instability, non-uniqueness, or non-existence of inverse problem solutions.

3.2.2. Validation

To validate the accuracy of the SRM-based inverse problem, three different cases of
heat fluxes were considered. In Case 1, a time-spatial periodically varying heat flux was
used to assess the accuracy of the inverse problem. The time-spatial periodically varying
heat flux on the boundary Γ2 is,

gexa(Γ2, t∗) = A0 cos(
2πy∗

H
) cos(

πt∗

τ0
), t∗ ∈ [0, 20s] (25)

where A0 is 1 × 106 W·m−2, H is 0.021 m, and τ0 is 20 s.
Figure 2a–d show the exact Case 1 value and the predicted value obtained with the

SRM-based inverse problem with zeroth-, first-, and second-order spatial regularization.
The tolerances of ε1, and ε2 are 10−3 and 10−6 for the 2DIHCP calculation. The relative
error (epred) was found to be 5.33% (Figure 2b), 5.40% (Figure 2c), and 5.89% (Figure 2d) for
zeroth-, first-, and second-order spatial regularization, respectively, when compared to the
exact Case 1 value. It suggests the proposed SRM-based inverse problem is capable of re-
constructing the time-spatial periodically varying heat flux from the observed temperatures
of a mold.

Case 2: a heat flux function with a step change or a sharp corner was considered,
which is generally difficult to recover through inverse analysis. To assess the most stringent
test conditions, we considered the heat flux involving a triangular variation in both time
and space. That is,

gexa(Γ2, t∗) = A0 f1(y∗) f2(t∗), (26)

With f1(y∗) =


y∗−l1

l0
, l1 ≤ y∗ < l2

1− y∗−l2
l0

, l2 ≤ y∗ ≤ l3
0, others.

, and f2(t∗) =


t∗−τ1

τ1
, τ1 ≤ t∗ < τ2

1− t∗−τ2
τ1

, τ2 ≤ t∗ ≤ τ3

0, others.

.

Where A0 is 1 × 106 W·m−2, l0, l1, l2, and l3 is 0.007, 0.003, 0.010, and 0.017 m, τ1, τ2, and τ3
is 5, 10, and 15 s, respectively.

Figure 2e–h show the exact Case 2 value and the predicted values obtained with the
SRM-based inverse problem with zeroth-, first-, and second-order spatial regularization,
respectively. Compared with the Case 2 exact value (Figure 2e), the relative error (epred) was
found to be 6.42% (Figure 2f), 6.40% (Figure 2g), and 6.47% (Figure 2h) or zeroth-, first-, and
second-order spatial regularization, respectively. It is implied that the present SRM-based
inverse problem can reconstruct the boundary heat flux involved in a triangular variation
in both time and space.
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Case 3: a heat flux featuring only a triangular variation in time was considered.

gexa(Γ2, t∗) =


A0

(
1− y∗

H

)
t∗
τ1

, τ1 ≤ t∗ < τ2

A0

(
1− y∗

H

)
τ4−t∗

τ1
, τ2 ≤ t∗ < τ3

0, others.

(27)

where A0 is 1 × 106 W·m−2, H is 0.021 m, τ1, τ2, τ3, and τ4 is 5, 10, 15, and 20 s, respectively.
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Figure 2. Case 1: (a) the exact heat flux; the predicted by inverse problem with (b) zeroth-, (c) first-,
and (d) second-order spatial regularization; Case 2: (e) the exact heat flux; the predicted by inverse
problem with (f) zeroth-, (g) first-, and (h) second- order spatial regularization; Case 3: (i) the exact
heat flux; the predicted by inverse problem with (j) zeroth-, (k) first-, and (l) second-order spatial
regularization.

Figure 2i–l show the exact Case 3 value and the predicted values obtained with the
SRM-based inverse problem with zeroth-, first-, and second-order spatial regularization,
respectively. Compared with the Case 3 exact value (Figure 2i), the relative error (epred)
was found to be 3.84% (Figure 2j), 3.88% (Figure 2k), and 3.83% (Figure 2l) for zeroth-,
first-, and second-order spatial regularization, respectively. It is demonstrated that the
SRM-based inverse problem can accurately reconstruct the boundary heat flux featuring
only a triangular variation in time.

Overall, the results demonstrate that the proposed SRM-based inverse problem is
capable of accurately reconstructing time-spatial periodically varying heat fluxes, heat
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fluxes with a triangulation variation in both temporal and spatial domains, and heat fluxes
with only a triangular variation in time from the measured temperatures.

4. Results and Discussion

The SRM-based inverse problem involves the choice of many parameters, i.e., the
number of future time steps (r), the regularization parameter (α), the order of spatial
regularization (d), the number of discrete grids, and time step size. The performances of
those SRM parameters are investigated in this section in order to provide recommendations
and guidance for the selection of those parameters. For this purpose, 2376 different tests
were carried out using a trial-and-error approach in which each parameter was varied as
listed in Table 3, while the other parameters were held constant. All the computations are
carried out by a computer with an Intel(R) Core (TM) i7-9700K CPU @ 3.60 GHz and 32 GB
RAM memory. Subsequently, the influence of these SRM parameters on the accuracy of the
inverse problem was analyzed.

Table 3. Parameters variation in the inverse problem for the test case.

Parameter Variations

Case of heat flux to be predicted Case 1 (Equation (25)), Case 2 (Equation (26)), and Case 3 (Equation (27))
Number of future time steps (r) 1, 2, 4, 6, 8, 10
Regularization parameter (α) 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 5×10−4, 10−3, 5×10−3, 10−2, 5×10−2, 1×10−1

Order of spatial regularization (d) Zeroth, first, and second
Number of discrete grids (nx × ny) 9 × 22 (msh1), 17 × 43 (msh2), and 25 × 64 (msh3)
Time step size (dt) 0.1 (1/fs), 0.05 (1/2fs) and 0.02 (1/5fs) seconds

The sampling frequency of temperature fs is 10 Hz

Figure 3 shows the accuracy of the inverse problem, as characterized by the relative
error (epred), for the estimation of Cases 1, 2, and 3 heat flux. The time step was 0.05 (1/2fs)
seconds, and the discrete grids were 17 × 43 for the calculations. The results indicate that
the number of future time steps (r), the regularization parameter (α), and the order of spatial
regularization (d) all influence epred. Generally, any values of r and α that produce a relative
error of less than 10.0% could be demonstrated as a feasible solution for selecting r and
α [57]. The absence of spatial regularization (α is 0) leads to epred above 10.0%. The optimal
range for r is 1 to 4, while the optimal range for α is 10−7 to 10−4, which is consistent with
previous studies [11,38].

4.1. Effect of Number of Future Time Steps

We illustrated two strict test conditions, Case 1 and Case 2, to evaluate the impacts of
the number of future time steps on the accuracy of inverse analysis. Case 1 involved a heat
flux with a periodic variation in time-spatial (Equation (25)), while Case 2 had a heat flux
with a triangular variation in time-spatial (Equation (26)).

Figure 4 shows the changes in reconstructed heat fluxes at a specific location (y is
10.5 mm) and time (10 s) via 2DIHCP calculations with varying numbers of future time
steps (r). The 2DIHCP calculations used zeroth-order spatial regularization (α is 1 × 10−6),
a time step of 0.05 (1/2f s) seconds, and 17 × 43 discrete grids. For Case 1, the predicted
heat fluxes were in agreement with the exact one. However, a phase shift phenomenon is
observed where the peak of predicted heat flux rose earlier than that of the exact one and
then decreased before it. This phenomenon is attributed to the sequential regularization
method, which utilizes future time data to stabilize the solution [11]. The phase difference
between the reconstructed results and the exact is 0.2, 0.2, 0.2, 0.4, 0.7, and 1.2 s, which
corresponds to the heat flux predicted by inverse analysis with the number of future time
steps (r) is 1, 2, 4, 6, 8, and 10, respectively. The phase difference between the reconstructed
results and the exact one increases with the number of future time steps (r).
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Figure 3. Effects of the number of future time steps (r) and the regularization parameter (α) on the
relative error (epred) of the reconstructed heat fluxes. (a–c) are the relative errors for Case 1 heat
flux; (d–f) are that for Case 2 heat flux; (g–i) are that for Case 3 heat flux. F denotes the location of
minimum epred.

The deviation between the reconstructed heat fluxes and the exact value at the begin-
ning of time can be attributed to the inaccuracy of the initial guess of heat flux (q* is 0) at
time 0 [11]. At the end of time, the deviation between the reconstructed results and the exact
one was due to the use of the sequential regularization method, which uses the measured
temperature of future time steps to improve the stability of the solution, resulting in the
heat flux at the end of time not being updated. Additionally, as demonstrated in Figure 4b,
the reconstructed heat fluxes may deviate from the exact value at the locations of B (y* is 0)
and A (y* is 21 mm). This discrepancy could be explained by the fact that the discontinuity
and non-differentiability of the heat flux at points B and A make the inverse calculation of
the sequential regularization method difficult. However, this potential shortcoming can be
circumvented by utilizing an earlier initial time and a larger computational domain than
that originally required [27,53,62].
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Figure 4. Comparison of the heat fluxes reconstructed using different numbers of future time steps 
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Figure 4. Comparison of the heat fluxes reconstructed using different numbers of future time steps (r).
(a) Case 1 heat flux at y = 10.5 mm; (b) Case 1 heat flux when time is 10 s; (c) Case 2 heat flux at
y = 10.5 mm; (d) Case 2 heat flux when time is 10 s.

For Case 2, as demonstrated in Figure 4c,d, the reconstructed heat fluxes match the
exact one for r is 1, 2, and 4 but exhibit significant deviation for r is 6, 8, and 10. The
deviation between the reconstructed results and the exact one increases with increasing r.
The phase difference between the calculated Case 2 heat flux and the exact is also observed.
The phase difference is 0.2, 0.2, 0.3, 0.5, 0.7, and 0.9 s that is corresponding to r is 1, 2, 4, 6, 8,
and 10, respectively. Additionally, the reconstructed heat fluxes may also be inaccurate at
the beginning and end of time. In addition, there is a lack of agreement between the exact
heat flux and the recovered one at the locations of y* is 3, 10, and 17 mm, where the exact
heat flux has sharp spatial changes (Figure 4d). This could be attributed to the fact that
a sharply changing heat flux is not differentiable, and the spatial regularization term in
the inverse problem (Equation (5)) penalizes sharp changes in the reconstructed heat flux
in space.

In summary, the phase shift phenomenon is observed, where the predicted peak of
heat flux rises earlier than the exact one and then decreases before it. The phase difference
increases with the number of future time steps. The reconstructed heat fluxes can deviate
from the exact value at the beginning and the end of the time. Additionally, the recon-
structed heat flux may not be in suitable agreement with the exact one when the exact heat
flux has sharp spatial changes.

4.2. Effect of Regularization Parameter

We illustrated two strict test conditions, Case 1 and Case 2, to evaluate the effect of the
regularization parameter (α) on the accuracy of inverse analysis. Figure 5 shows the changes
of heat fluxes at the location with y is 10.5 mm and at the time of 10 s reconstructed via
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2DIHCP calculations with varying the regularization parameter. The 2DIHCP calculations
utilized a single future time step, zeroth-order spatial regularization, a time step of 0.05
(1/2f s) seconds, and 17 × 43 discrete grids.
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Figure 5. Comparison of the heat fluxes reconstructed using different regularization parameters (α). 
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Figure 5. Comparison of the heat fluxes reconstructed using different regularization parameters (α).
(a) Case 1 heat flux at y = 10.5 mm; (b) Case 1 heat flux when time is 10 s; (c) Case 2 heat flux at
y = 10.5 mm; (d) Case 2 heat flux when time is 10 s.

The predicted Case 1 heat fluxes match the exact one for α values ranging from 10−7

to 10−4 (Figure 5a,b). For α values less than 10−7, the heat flux behavior becomes unstable
and oscillatory. Conversely, for larger values of α (>10−4), the heat flux remains smooth
with only slight changes and is thus fixed to the initial guess values (q* is 0). This result
is consistent with previous research by Vogel [64] and Hansen [65]. Similarly, Figure 5c,d
demonstrate that the predicted Case 2 heat fluxes are generally consistent with the exact one
when α is in the range of 10−7 to 10−4. However, the predicted heat fluxes may differ from
the exact value when the exact heat flux presents sudden spatial changes at the locations of
y* is 3, 10, and 17 mm (Figure 5d). This discrepancy may also be attributed to the fact that
heat flux containing sharp variations is not differentiable, and the spatial regularization
limits the sharp changes of the reconstructed heat flux. In summary, a small value of the
regularization parameter (α) leads to oscillatory behavior and instability of the heat flux.
On the other hand, a large value of α results in the heat flux remaining very smooth and
only changes a little and thus will be fixed to the initial guess values.

4.3. Effect of Spatial Regularization Method (d) and Discrete Grids (nx × ny)

The effects of the spatial regularization method (d) and discrete grids (nx × ny) on the
accuracy of inverse analysis are also investigated by the discussion of Case 1 and Case 2.
Figure 6 shows the relative error (epred) of the estimated heat fluxes in Case 1 and Case 2
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using 2DIHCP with different order of spatial regularization (d) and the number of discrete
grids, while the time step is 0.05 (1/2f s) seconds. It is general that any values of r and α in
the region yielding epred less than 10.0% can be considered a feasible solution for selecting r
and α [56]. The optimal number of future time steps (r) is found to be between 1 and 4, and
the optimal range of α is 10−7 to 10−4, which is consistent with the findings in Figure 3.
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Figure 6. Effects of the number of future time steps (r) and the regularization parameter (α) on the
relative error (epred). (a–c) Case 1 reconstructed using 9× 22 discrete grids, (d–f) Case 1 reconstructed
using 25 × 64 discrete grids, (g–i) Case 2 reconstructed using 9 × 22 discrete grids, and (j–l) Case 2
reconstructed using 25 × 64 discrete grids. F denotes the location of minimum epred.

Figure 7 shows the minimum epred and the required computing time (CPU time) of
heat fluxes reconstructed by the inverse analysis with different SRM parameters. At the
same time, the optimal r and α of those heat flux estimations corresponded to the location
of minimum epred (marked with a star F) in Figure 6. When a 9 × 22 discrete grid is used,
the minimum epred of the predicted Case 1 heat flux is 6.49%, 5.40%, and 5.52% for zeroth-,
first-, and second-order order spatial regularization, respectively. The corresponding values
for the predicted Case 2 heat flux are 7.13%, 7.05%, and 7.13%. By using a finer mesh grid of
25 × 64 discrete grids, the minimum epred of the predicted Case 1 heat flux is 5.05%, 5.39%,
and 5.88% for zeroth-, first-, and second-order spatial regularization, respectively. The
corresponding values for the predicted Case 2 heat flux are 6.31%, 6.30%, and 6.36%. It is
noteworthy that zeroth- and first-order spatial regularizations provide more accurate results
than second-order spatial regularization, and the accuracy of zeroth-order regularization is
comparable to that of first-order regularization.
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Figure 7. Effect of the grid points (nx × ny) on the minimum epred and CPU time. (a) Case 1; (b) Case 
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Reconstructing heat flux with sharp changes is more challenging than that with smooth
changes due to the lack of differentiability, as demonstrated in Case 2. As shown in Figure 7,
using 9 × 22 discrete grids, the minimum epred of the predicted Case 2 heat flux is 7.13%,
7.05%, and 7.13% for zeroth-, first-, and second-order spatial regularization, respectively.
The corresponding values for a finer grid of 25 × 64 are 6.31%, 6.30%, and 6.36%. It
is demonstrated that first-order spatial regularization yields a higher accuracy for the
reconstruction of the heat flux containing sharp spatial variations when compared to both
zeroth- and second-order spatial regularizations.

Using a finer grid generally leads to more accurate results, except for Case 1 with
second-order spatial regularization. For example, with first-order spatial regularization, the
minimum epred of the predicted Case 2 heat flux is 7.05%, 6.40%, and 6.30% for the discrete
grids of 9 × 22, 17 × 43, and 25 × 64, respectively. However, a finer grid can bring about
two contradictory outcomes: for one thing, it can minimize the truncation errors of FDM
solving PDE, thereby enhancing the accuracy of the inverse problem; for another thing, it
can lead to the accumulation of FDM truncation errors and rounding errors as well as an
increase in the freedom degree of the objective function, thus reducing the accuracy of the
inverse problem [11,35]. In this study, the former effect of increasing accuracy might be
more pronounced than that of the latter effect, thus leading to an improvement in accuracy
as the grid was refined for the majority of tests.

Using a coarser grid reduces the CPU time required for inverse analysis. For example,
with first-order spatial regularization, the CPU time of the predicted Case 2 heat flux is
0.43, 1.71, and 4.97 s for the discrete grids of 9 × 22, 17 × 43, and 25 × 64, respectively. The
effect of the order of spatial regularization on CPU time is not significant. For example,
with 17 × 43 discrete grids, the CPU time of the predicted Case 2 heat flux is 1.71, 1.71, and
1.70 s for zeroth-, first-, and second-order spatial regularization, respectively. Similarly, for
predicted Case 1 heat flux with 25 × 64 discrete grids, the CPU time is 6.18, 6.15, and 6.17 s
for zeroth-, first-, and second-order spatial regularization, respectively.

Figure 8 shows the changes of heat fluxes at the location with y is 10.5 mm and at
the time of 10 s reconstructed via 2DIHCP calculations using different orders of spatial
regularization (d) and discrete grids. The time step for the calculations was 0.05 (1/2f s)
seconds, and the optimal r and α of those heat flux estimations corresponded to the location
of minimum epred (F) in Figure 6.

For Case 1, the results in Figure 8a indicate that if the initial guess heat flux is far
from the correct value, the reconstructed heat flux can deviate from the exact value at the
beginning and end of the time, which the findings are similar to the results from Figure 4.
Figure 8b shows that the reconstructed Case 1 heat fluxes can deviate from the exact value
at locations of B (y* = 0) and A (y* = 21 mm). This might be attributed to the discontinuity
of the heat flux at the C-B-A-D boundary and the lack of differentiability of the heat flux
at B and A, which makes the inverse analysis difficult. For Case 2, Figure 8c shows the
predicted heat fluxes roughly match the exact one, except at the time of 10.5 s when the
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exact heat flux exhibits a sharp spatial change. This suggests that the temporal accuracy
of the reconstructed heat fluxes is satisfactory. On the other hand, the reconstructed heat
fluxes can deviate from the exact value when the exact heat flux exhibits a sharp spatial
change at locations of y* are 3, 10, and 17 mm in Figure 8d. This indicates that the spatial
accuracy of the inversion results is inadequate due to the non-differentiability of the sharply
changing heat flux, which limits the sharp spatial change in the reconstructed heat flux.
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Figure 8. Comparison of the heat fluxes reconstructed with different order of spatial regularization 

(d) and the grid pints (nx × ny). (a) Case 1 heat flux at y = 10.5 mm; (b) Case 1 heat flux when time is 

10 s; (c) Case 2 heat flux at y = 10.5 mm; (d) Case 2 heat flux when time is 10 s. 
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Figure 8. Comparison of the heat fluxes reconstructed with different order of spatial regularization (d)
and the grid pints (nx × ny). (a) Case 1 heat flux at y = 10.5 mm; (b) Case 1 heat flux when time is
10 s; (c) Case 2 heat flux at y = 10.5 mm; (d) Case 2 heat flux when time is 10 s.

In summary, zeroth- and first-order spatial regularizations have higher accuracy than
second-order spatial regularization, and the accuracy of zeroth order is comparable to that
of first-order. Reconstructing sharply changing heat flux is more challenging than smoothly
changing heat flux, and first-order spatial regularization yields higher accuracy for heat
fluxes with sharp spatial variations. Using a coarser grid reduces the CPU time for inverse
analysis compared to using a finer grid. The effect of the order of spatial regularization on
CPU time is not significant.

4.4. Effect of Time Step Size (dt)

The effect of the time step size (dt) was also investigated by the discussion of two strict
test conditions, Case 1 and Case 2. Figure 9 illustrates the accuracy of the inverse problem,
as characterized by the relative error (epred), for the estimation of heat fluxes using 2DIHCP
with 17 × 43 discrete grids and different the time step size (0.1 (1/fs), 0.05 (1/2fs) and 0.02
(1/5fs) seconds). The minimum epred and the CPU time of heat fluxes reconstructed are
listed in Figure 10.
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Figure 9. Effects of time steps on the relative error (epred) of the predicted heat fluxes. (a–c) Case 1
heat flux reconstructed with time steps 0.1 s (1/fs); (d–f) Case 1 heat flux reconstructed with time
steps 0.02 s (1/5fs); (g–i) Case 2 heat flux reconstructed with time steps 0.1 s (1/fs); (j–l) Case 2 heat
flux reconstructed with time steps 0.02 s (1/5fs). F denotes the location of minimum epred.
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Figure 10. Effect of the time step on the minimum epred and CPU time. (a) Case 1; (b) Case 2. 
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Figure 10. Effect of the time step on the minimum epred and CPU time. (a) Case 1; (b) Case 2.

The minimum epred initially decreases and then increases as the time step size decreases.
For example, the minimum epred of Case 2 heat flux with zeroth-order spatial regularization
is 7.96%, 6.42% 7.87% for time step sizes of 1/fs, 1/2fs, and 1/5fs, respectively. The
utilization of small-time step size (dt) can bring about two contradictory outcomes: on the
one hand, it can minimize the truncation errors of FDM solving PDEs, thereby enhancing
the accuracy of the inverse problem; on the other hand, it can lead to the accumulation
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of FDM rounding errors and truncation errors, thus reducing the accuracy of the inverse
problem. As a consequence, those two combined effects make the time step size of 1/2fs
provide more accurate results than those calculations with the time step sizes of 1/fs and
1/5fs.

The CPU time required for inverse analysis increases with the decrease in time step
size (dt). Using a smaller time step size also means that more temperature data points are
collected, which can increase the computational cost and processing time. For example,
with 17 × 43 discrete grids and first-order spatial regularization, the CPU time of the
predicted Case 2 heat flux is 1.66, 1.71, and 4.35 s for the time step size of 1/fs, 1/2fs,
and 1/5fs, respectively; the corresponding values for the predicted Case 1 heat flux with
first-order spatial regularization are 2.03, 2.13, and 3.62 s.

Figure 11 shows the changes of heat fluxes at the location with y is 10.5 mm and at the
time of 10 s reconstructed by inverse analysis using varied time step sizes. In contrast, the
optimal r and α of those heat flux estimations corresponded to the location of minimum
epred (F) in Figure 9. For Case 1, as shown in Figure 11a, the reconstructed heat fluxes
can deviate from the exact at the beginning and the end of the time. Figure 11b shows the
reconstructed heat fluxes can deviate from the exact at the locations of B (y* is 0) and A
(y* is 21 mm). For Case 2 (Figure 11c,d), the recovered heat fluxes can deviate from the
exact when the exact heat flux exhibited a sharp spatial change at a time of 10.5 s, and the
locations of y* are 3, 10, and 17 mm. This could also be attributed to the fact that the heat
flux containing sharp variation is not differentiable, and the spatial regularization limits
the sharp change in reconstructed heat flux. These findings are consistent with the results
presented in Figures 4, 5, and 8.

0 5 10 15 20

-1

0

1
Case 1

 Exact 
 0th spatial reg., Δt=0.1s
 1st spatial reg., Δt=0.1s
 2nd spatial reg., Δt=0.1s
 0th spatial reg., Δt=0.05s
 1st spatial reg., Δt=0.05s
 2nd spatial reg., Δt=0.05s
 0th spatial reg., Δt=0.02s
 1st spatial reg., Δt=0.02s
 2nd spatial reg., Δt=0.02s

 

(a)y*= 10.5 mm

Ca
se

 1
 h

ea
t f

lu
x/

(M
W

 m
-2

)

Time/s

A

0 5 10 15 20 25

-1

0

1
t*= 10 s

 Exact 
 0th spatial reg., Δt=0.1s
 1st spatial reg., Δt=0.1s
 2nd spatial reg., Δt=0.1s
 0th spatial reg., Δt=0.05s
 1st spatial reg., Δt=0.05s
 2nd spatial reg., Δt=0.05s
 0th spatial reg., Δt=0.02s
 1st spatial reg., Δt=0.02s
 2nd spatial reg., Δt=0.02s

 

(b)

Ca
se

 1
 h

ea
t f

lu
x/

(M
W

 m
-2

)

y*/mm

y*

D

C

A

BCo
m

pu
ta

tio
na

l a
re

a
B

Case 1

 

0 5 10 15 20

0.0

0.5

1.0

 Exact 
 0th spatial reg., Δt=0.1s
 1st spatial reg., Δt=0.1s
 2nd spatial reg., Δt=0.1s
 0th spatial reg., Δt=0.05s
 1st spatial reg., Δt=0.05s
 2nd spatial reg., Δt=0.05s
 0th spatial reg., Δt=0.02s
 1st spatial reg., Δt=0.02s
 2nd spatial reg., Δt=0.02s

 

(c)y*= 10.5 mm

Ca
se

 2
 h

ea
t f

lu
x/

(M
W

 m
-2

)

Time/s

Case 2

0 5 10 15 20 25

0.0

0.5

1.0
t*= 10 s Exact 

 0th spatial reg., Δt=0.1s
 1st spatial reg., Δt=0.1s
 2nd spatial reg., Δt=0.1s
 0th spatial reg., Δt=0.05s
 1st spatial reg., Δt=0.05s
 2nd spatial reg., Δt=0.05s
 0th spatial reg., Δt=0.02s
 1st spatial reg., Δt=0.02s
 2nd spatial reg., Δt=0.02s

 

(d)

Ca
se

 2
 h

ea
t f

lu
x/

(M
W

 m
-2

)

y*/mm

y*

D

C

A

BCo
m

pu
ta

tio
na

l a
re

a

AB

Case 2

 

Figure 11. Comparison of the heat fluxes reconstructed with different 
time steps (0.1 (1/fs), 0.05 (1/2fs) 626 and 0.02 (1/5fs) seconds). (a) Case 1 
heat flux at y=10.5 mm; (b) Case 1 heat flux when time is 10 627 seconds; 
(c) Case 2 heat flux at y=10.5 mm; (d) Case 2 heat flux when time is 10 
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Figure 11. Comparison of the heat fluxes reconstructed with different time steps (0.1 (1/fs), 0.05
(1/2fs) and 0.02 (1/5fs) seconds). (a) Case 1 heat flux at y = 10.5 mm; (b) Case 1 heat flux when time is
10 s; (c) Case 2 heat flux at y = 10.5 mm; (d) Case 2 heat flux when time is 10 s.
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In brief, the accuracy of the inverse analysis first improves and then worsens as the
time step size decreases. The time step size of 1/2fs provided a more accurate result than
those of time step sizes of 1/fs and 1/5fs. However, decreasing the time step size increased
the CPU time required for the inverse analysis. The proposed SRM-based IHCP offers
several advantages: (1) high time resolution (due to the introduction of Beck’s future
time step, as illustrated in Figure 7); (2) high spatial resolution and could deal with the
discontinuity function form of the unknown heat flux, which is achieved through the
incorporation of the spatial regularization term (observed in Figures 4, 5, 8, and 11); and (3)
fast due the nature of the sequential method: updating the heat flux using Equation (17)
only once might be sufficient in most cases to achieve accurate results. Nevertheless, a
significant limitation emerges in the form of a small-time step utilization. When employing
a small-time step in the analysis (as depicted in Figure 10), the sensitivity coefficient J
diminishes, resulting in an ill-posed scenario with Equation (17).

5. Conclusions

The study is to reconstruct the profile of an unknown continuous casting mold heat
flux using measured temperature data. To address this problem, the study formulated a
two-dimensional transient inverse heat-conduction problem (2DIHCP). Then, the study
employed the sequential regularization method (SRM) with zeroth-, first-, and second-order
spatial regularization to solve the 2DIHCP. The accuracy of the 2DIHCP was investigated
under two strict test conditions, including Case 1, with time-spatially periodic heat flux,
and Case 2, featuring a sharply changing heat flux. The effects of the number of future time
steps, regularization parameters, order of regularization, discrete grids, and time step size
on the accuracy of the 2DIHCP were analyzed. The following conclusions can be drawn:

1. Increasing the number of future time steps results in a more pronounced phase
shift between the peak of the predicted heat flux and the exact heat flux, where the
predicted peak of heat flux rises earlier than the exact one and then decreases before it;

2. Zeroth- and first-order spatial regularization provides higher accuracy than second-
order spatial regularization, and zeroth-order regularization has comparable accuracy
to first-order regularization;

3. Reconstructing a sharply changing heat flux is more challenging than reconstructing
a smoothly changing heat flux. First-order spatial regularization provides better
accuracy for reconstructing heat flux with sharp spatial variations than both zeroth-
and second-order spatial regularization;

4. Using a coarser grid reduces the CPU time required for inverse analysis. The impact
of the order of spatial regularization on CPU time is not significant;

5. Decreasing the time step size initially increases the accuracy of inverse analysis,
but after a certain point, the accuracy starts decreasing, and the CPU time required
increases. The time step size of 1/2fs is recommended, where fs is the sampling rate
of temperature.
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Nomenclature

c heat capacity (J/kg·K)
d order of spatial regularization, i.e., zeroth, first, and second
dt time step size (dt = tj+1−tj)
dT a scalar about temperature (-)
epred the relative error
f (t) temperature boundary condition (-)
fs the sampling frequency of temperature (Hz)
gexa a pre-set heat flux
H height (-)
hd dth-order derivative operator
hd,i dth-order derivative operator with dimension ni

J j
m,n element in the m-th row and n-th column of a matrix sensitivity matrix at

time ti
Ji sensitivity matrix at time ti (-)
L width (m)
M the total number of measurements
nj number of heat flux components at the boundary Γj, j = 1,2,3
nx × ny number of discrete grids
N N = n1 + n2 + n3
n the outer normal of boundary
qj

n the n-th component of heat flux qj at the time tj (-)
qj

i heat flux of Γi at time tj (-)
qj vector of heat flux at time tj (-)
q* an assumed heat flux (-)
r the number of future time steps (-)
Rc(qj), Rd(qj), spatial regularization term (-)
s objective function (-)
t time (-)
tj the j-th time step
Tini initial temperature (-)
T j

m the m-th component of Tj (-)
Tj vector of estimated temperature at time tj (-)
W width (-)
x, y Cartesian spatial coordinates (-)
→
x tangential direction of boundary
Yexa the true temperature
Ymax maximum measured temperature (K)
Y j

m the m-th component of Yj (-)
Y vector of the measured temperature (-)
GREEK SYMBOLS
α, α’, α* regularization parameters
Γ1, Γ2, Γ3, Γ4 boundary of the calculated domain Ω
δ(.) Dirac delta function
∆ Laplace operator
ε1, ε2 tolerance
λ thermal conductivity (W/m·K)
ρ density (kg·m−3)
Ω calculated domain
SUBSCRIPTS
ini initial value
j time at tj
m number of thermocouples
ref reference value
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SUPERSCRIPTS
j time at tj
k iteration number
T transpose
* the dimensional, initial, or optimal variable
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