Aluminum Alloys and Aluminum-Based Matrix Composites
1. Introduction and Scope
2. Contributions
2.1. Hot Deformation Behavior
2.2. Performance Prediction Modeling
2.3. Composition Designation
2.4. Quenching Sensitivity
2.5. Structure Designation
2.6. External Field-Assisted Manufacturing
3. Conclusions and Outlook
Conflicts of Interest
List of Contributions
- Feng, D.; Xu, R.; Li, J.; Huang, W.; Wang, J.; Liu, Y.; Zhao, L.; Li, C.; Zhang, H. Microstructure Evolution Behavior of Spray-Deposited 7055 Aluminum Alloy during Hot Deformation. Metals 2022, 12, 1982; https://doi.org/10.3390/met12111982.
- Tao, Y.; Wang, Y.; He, Q.; Xu, D.; Li, L. Comparative Study and Multi-Objective Crashworthiness Optimization Design of Foam and Honeycomb-Filled Novel Aluminum Thin-Walled Tubes. Metals 2022, 12, 2163; https://doi.org/10.3390/met12122163.
- Zhou, P.; Wang, D.; Nagaumi, H.; Wang, R.; Zhang, X.; Li, X.; Zhang, H.; Zhang, B. Microstructural Evolution and Mechanical Properties of Al-Si-Mg-Cu Cast Alloys with Different Cu Contents. Metals 2023, 13, 98; https://doi.org/10.3390/met13010098.
- Chen, G.; Zhao, C.; Shi, H.; Zhu, Q.; Shen, G.; Liu, Z.; Wang, C.; Chen, D. Research on the 2A11 Aluminum Alloy Sheet Cyclic Tension&Compression Test and Its Application in a Mixed Hardening Model. Metals 2023, 13, 229; https://doi.org/10.3390/met13020229.
- Tang, J.; Liu, S.; Zhao, D.; Tang, L.; Zou, W.; Zheng, B. An Algorithm for Real-Time Aluminum Profile Surface Defects Detection Based on Lightweight Network Structure. Metals 2023, 13, 507; https://doi.org/10.3390/met13030507.
- Xia, J.; Liu, R.; Zhao, J.; Guan, Y.; Dou, S. Study on Friction Characteristics of AA7075 Aluminum Alloy under Pulse Current-Assisted Hot Stamping. Metals 2023, 13, 972; https://doi.org/10.3390/met13050972.
- Teng, H.; Xia, Y.; Pan, C.; Li, Y. Modified Voce-Type Constitutive Model on Solid Solution State 7050 Aluminum Alloy during Warm Compression Process. Metals 2023, 13, 989; https://doi.org/10.3390/met13050989.
- Kang, J.; Cui, Y.; Zhong, D.; Qiu, G.; Lv, X. A New Method for Preparing Titanium Aluminium Alloy Powder. Metals 2023, 13, 1436; https://doi.org/10.3390/met13081436.
- Zhang, L.; Li, J.; Zhang, J.; Liu, Y.; Lin, L. First-Principle Investigation into Mechanical Properties of Al6Mg1Zr1 under Uniaxial Tension Strain on the Basis of Density Functional Theory. Metals 2023, 13, 1569; https://doi.org/10.3390/met13091569.
- Cao, P.; Xie, G.; Li, C.; Zhu, D.; Feng, D.; Xiao, B.; Zhao, C. Investigation of the Quenching Sensitivity of the Mechanical and Corrosion Properties of 7475 Aluminum Alloy. Metals 2023, 13, 1656; https://doi.org/10.3390/met13101656.
References
- Feng, D.; Li, X.D.; Zhang, X.M.; Liu, S.D.; Wang, J.T.; Liu, Y. The novel heat treatments of aluminium alloy characterized by multistage and non-isothermal routes: A review. J. Cent. South Univ. 2023, 30, 2833–2866. [Google Scholar] [CrossRef]
- Abolfazl, A.; Ali, K.T.; Kourosh, K.T. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective. J. Alloys Compd. 2019, 781, 945–983. [Google Scholar]
- Zhao, X.M.; Meng, J.R.; Zhang, C.; Wei, W.; Wu, F.F.; Zhang, G.G. A novel method for improving the microstructure and the properties of Al-Si-Cu alloys prepared using rapid solidification/powder metallurgy. Mater. Today Commun. 2023, 35, 105802. [Google Scholar] [CrossRef]
- Beder, M.; Alemeag, Y. Influence of Mg addition and T6 heat treatment on microstructure, mechanical and tribological properties of Al−12Si−3Cu based alloy. Trans. Nonferrous Met. Soc. China 2021, 31, 2208–2219. [Google Scholar] [CrossRef]
- Beroual, S.; Boumerzoug, Z.; Paillard, P.; Yann, B.P. Effects of heat treatment and addition of small amounts of Cu and Mg on the microstructure and mechanical properties of Al-Si-Cu and Al-Si-Mg cast alloys. J. Alloys Compd. 2019, 784, 1026–1035. [Google Scholar] [CrossRef]
- Ye, J.; Pan, Q.L.; Liu, B.; Hu, Q.; Qu, L.F.; Wang, W.Y.; Wang, X.D. Influences of small addition of Sc and Zr on grain structure and quenching sensitivity of Al-Zn-Mg-Cu alloys. Mater. Today Commun. 2023, 35, 1–9. [Google Scholar] [CrossRef]
- Fang, Z.Y.; Krishanu, R.; Lim, J.B.P. Structural Design for Roll-Formed Aluminium Alloy Perforated Channels Subjected to Interior-Two-Flange Web Crippling: Experimental Tests, Numerical Simulation, and Neural Network. Int. J. Steel Struct. 2023, 23, 692–708. [Google Scholar] [CrossRef]
- Kverneland, A.; Hansena, V.; Thorkildsen, G.; Larsen, H.B.; Pattison, P.; Li, X.Z.; Gjønnes, J. Transformations and structures in the Al–Zn–Mg alloy system: A diffraction study using synchrotron radiation and electron precession. Mater. Sci. Eng. A 2011, 528, 880–887. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, D.; Zang, Q.; Liu, Y.; Lee, Y. Aluminum Alloys and Aluminum-Based Matrix Composites. Metals 2023, 13, 1870. https://doi.org/10.3390/met13111870
Feng D, Zang Q, Liu Y, Lee Y. Aluminum Alloys and Aluminum-Based Matrix Composites. Metals. 2023; 13(11):1870. https://doi.org/10.3390/met13111870
Chicago/Turabian StyleFeng, Di, Qianhao Zang, Ying Liu, and Yunsoo Lee. 2023. "Aluminum Alloys and Aluminum-Based Matrix Composites" Metals 13, no. 11: 1870. https://doi.org/10.3390/met13111870
APA StyleFeng, D., Zang, Q., Liu, Y., & Lee, Y. (2023). Aluminum Alloys and Aluminum-Based Matrix Composites. Metals, 13(11), 1870. https://doi.org/10.3390/met13111870