Investigation of Long-Term Corrosion of CoCrMoW Alloys under Simulated Physiological Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrochemical Measurements
2.2. Surface Characterization and Electrolyte Analysis
3. Results and Discussions
3.1. Electrochemical Evaluation of CoCrMoW Alloys
3.1.1. OCP Evolution
3.1.2. Anodic Polarization
3.2. Electrochemical Impedance Spectroscopy
3.3. X-ray Photoelectron Spectroscopy Investigations
3.4. Microstructure and Surface Morphology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dobri, G.; Banu, A.; Donath, C.; Marcu, M. The Influence of the Tantalum Content on the Main Properties of the TixTa9Nb8Zr2Ag Alloy. Metals 2023, 13, 1294. [Google Scholar] [CrossRef]
- Wanga, Q.; Eltit, F.; Fenge, R.; Garbuz, D.; Duncan, C.; Masri, B.A.; Greidanus, N.; Coxc, M.E.; Wanga, R. Nature of fretting corrosion products in CoCrMo hip implants from in vivo study to in vitro simulation. Materialia 2022, 22, 101433. [Google Scholar] [CrossRef]
- Acharya, S.; Soni, R.; Suwas, S.; Chatterjee, K. Additive manufacturing of Co–Cr alloys for biomedical applications: A concise review. J. Mater. Res. 2021, 36, 3746–3760. [Google Scholar] [CrossRef]
- Mazumder, S.; Man, K.; Radhakrishnan, M.; Pantawane, M.V.; Palaniappan, S.; Patil, S.M.; Yang, Y.; Dahotre, N.B. Microstructure enhanced biocompatibility in laser additively manufactured CoCrMo biomedical alloy. Biomater Adv. 2023, 150, 213415. [Google Scholar] [CrossRef] [PubMed]
- Mace, A.; Khullar, P.; Bouknight, C.; Gilbert, J.L. Corrosion properties of low carbon CoCrMo and additively manufactured CoCr alloys for dental applications. Dent. Mater. 2022, 38, 1184–1193. [Google Scholar] [CrossRef]
- Yan, Y.; Neville, A.; Dowson, D.; Williams, S. Tribocorrosion in implants—Assessing high carbon and low carbon Co–Cr–Mo alloys by in situ electrochemical measurements. Tribol. Int. 2006, 39, 1509. [Google Scholar] [CrossRef]
- España, F.A.; Balla, V.K.; Bose, S.; Bandyopadhyay, A. Design and fabrication of CoCrMo alloy based novel structures for load bearing implants using laser engineered net shaping. Mater. Sci. Eng. C 2010, 30, 50–57. [Google Scholar] [CrossRef]
- Yamanaka, K.; Mori, M.; Kuramoto, K.; Chiba, A. Development of new Co-Cr-E based biomedical alloys: Effects of micro alloying and thermo mechanical processing on microstructures and mechanical properties. Mater. Des. 2014, 55, 987–998. [Google Scholar] [CrossRef]
- Igual, M.A.; Mischler, S. Interactive Effects of Albumin and Phosphate Ions on the Corrosion of CoCrMo Implant Alloy. J. Electrochem. Soc. 2007, 154, C562–C570. [Google Scholar] [CrossRef]
- Vidal, V.C.; Igual, M.A. Effect of physico-chemical properties of simulated body fluids on the electrochemical behaviour of CoCrMo alloy. Electrochim. Acta 2011, 56, 8239–8248. [Google Scholar] [CrossRef]
- Banu, A.; Marcu, M.; Juganaru, C.; Osiceanu, P.; Anastasescu, M.; Capra, L. Corrosion behavior of CoCrMoW cast alloy in lactic environment. Arab. J. Chem. 2019, 12, 2007–2016. [Google Scholar] [CrossRef]
- Metikos-Hukovic’, M.; Pilic´, Z.; Babic´, R.; Omanovic, D. Influence of alloying elements on the corrosion stability of CoCrMo implant alloy in Hank’s solution. Acta Biomater. 2006, 2, 93–700. [Google Scholar] [CrossRef] [PubMed]
- Milosev, I.; Strehblow, H.-H. The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution. Electrochim. Acta 2003, 48, 2767–2774. [Google Scholar] [CrossRef]
- Garcia-Falcon, C.M.; Gil-Lopez, T.; Verdu-Vazquez, A.; Mirza-Rosca, J. Electrochemical characterization of some cobalt base alloys in Ringer solution. Mater. Chem. Phys. 2021, 260, 124164. [Google Scholar] [CrossRef]
- Wang, R.; Qin, G.; Zhang, E. Hot deformation characteristics and dynamic recrystallization of biomedical CoCrWCu alloy. Mater. Today Commun. 2022, 33, 104930. [Google Scholar] [CrossRef]
- Tian, W.-P.; Yang, H.-W.; Zhang, S.-D. Synergistic Effect of Mo, W, Mn and Cr on the Passivation Behavior of a Fe-Based Amorphous Alloy Coating. Acta Metall. Sin. (Engl. Lett.) 2018, 31, 308–320. [Google Scholar] [CrossRef]
- Cwalina, K.L.; Demarest, C.R.; Gerard, A.Y.; Scully, J.R. Revisiting the effects of molybdenum and tungsten alloying on corrosion behavior of nickel-chromium alloys in aqueous corrosion. Curr. Opin. Solid State Mater. Sci. 2019, 23, 129–141. [Google Scholar] [CrossRef]
- Gurel, S.; Nazarahari, A.; Canadinc, D.; Gerstein, G.; Maier, H.J.; Cabuk, H.; Bukulmez, T.; Cananoglu, M.; Yagci, M.B.; Toker, S.M.; et al. From corrosion behavior to radiation response: A comprehensive biocompatibility assessment of a CoCrMo medium entropy alloy for utility in orthopedic and dental implants. Intermetallics 2022, 149, 107680. [Google Scholar] [CrossRef]
- Vidal, V.C.; Igual, M.A. Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids. Corros. Sci. 2008, 50, 1954–1961. [Google Scholar] [CrossRef]
- Milosev, I. The effect of biomolecules on the behaviour of CoCrMo alloy in various simulated physiological solutions. Electrochim. Acta 2012, 78, 259–273. [Google Scholar] [CrossRef]
- Hodgson, A.W.E.; Kurz, S.; Virtanen, S.; Fervel, V.; Olsson, C.-O.A.; Mischler, S. Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochim. Acta 2004, 49, 2167–2178. [Google Scholar] [CrossRef]
- Hanawa, T.; Hiromoto, S.; Asami, K. Characterization on of the surface oxide film of a Co-Cr-Mo alloy after being located in quasi-biological environments using XPS. Appl. Surf. Sci. 2001, 183, 68–75. [Google Scholar] [CrossRef]
- Ouerd, A.; Alemany-Dumont, C.; Normand, B.; Szunerits, S. Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface. Electrochim. Acta 2008, 53, 4461–4469. [Google Scholar] [CrossRef]
- Girao, D.d.C.; Beres, M.; Jardini, A.L.; Filho, R.M.; Silva, C.C.; Siero, A.; Gomes de Abreu, H.F.; Araujo, W.S. An assessment of biomedical CoCrMo alloy fabricated by direct metal laser sintering technique for implant applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 107, 110305. [Google Scholar] [CrossRef]
- Tsustumi, Y.; Doi, H.; Nomura, N.; Ashida, M.; Chen, P.; Kawasaki, A.; Hanawa, T. Surface Composition and Corrosion Resistance of Co-Cr Alloys Containing High Chromium. Mater. Trans. 2016, 57, 2033–2040. [Google Scholar] [CrossRef]
- ISO 10271; Dentistry-Corrosion Test Methods for Metallic Materials. ISO: Geneva, Switzerland, 2011.
- Okazaki, Y.; Gotoh, E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 2005, 26, 11–21. [Google Scholar] [CrossRef]
- Jakovljevic, S.; Alar, V.; Ivankovic, A. Electrochemical Behaviour of PACVD TiN-Coated CoCrMo Medical Alloy. Metals 2017, 7, 231. [Google Scholar] [CrossRef]
- Marin, E.; Lanzutti, A.; Rondinella, A.; Sordetti, F.; Magnan, M.; Honma, T.; Yoshida, Y.; Zhu, W.; Pezzotti, G.; Fedrizzi, L. Multi-spectroscopic analysis of high temperature oxides formed on cobalt-chrome-molybdenum alloys. J. Mater.Res. Technol. 2022, 20, 3061–3073. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, Y.; Zhang, L.; Tang, Y.; Qi, C.; Shen, Q.; Ma, Y.; Wang, B. The effect of alloy elements on corrosion and oxidative resistance of W-based alloy films. Surf. Coat. Technol. 2022, 434, 128165. [Google Scholar] [CrossRef]
- Marcu, M.; Preda, L.; Vizireanu, S.; Bita, B.; Mihai, M.A.; Spataru, T.; Acsente, T.; Dinescu, G.; Spataru, N. Enhancement of the capacitive features of WO3 supported on pristine and functionalized graphite by appropriate adjustment of the electrodeposition regime. Mater. Sci. Eng. B 2022, 277, 115585. [Google Scholar] [CrossRef]
- Vasilopoulou, M.; Soultati, A.; Georgiadou, D.G.; Stergiopoulos, T.; Palilis, L.C.; Kennou, S.; Stathopoulos, N.A.; Davazoglou, D.; Argitis, P. Hydrogenated understoichiometric tungsten oxide anode interlayers for efficient and stable organic photovoltaics. J. Mater. Chem. A 2014, 2, 1738. [Google Scholar] [CrossRef]
- Alexander, M.R.; Thompson, G.E.; Zhou, X.; Beamson, G.; Fairley, N. Quantification of oxide film thickness at the surface of aluminium using XPS. Surf. Interface Anal. 2002, 34, 485–489. [Google Scholar] [CrossRef]
- Leban, M.B.; Kurnik, M.; Kopač, I.; Klug, M.J.; Podgornik, B.; Kosec, T. Differences between 3-D printed and traditionally milled CoCr dental alloy from casted block in oral environment. Electrochim. Acta 2023, 445, 142066. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Lekatou, A.G.; Sfikas, A.K.; Roumpi, M.; Tsouli, S.; Galiatsatos, A.; Agathopoulos, S. Influence of Heat-Treatment Cycles on the Microstructure, Mechanical Properties, and Corrosion Resistance of Co-Cr Dental Alloys Fabricated by Selective Laser Melting. J. Mate. Eng. Perform. 2021, 30, 5252–5265. [Google Scholar] [CrossRef]
- Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1979. [Google Scholar]
- Lekatou, A.G.; Emmanouilidou, S.; Dimitriadis, K.; Baikousi, M.; Karakassides, M.A.; Agathopoulos, S. Simulating porcelain firing effect on the structure, corrosion and mechanical properties of Co–Cr–Mo dental alloy fabricated by soft milling. Odontology 2023, 1–18. [Google Scholar] [CrossRef] [PubMed]
Sample | % Co | % Cr | % Mo | % W |
---|---|---|---|---|
Co21Cr8Mo7W | 64 | 21 | 8 | 7 |
Co29Cr7W | 64 | 29 | - | 7 |
Sample | Metal Element | Quantity of Ions Released | |
---|---|---|---|
(mg L−1) | (µg cm−2) | ||
Co21Cr8Mo7W | Co | 0.679 ± 0.2 | 7.1 ± 2 |
Cr | < 0.02 ± 0.01 | 0.15 ± 0.1 | |
Mo | 0.021 ± 0.01 | 0.22 ± 0.1 | |
W | undetectable | ||
Co29Cr7W | Co | 0.335 ± 0.1 | 3.33 ± 1.1 |
Cr | 7.40 ± 0.7 | 73.7 ± 1.5 | |
W | undetectable |
Sample | icor. (µA cm−2) | Ecor vs. Ag/AgCl (mV) | Corrosion Rate (µm y−1) | |||
---|---|---|---|---|---|---|
168 h | 1000 h | 168 h | 1000 h | 168 h | 1000 h | |
Co21Cr8Mo7W | 0.038 ± 0.02 | 0.049 ± 0.02 | −61 ± 5 | −59 ± 5 | 1.09 ± 0.5 | 2.81 ± 0.6 |
Co29Cr7W | 0.427 ± 0.12 | 0.180 ± 0.15 | −104 ± 10 | −114 ± 10 | 12.24 ± 0.7 | 6.57 ± 0.7 |
Sample | Rs (Ω cm2) | CPEout × 10−5 (Sn Ω−1 cm−2) | n | Rout (Ω cm2) | CPEin × 10−5 (Sn Ω−1 cm−2) | n | Rin × 106 (Ω cm2) |
---|---|---|---|---|---|---|---|
Co21Cr8Mo7W | 15.78 ± 0.8 | 5.63 ± 0.24 | 0.80 ± 0.02 | 6461 ± 70 | 3.85 ± 0.35 | 0.81 ± 0.02 | 8.6 ± 0.8 |
Co29Cr7W | 17.01 ± 0.7 | 3.63 ± 0.25 | 0.86 ± 0.01 | 7540 ± 60 | 4.36 ± 0.33 | 0.84 ± 0.01 | 2.3 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preda, L.; Leau, S.A.; Donath, C.; Neacsu, E.I.; Maxim, M.E.; Sătulu, V.; Paraschiv, A.; Marcu, M. Investigation of Long-Term Corrosion of CoCrMoW Alloys under Simulated Physiological Conditions. Metals 2023, 13, 1881. https://doi.org/10.3390/met13111881
Preda L, Leau SA, Donath C, Neacsu EI, Maxim ME, Sătulu V, Paraschiv A, Marcu M. Investigation of Long-Term Corrosion of CoCrMoW Alloys under Simulated Physiological Conditions. Metals. 2023; 13(11):1881. https://doi.org/10.3390/met13111881
Chicago/Turabian StylePreda, Loredana, Sorina Alexandra Leau, Cristina Donath, Elena Ionela Neacsu, Monica Elisabeta Maxim, Veronica Sătulu, Alexandru Paraschiv, and Maria Marcu. 2023. "Investigation of Long-Term Corrosion of CoCrMoW Alloys under Simulated Physiological Conditions" Metals 13, no. 11: 1881. https://doi.org/10.3390/met13111881
APA StylePreda, L., Leau, S. A., Donath, C., Neacsu, E. I., Maxim, M. E., Sătulu, V., Paraschiv, A., & Marcu, M. (2023). Investigation of Long-Term Corrosion of CoCrMoW Alloys under Simulated Physiological Conditions. Metals, 13(11), 1881. https://doi.org/10.3390/met13111881