Strain Rate Dependence of Twinning Behavior in AZ31 Mg Alloys
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
- (a)
- The yield strength of AZ31 plates, when compressed along the transverse direction (TD) and normal direction (ND) at a strain rate of 0.00005 s−1, is comparable to that obtained at a strain rate of 0.05 s−1. However, an increase in yield strength is observed at a strain rate of 2500 s−1 due to the activation of the basal slip.
- (b)
- The twinning process is strongly related to strain rate. Increasing the strain rate would promote twin nucleation, leading to a high twin boundary density for TD compression. At a lower strain rate, twin nucleation is limited; the external strain would be accommodated by twin growth, resulting in a higher area fraction of the twinned region.
- (c)
- The formation of the yield plateau observed during TD compression is attributed to the twinning process. At a higher strain rate, a high number of twins are nucleated and a stress release of a large amount is expected, which would contribute to the formation of a yield plateau.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, C.; Xin, Y.; Chen, X.B.; Xu, D.; Chu, P.K.; Liu, C.; Guan, B.; Huang, X.; Liu, Q. Evading strength-corrosion tradeoff in Mg alloys via dense ultrafine twins. Nat. Commun. 2021, 12, 4616. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Nie, J.F.; Xu, S.W.; Hj Davies, C.; Birbilis, N. Super-formable pure magnesium at room temperature. Nat. Commun. 2017, 8, 972. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Tang, A.; Liu, T.; Peng, P.; Zhang, J.; She, J.; Pan, F. Ductility enhancement by activating non-basal slip in as-extruded Mg alloys with dilute Sc addition. J. Mater. Res. Technol. 2023, 22, 3362–3374. [Google Scholar] [CrossRef]
- Li, C.; Yan, H.; Chen, R. Microstructure and Texture Evolution of Mg-14Gd-0.5Zr Alloy during Rolling and Annealing under Different Temperatures. Acta Metall. Sin. 2022, 36, 61–76. [Google Scholar] [CrossRef]
- Sunder Sharma, S.; Yadav, S.; Joshi, A.; Goyal, A.; Khatri, R. Application of metallic foam in vehicle structure: A review. Mater. Today Proc. 2022, 63, 347–353. [Google Scholar] [CrossRef]
- Hong Hue, D.T.; Tran, V.K.; Nguyen, V.L.; Van Lich, L.; Dinh, V.H.; Nguyen, T.G. High strain-rate effect on microstructure evolution and plasticity of aluminum 5052 alloy nano-multilayer: A molecular dynamics study. Vacuum 2022, 201, 111104. [Google Scholar] [CrossRef]
- Finfrock, C.B.; Bhattacharya, D.; McBride, B.N.L.; Ballard, T.J.; Clarke, A.J.; Clarke, K.D. Decoupling the Impacts of Strain Rate and Temperature on TRIP in a Q&P Steel. JOM 2022, 74, 506–512. [Google Scholar]
- Smerd, R.; Winkler, S.; Salisbury, C.; Worswick, M.; Lloyd, D.; Finn, M. High strain rate tensile testing of automotive aluminum alloy sheet. Int. J. Impact Eng. 2005, 32, 541–560. [Google Scholar] [CrossRef]
- Kurukuri, S.; Worswick, M.J.; Bardelcik, A.; Mishra, R.K.; Carter, J.T. Constitutive Behavior of Commercial Grade ZEK100 Magnesium Alloy Sheet over a Wide Range of Strain Rates. Metall. Mater. Trans. A 2014, 45, 3321–3337. [Google Scholar] [CrossRef]
- Du, Z.; Cui, X.; Yang, H.; Xia, W. Deformation and fracture behavior of 5052 aluminum alloy by electromagnetic-driven stamping. Int. J. Adv. Manuf. Technol. 2022, 123, 3955–3968. [Google Scholar] [CrossRef]
- Afrasiab, M.; Hojjat, Y.; Faraji, G.; Moslemi Naeini, H. Formability enhancement of ultrafine-grained pure copper sheets produced by accumulative roll bonding aided by electromagnetic forming. Int. J. Adv. Manuf. Technol. 2022, 120, 7445–7459. [Google Scholar] [CrossRef]
- Shabanpour, M.; Arezoudar, A.F. Effect of layer lay-up on formability of Al–Cu two-layer sheet in electromagnetic forming. Int. J. Adv. Manuf. Technol. 2021, 112, 2773–2788. [Google Scholar] [CrossRef]
- Wang, H.; Wu, P.; Kurukuri, S.; Worswick, M.J.; Peng, Y.; Tang, D.; Li, D. Strain rate sensitivities of deformation mechanisms in magnesium alloys. Int. J. Plast. 2018, 107, 207–222. [Google Scholar] [CrossRef]
- Wang, M.; Xu, X.Y.; Wang, H.Y.; He, L.H.; Huang, M.X. Evolution of dislocation and twin densities in a Mg alloy at quasi-static and high strain rates. Acta Mater. 2020, 201, 102–113. [Google Scholar] [CrossRef]
- Della Ventura, N.M.; Schweizer, P.; Sharma, A.; Jain, M.; Edwards, T.E.J.; Schwiedrzik, J.J.; Peruzzi, C.; Logé, R.E.; Michler, J.; Maeder, X. Micromechanical response of pure magnesium at different strain rate and temperature conditions: Twin to slip and slip to twin transitions. Acta Mater. 2023, 243, 118528. [Google Scholar] [CrossRef]
- Yu, J.; Song, B.; Xia, D.; Zeng, X.; Huang, Y.; Hort, N.; Mao, P.; Liu, Z. Dynamic tensile properties and microstructural evolution of extruded EW75 magnesium alloy at high strain rates. J. Magnes. Alloys 2020, 8, 849–859. [Google Scholar] [CrossRef]
- Lin, X.Z.; Chen, D.L. Strain Hardening and Strain-Rate Sensitivity of an Extruded Magnesium Al. J. Mater. Eng. Perform. 2008, 17, 894–901. [Google Scholar] [CrossRef]
- Karimi, E.; Zarei-Hanzaki, A.; Pishbin, M.H.; Abedi, H.R.; Changizian, P. Instantaneous strain rate sensitivity of wrought AZ31 magnesium Al. Mater. Des. 2013, 49, 173–180. [Google Scholar] [CrossRef]
- Tucker, M.; Horstemeyer, M.; Gullett, P.; Elkadiri, H.; Whittington, W. Anisotropic effects on the strain rate dependence of a wrought magnesium Al. Scr. Mater. 2009, 60, 182–185. [Google Scholar] [CrossRef]
- Wu, P.D.; Guo, X.Q.; Qiao, H.; Lloyd, D.J. A constitutive model of twin nucleation, propagation and growth in magnesium crystals. Mater. Sci. Eng. A 2015, 625, 140–145. [Google Scholar] [CrossRef]
- Wang, H.; Wu, P.D.; Wang, J.; Tomé, C.N. A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms. Int. J. Plast. 2013, 49, 36–52. [Google Scholar] [CrossRef]
- Beyerlein, I.J.; Capolungo, L.; Marshall, P.E.; McCabe, R.J.; Tomé, C.N. Statistical analyses of deformation twinning in magnesium. Philos. Mag. 2010, 90, 2161–2190. [Google Scholar] [CrossRef]
- Xu, J.; Guan, B.; Xin, Y.; Huang, G.; Wu, P.; Liu, Q. Revealing the role of pyramidal <c+a> slip in the high ductility of Mg-Li Al. J. Magnes. Alloys 2021, in press. [Google Scholar]
- Shen, J.; Kondoh, K.; Jones, T.L.; Mathaudhu, S.N.; Kecskes, L.J.; Wei, Q. Effect of strain rate on the mechanical properties of magnesium alloy AMX602. Mater. Sci. Eng. A 2016, 649, 338–348. [Google Scholar] [CrossRef]
- Meng, Y.; Yu, J.; Zhang, G.; Wu, Y.; Zhang, Z.; Shi, Z. Effect of circumferential strain rate on dynamic recrystallization and texture of Mg-13Gd-4Y-2Zn-0.5Zr alloy during rotary backward extrusion. J. Magnes. Alloys 2020, 8, 1228–1237. [Google Scholar] [CrossRef]
- Zhao, L.; Guan, B.; Xin, Y.; Huang, X.; Liu, C.; Wu, P.; Liu, Q. A quantitative study on mechanical behavior of Mg alloys with bimodal texture components. Acta Mater. 2021, 214, 117013. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Xie, J.; Liu, S.; Fu, W.; Wu, R. Developing a Mg alloy with ultrahigh room temperature ductility via grain boundary segregation and activation of non-basal slips. Int. J. Plast. 2023, 162, 103548. [Google Scholar] [CrossRef]
- Guan, B.; Xin, Y.; Huang, X.; Liu, C.; Wu, P.; Liu, Q. The mechanism for an orientation dependence of grain boundary strengthening in pure titanium. Int. J. Plast. 2022, 153, 103276. [Google Scholar] [CrossRef]
- Wen, Y.; Guan, B.; Xin, Y.; Liu, C.; Wu, P.; Huang, G.; Liu, Q. Solute atom mediated Hall-Petch relations for magnesium binary alloys. Scr. Mater. 2022, 210, 114451. [Google Scholar] [CrossRef]
- Xu, J.; Guan, B.; Xin, Y.; Wei, X.; Huang, G.; Liu, C.; Liu, Q. A weak texture dependence of Hall–Petch relation in a rare-earth containing magnesium Al. J. Mater. Sci. Technol. 2022, 99, 251–259. [Google Scholar] [CrossRef]
- Zhou, B.; Li, Y.; Wang, L.; Jia, H.; Zeng, X. The role of grain boundary plane in slip transfer during deformation of magnesium alloys. Acta Mater. 2022, 227, 117662. [Google Scholar] [CrossRef]
- Li, T.; Zheng, J.; Xia, L.; Shou, H.; Zhang, Y.; Shi, R.; He, L.; Li, W. Tailoring Texture to Highly Strengthen AZ31 Alloy Plate in the Thickness Direction via Pre-tension and Rolling–Annealing. Acta Metall. Sin. 2022, 36, 266–280. [Google Scholar] [CrossRef]
- Yu, H.; Li, C.; Xin, Y.; Chapuis, A.; Huang, X.; Liu, Q. The mechanism for the high dependence of the Hall-Petch slope for twinning/slip on texture in Mg alloys. Acta Mater. 2017, 128, 313–326. [Google Scholar] [CrossRef]
- Barnett, M.R.; Nave, M.D.; Ghaderi, A. Yield point elongation due to twinning in a magnesium Al. Acta Mater. 2012, 60, 1433–1443. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, T.; Tang, A.; Huang, Y.; Peng, P.; Zhang, J.; Hort, N.; Willumeit-Römer, R.; Pan, F. Designing Mg alloys with high strength and ductility by reducing the strength difference between the basal and non-basal slips. Mater. Des. 2023, 225, 111476. [Google Scholar] [CrossRef]
Loading direction | 2500 s−1 | 0.05 s−1 | 0.00005 s−1 |
ND compression | 1.2% | 0.5% | 0.2% |
TD compression | 48.2% | 61.1% | 80.1% |
Loading direction | 2500 s−1 | 0.05 s−1 | 0.00005 s−1 |
TD compression | 25 | 47 | 136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Guan, B.; Zhao, X.; Fu, R.; Hu, Q.; Liu, C. Strain Rate Dependence of Twinning Behavior in AZ31 Mg Alloys. Metals 2023, 13, 1882. https://doi.org/10.3390/met13111882
Xu J, Guan B, Zhao X, Fu R, Hu Q, Liu C. Strain Rate Dependence of Twinning Behavior in AZ31 Mg Alloys. Metals. 2023; 13(11):1882. https://doi.org/10.3390/met13111882
Chicago/Turabian StyleXu, Jing, Bo Guan, Xiaojun Zhao, Rui Fu, Qiang Hu, and Chaoqiang Liu. 2023. "Strain Rate Dependence of Twinning Behavior in AZ31 Mg Alloys" Metals 13, no. 11: 1882. https://doi.org/10.3390/met13111882
APA StyleXu, J., Guan, B., Zhao, X., Fu, R., Hu, Q., & Liu, C. (2023). Strain Rate Dependence of Twinning Behavior in AZ31 Mg Alloys. Metals, 13(11), 1882. https://doi.org/10.3390/met13111882