Corrosion Resistance of Fe-Cr-Al Intermetallic Coatings Obtained by Aluminizing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials under Study
2.2. Applied Research Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.L.; Li, D.Y.; Dong, X.Q. Microstructural study of Fe–Cr–Al/Al composite coatings during oxidation and sulfidation at 900 °C. Acta Metall. Sin. (Engl. Lett.) 2007, 20, 87–94. [Google Scholar] [CrossRef]
- Engkvist, J.; Canovic, S.; Hellström, K.; Järdnäs, A.; Svensson, J.E.; Johansson, L.G.; Olsson, M.; Halvarsson, M. Alumina scale formation on a powder metallurgical FeCrAl alloy (Kanthal APMT) at 900–1,100 C in dry O2 and in O2 + H2O. Oxid. Met. 2010, 73, 233–253. [Google Scholar] [CrossRef]
- Eklund, J.; Paz, M.D.; Jönsson, B.; Liske, J.; Svensson, J.E.; Jonsson, T. Field exposure of FeCrAl model alloys in a waste-fired boiler at 600 °C: The influence of Cr and Si on the corrosion behavior. Mater. Corros. 2019, 70, 1476–1485. [Google Scholar] [CrossRef]
- Lai, G.Y. High-Temperature Corrosion and Materials Applications; ASM International: Phoenix, AZ, USA, 2007. [Google Scholar]
- Field, K.G.; Snead, M.A.; Yamamoto, Y.; Terrani, K.A. Handbook on the Material Properties of FeCrAl Alloys for Nuclear Power Production Applications (FY Version: Revision 1); Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2017. [Google Scholar]
- GOST 12766.2–90; Calibrated Precision Alloys with High Electrical Resistance. Izd. Standartov: Moscow, Russia, 1990.
- Nurmi, E.; Wang, G.; Kokko, K.; Vitos, L. Assessing the elastic properties and ductility of Fe–Cr–Al alloys from ab initio calculations. Philos. Mag. 2016, 96, 122–133. [Google Scholar] [CrossRef]
- Pugacheva, N.B.; Zamaraev, L.M.; Igumnov, A.S. Studying the structure and properties of the material of the nodes a honeycomb structure after diffusion aluminizing. Diagn. Resour. Mech. Mater. Struct. 2016, 4, 71–88. [Google Scholar] [CrossRef]
- Huilgol, P.; Udupa, K.R.; Bhat, K.U. Formation of microstructural features in hot-dip aluminized AISI 321 stainless steel. Int. J. Miner. Metall. Mater. 2018, 25, 190–198. [Google Scholar] [CrossRef]
- Smorgun, V.G.; Slautin, O.V.; Kulevich, V.P. Features of diffusion interaction in steel-aluminum composite after explosive welding and aluminizing by melt immersion. Metallurgist 2019, 63, 766–774. [Google Scholar] [CrossRef]
- Zhou, Z.; Xie, F.; Hu, J. A novel powder aluminizing technology assisted by direct current field at low temperatures. Surf. Coat. Technol. 2008, 203, 23–27. [Google Scholar] [CrossRef]
- Zaikov, Y.P.; Kovrov, V.A.; Brodova, I.; Shtefanyuk, Y.; Pingin, V.; Vinogradov, D. Electrolytic aluminizing of low carbon steel in NaF–KF–AlF3 melt. Adv. Mater. Res. 2015, 1088, 250–254. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, J.; Zhao, P.; Dou, B. Formation and phase transformation of aluminide coating prepared by low–temperature aluminizing process. Surf. Coat. Technol. 2017, 330, 234–240. [Google Scholar] [CrossRef]
- Zhang, Y.; Pint, B.A.; Cooley, K.M.; Haynes, J.A. Formation of aluminide coatings on Fe based alloys by chemical vapor deposition. Surf. Coat. Technol. 2008, 202, 3839–3849. [Google Scholar] [CrossRef]
- Tarasov, B.A.; Savelyev, M.D.; Shornikov, D.P. Corrosion resistance of Fe–Cr–Al–Si alloys with low chromium content. KnE Mater. Sci. 2018, 4, 480–490. [Google Scholar] [CrossRef]
- Deodeshmukh, V.P.; Matthews, S.J.; Klarstrom, D.L. High-temperature oxidation performance of a new alumina forming Ni–Fe–Cr–Al alloy in flowing air. Int. J. Hydrogen Energy 2011, 36, 4580–4587. [Google Scholar] [CrossRef]
- Yoneda, S.S.; Hayashi Ukai, S. The transition from transient oxide to protective Al2O3 scale on Fe–Cr–Al alloys during heating to 1000 °C. Oxid. Met. 2018, 89, 81–97. [Google Scholar] [CrossRef]
- Yoneda, S.; Hayashi, S.; Saeki, I.; Ukai, S. The effect of Cr on the lifetime of Al rich amorphous oxide layer formed on Fe–Cr–Al alloys at 650 °C. Oxid. Met. 2017, 88, 669–686. [Google Scholar] [CrossRef]
- Airiskallio, E.; Nurmi, E.; Heinonen, M.H.; Väyrynen, I.J.; Kokko, K.; Ropo, M.; Punkkinen, M.P.J.; Pitkanen, H.; Alatalo, M.; Kollar, J.; et al. High temperature oxidation of Fe–Al and Fe–Cr–Al alloys: The role of Cr as a chemically active element. Corros. Sci. 2010, 52, 3394–3404. [Google Scholar] [CrossRef]
- Bülbül, Ş.; Sun, Y. Corrosion behavior of high Cr–Ni cast steels in the HCl solution. J. Alloys Compd. 2010, 498, 143–147. [Google Scholar] [CrossRef]
- Kurc, A.M.; Kciuk Basiaga, M. Influence of cold rolling on the corrosion resistance of austenitic steel. J. Achiev. Mater. Manuf. Eng. 2010, 38, 154–162. [Google Scholar]
- Gurevich, L.M.; Pronichev, D.V.; Pisarev, S.P.; Serov, A.G.; Artem’ev, N.A.; Krivchenko, N.V. Study of the Corrosion Resistance of an Intermetallic Coating on a Steel Substrate. Izv. VolgGTU 2017, 10, 21–26. [Google Scholar]
- Pronichev, D.V.; Slautin, O.V.; Kulevich, V.P.; Grintsov, V.D.; Kanubrikov, N.N. Study of the corrosion resistance of bimetal transition elements of the system AD1 + St3. Izv. VolgGTU 2020, 31, 36–40. [Google Scholar]
- Sedriks, A.J. Corrosion of Stainless Steels. In Encyclopedia of Materials: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Gurevich, L.M.; Pronichev, D.V.; Kulevich, V.P.; Slautin, O.V.; Naumenko, V.A.; Kharlamov, V.O. Investigation of Aluminized Intermetallic Coatings on Fe–Cr–Al System Alloy Corrosion Resistance. Metallurgist 2023, 67, 70–78. [Google Scholar] [CrossRef]
- Rybalka, K.V.; Beketaeva, L.A.; Davydov, A.D. Estimation of corrosion current by the analysis of polarization curves: Electrochemical kinetics mode. Russ. J. Electrochem. 2014, 50, 108–113. [Google Scholar] [CrossRef]
Alloy | Si | Mn | Cr | C | S | Ni | Ti | P | Cu | Mg | Zn | Al | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr15Al5 | ≤0.50 | ≤0.50 | 19.0–21.0 | ≤0.05 | ≤0.015 | - | - | - | - | - | - | 4.5–5.5 | Res. |
12CrNi10Ti | ≤0.8 | ≤2.0 | 17.0–19.0 | ≤0.12 | ≤0.02 | 9.0–11.0 | 0.4–1.0 | ≤0.40 | - | - | - | Res. | |
AD1 | 0.3 | 0.025 | 0.15 | 0.05 | 0.05 | 0.1 | Res. | 0.3 |
No. (Areas */ Spots **) | Phase Composition | Chemical Composition, At.% (Measurement Error, %) | |||||||
---|---|---|---|---|---|---|---|---|---|
Al | Cr | Fe | Mg | O | Ti | Mn | Ni | ||
1 * | FeAl(Cr) | 28.54 (8.23) | 9.02 (4.30) | 62.44 (6.22) | – | – | – | – | – |
2 * | Al2O3 + MgO + FeAl(Cr) | 42.89 (8.31) | 0.81 (3.53) | 6.05 (3.75) | 9.43 (7.11) | 40.82 (8.31) | – | – | – |
3 ** | FeAl(Cr) + TiC | 45.51 (2.25) | 5.55 (3.88) | 13.48 (3.22) | – | – | 35.46 (3.36) | – | – |
4 ** | FeAl(Cr, Ni) | 26.19 (8.32) | 11.6 (3.98) | 56.02 (2.21) | – | – | – | 1.61 (3.49) | 4.59 (8.95) |
Element | Chemical Composition, At.% (Measurement Error, %) | |||
---|---|---|---|---|
Point Number (Figure 5) | ||||
1 | 2 | 3 | 4 | |
Al | 18.31 (8.70) | 3.31 (3.00) | 17.65 (3.89) | 16.86 (3.14) |
Cr | 11.36 (4.02) | 17.03 (3.84) | 19.79 (5.95) | 18.03 (5.82) |
Fe | 70.34 (2.06) | 79.66 (2.31) | 44.5 (4.53) | 50.35 (3.92) |
O | - | - | 18.06 (3.92) | 12.72 (4.42) |
Element | Area 1, Figure 7a Fe3Al(Cr) | Area 2, Figure 7a FeCr + Al2O3 | Point 1, Figure 7b Fe3Al(Cr,Ni) |
---|---|---|---|
Content of the Element, At.% (Measurement Error, %) | |||
Al | 11 (9.67) | 9.51 (3.01) | 13.43 (9.17) |
Cr | 21.02 (3.21) | 18.11 (3.46) | 19.22 (3.24) |
Fe | 61.65 (2.36) | 50.26 (2.56) | 59.23 (2.28) |
Ni | 4.86 (9.06) | - | 4.95 (8.02) |
Mn | - | - | 1.94 (3.41) |
O | - | 15 (4.31) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurevich, L.M.; Pronichev, D.V.; Slautin, O.V.; Tikhaeva, V.V. Corrosion Resistance of Fe-Cr-Al Intermetallic Coatings Obtained by Aluminizing. Metals 2023, 13, 1883. https://doi.org/10.3390/met13111883
Gurevich LM, Pronichev DV, Slautin OV, Tikhaeva VV. Corrosion Resistance of Fe-Cr-Al Intermetallic Coatings Obtained by Aluminizing. Metals. 2023; 13(11):1883. https://doi.org/10.3390/met13111883
Chicago/Turabian StyleGurevich, Leonid M., Dmitriy V. Pronichev, Oleg V. Slautin, and Viktoriya V. Tikhaeva. 2023. "Corrosion Resistance of Fe-Cr-Al Intermetallic Coatings Obtained by Aluminizing" Metals 13, no. 11: 1883. https://doi.org/10.3390/met13111883
APA StyleGurevich, L. M., Pronichev, D. V., Slautin, O. V., & Tikhaeva, V. V. (2023). Corrosion Resistance of Fe-Cr-Al Intermetallic Coatings Obtained by Aluminizing. Metals, 13(11), 1883. https://doi.org/10.3390/met13111883