High-Temperature Mechanical Behavior of Cobalt-Free FeMnCrNi(Al) High-Entropy Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Initial Microstructures
3.2. Tensile Properties
3.3. Fracture Characteristics
4. Discussion
5. Conclusions
- (1)
- The serration features, ranging from type-A, A + B, B, to C, are observed in the recrystallization alloy doped with Al between 473 K and 873 K. However, the Fe45Mn15Cr15Ni25 alloy only exhibits type-A serrations at 673 K. This suggests that the presence of Al intensifies solute–dislocation interactions and enhances the strain-hardening ability of the alloy. The appearance of type-B serrations delays the reduction in plasticity in the R1473 alloy.
- (2)
- Intergranular fracture and oxidation can cause medium-temperature embrittlement of the recrystallized alloy at 873 K. This indicates that the hot working temperature of the studied alloy should be below 873 K.
- (3)
- The aged Fe35Mn15Cr15Ni25Al10 alloy maintains excellent mechanical properties at 673 K, with a yield strength of 735 MPa, ultimate tensile strength of 1030 MPa, and elongation of 11%. However, the force at the two-phase interface decreases, causing the softening temperature of the alloy to advance to 773 K. The high-temperature (>673 K) stability of high-strength alloys containing semi-coherent precipitated particles is unsatisfactory.
- (4)
- The variation in yield strength with temperature can be described by the solid solution strengthening model proposed by Varvenne et al. The prediction accuracy of the single-phase alloy is higher than that of dual-phase alloys. The temperature sensitivity of grain boundary strengthening and precipitation strengthening is minimal, but the interface force is significantly affected by temperature. This method can be used to predict the mechanical properties of alloys at different temperatures and provide processing parameters.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.W.; Chen, S.K.; Lin, S.J.; Gan, J.Y.; Chin, T.S.; Shun, T.T.; Tsau, C.H.; Chang, S.Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, S.; Ritchie, R.O.; Meyers, M.A. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. 2019, 102, 296–345. [Google Scholar] [CrossRef]
- George, E.P.; Curtin, W.A.; Tasan, C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020, 188, 435–474. [Google Scholar] [CrossRef]
- Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E.H.; George, E.P.; Ritchie, R.O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158. [Google Scholar] [CrossRef]
- Sun, S.J.; Tian, Y.Z.; An, X.H.; Lin, H.R.; Wang, J.W.; Zhang, Z.F. Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure. Mater. Today Nano 2018, 4, 46–53. [Google Scholar] [CrossRef]
- Han, Z.; Ren, W.; Yang, J.; Du, Y.; Wei, R.; Zhang, C.; Chen, Y.; Zhang, G. The deformation behavior and strain rate sensitivity of ultra-fine grained CoNiFeCrMn high-entropy alloys at temperatures ranging from 77 K to 573 K. J. Alloys Compd. 2019, 791, 962–970. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, W.; Yan, P.; Li, S.; Dai, Z.; Jiao, L.; Qiu, T.; Wang, X. High temperature tensile properties of as-cast and forged CrMnFeCoNi high entropy alloy. Mater. Sci. Eng. A 2022, 850, 143570. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, S.; Lin, Z.; Yue, X.; Gao, Y.; Zhang, S.; Yang, H. Investigation on the mechanism of micro-milling CoCrFeNiAlX high entropy alloys with end milling cutters. Vacuum 2023, 211, 111939. [Google Scholar] [CrossRef]
- Lai, L.; Gan, M.; Wang, J.; Chen, L.; Liang, X.; Feng, J.; Chong, X. New class of high-entropy rare-earth niobates with high thermal expansion and oxygen insulation. J. Am. Ceram. Soc. 2023, 106, 4343–4357. [Google Scholar] [CrossRef]
- Liu, D.; Hou, J.; Jin, X.; Wang, X.; Yang, H.; Qiao, J. The cobalt-free Fe35Mn15Cr15Ni25Al10 high-entropy alloy with multiscale particles for excellent strength-ductility synergy. Intermetallics 2023, 163, 108064. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Yang, T.; Zhu, J.H.; Chen, D.; Yang, Y.; Hu, A.; Liu, C.T.; Kai, J.J. Development of high-strength Co-free high-entropy alloys hardened by nanosized precipitates. Scr. Mater. 2018, 148, 51–55. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Shaysultanov, D.G.; Chernichenko, R.S.; Tikhonovsky, M.A.; Zherebtsov, S.V. Effect of Al on structure and mechanical properties of Fe-Mn-Cr-Ni-Al non-equiatomic high entropy alloys with high Fe content. J. Alloys Compd. 2019, 770, 194–203. [Google Scholar] [CrossRef]
- Li, J.; Gao, B.; Tang, S.; Liu, B.; Liu, Y.; Wang, Y.; Wang, J. High temperature deformation behavior of carbon-containing FeCoCrNiMn high entropy alloy. J. Alloys Compd. 2018, 747, 571–579. [Google Scholar] [CrossRef]
- Niu, B.; Wang, Z.; Wang, Q.; Ge, S.; Dong, C.; Zhang, R.; Liu, H.; Liaw, P.K. Effect of Zr addition on the stability of precipitated Laves phase and mechanical properties of Fe–Cr–Al-based alloys at high temperatures. Prog. Nat. Sci. Mater. Int. 2022, 32, 114–127. [Google Scholar] [CrossRef]
- Guo, Q.; Hou, H.; Pan, Y.; Pei, X.; Song, Z.; Liaw, P.K.; Zhao, Y. Hardening-softening of Al0.3CoCrFeNi high-entropy alloy under nanoindentation. Mater. Des. 2023, 231, 112050. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Xie, H.; Fan, T.; Zhang, L.; Li, K.; Cao, Y.; Yang, X.; Liu, B.; Bai, P. Effects of Al and La elements on mechanical properties of CoNiFe0.6Cr0.6 high-entropy alloys: A first-principles study. J. Mater. Res. Technol. 2023, 23, 1130–1140. [Google Scholar] [CrossRef]
- He, J.Y.; Liu, W.H.; Wang, H.; Wu, Y.; Liu, X.J.; Nieh, T.G.; Lu, Z.P. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014, 62, 105–113. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, J.; Liu, Y.; Lu, C.; Shi, L.; Zheng, W.; Jin, W.; Gao, Z.; Yang, J.; He, Y. Microstructural evolution and mechanical characterization for the AlCoCrFeNi2.1 eutectic high-entropy alloy under different temperatures. Fatigue Fract. Eng. Mater. Struct. 2023, 46, 1881–1892. [Google Scholar] [CrossRef]
- Chou, T.H.; Li, W.P.; Chang, H.W.; Cao, B.X.; Luan, J.H.; Huang, J.C.; Yang, T. Suppressing temperature-dependent embrittlement in high-strength medium-entropy alloy via hetero-grain/precipitation engineering. Scr. Mater. 2023, 229, 115377. [Google Scholar] [CrossRef]
- Ait-Amokhtar, H.; Fressengeas, C. Crossover from continuous to discontinuous propagation in the Portevin–Le Chatelier effect. Acta Mater. 2010, 58, 1342–1349. [Google Scholar] [CrossRef]
- Carroll, R.; Lee, C.; Tsai, C.-W.; Yeh, J.-W.; Antonaglia, J.; Brinkman, B.A.W.; LeBlanc, M.; Xie, X.; Chen, S.; Liaw, P.K.; et al. Experiments and Model for Serration Statistics in Low-Entropy, Medium-Entropy and High-Entropy Alloys. Sci. Rep. 2015, 5, 16997. [Google Scholar] [CrossRef] [PubMed]
- Tirunilai, A.S.; Sas, J.; Weiss, K.-P.; Chen, H.; Szabó, D.V.; Schlabach, S.; Haas, S.; Geissler, D.; Freudenberger, J.; Heilmaier, M.; et al. Peculiarities of deformation of CoCrFeMnNi at cryogenic temperatures. J. Mater. Res. 2018, 33, 3287–3300. [Google Scholar] [CrossRef]
- Tirunilai, A.S.; Weiss, K.-P.; Freudenberger, J.; Heilmaier, M.; Kauffmann, A. Revealing the Role of Cross Slip for Serrated Plastic Deformation in Concentrated Solid Solutions at Cryogenic Temperatures. Metals 2022, 12, 514. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, S.; Cao, Y.; Zhang, Y.; Zhao, Y. Mechanical properties and deformation mechanisms of a Ni2Co1Fe1V0.5Mo0.2 medium-entropy alloy at elevated temperatures. Acta Mater. 2021, 213, 116982. [Google Scholar] [CrossRef]
- de Oliveira, M.; Couto, A.; Almeida, G.; Reis, D.; de Lima, N.; Baldan, R. Mechanical Behavior of Inconel 625 at Elevated Temperatures. Metals 2019, 9, 301. [Google Scholar] [CrossRef]
- Licavoli, J.J.; Gao, M.C.; Sears, J.S.; Jablonski, P.D.; Hawk, J.A. Microstructure and Mechanical Behavior of High-Entropy Alloys. J. Mater. Eng. Perform. 2015, 24, 3685–3698. [Google Scholar] [CrossRef]
- Roy, A.K.; Venkatesh, A.; Marthandam, V.; Ghosh, A. Tensile Deformation of a Nickel-base Alloy at Elevated Temperatures. J. Mater. Eng. Perform. 2008, 17, 607–611. [Google Scholar] [CrossRef]
- Yang, T.; Tang, Z.; Xie, X.; Carroll, R.; Wang, G.; Wang, Y.; Dahmen, K.A.; Liaw, P.K.; Zhang, Y. Deformation mechanisms of Al0.1CoCrFeNi at elevated temperatures. Mater. Sci. Eng. A 2017, 684, 552–558. [Google Scholar] [CrossRef]
- Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E.P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013, 61, 5743–5755. [Google Scholar] [CrossRef]
- Cao, B.X.; Wei, D.X.; Zhang, X.F.; Kong, H.J.; Zhao, Y.L.; Hou, J.X.; Luan, J.H.; Jiao, Z.B.; Liu, Y.; Yang, T.; et al. Intermediate temperature embrittlement in a precipitation-hardened high-entropy alloy: The role of heterogeneous strain distribution and environmentally assisted intergranular damage. Mater. Today Phys. 2022, 24, 100653. [Google Scholar] [CrossRef]
- Gardner, L.; Insausti, A.; Ng, K.T.; Ashraf, M. Elevated temperature material properties of stainless steel alloys. J. Constr. Steel Res. 2010, 66, 634–647. [Google Scholar] [CrossRef]
- Senkov, O.N.; Scott, J.M.; Senkova, S.V.; Meisenkothen, F.; Miracle, D.B.; Woodward, C.F. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 2012, 47, 4062–4074. [Google Scholar] [CrossRef]
- Eleti, R.R.; Chokshi, A.H.; Shibata, A.; Tsuji, N. Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy. Acta Mater. 2020, 183, 64–77. [Google Scholar] [CrossRef]
- Varvenne, C.; Luque, A.; Curtin, W.A. Theory of strengthening in fcc high entropy alloys. Acta Mater. 2016, 118, 164–176. [Google Scholar] [CrossRef]
- Zhang, D.D.; Wang, H.; Zhang, J.Y.; Xue, H.; Liu, G.; Sun, J. Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping. J. Mater. Sci. Technol. 2021, 87, 184–195. [Google Scholar] [CrossRef]
- Leyson, G.P.; Curtin, W.A.; Hector, L.G., Jr.; Woodward, C.F. Quantitative prediction of solute strengthening in aluminium alloys. Nat. Mater. 2010, 9, 750–755. [Google Scholar] [CrossRef]
- Szajewski, B.A.; Pavia, F.; Curtin, W.A. Robust atomistic calculation of dislocation line tension. Model. Simul. Mater. Sci. Eng. 2015, 23, 085008. [Google Scholar] [CrossRef]
- Laplanche, G.; Gadaud, P.; Bärsch, C.; Demtröder, K.; Reinhart, C.; Schreuer, J.; George, E.P. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy. J. Alloys Compd. 2018, 746, 244–255. [Google Scholar] [CrossRef]
- Zerilli, F.J.; Armstrong, R.W. Dislocation-mechanics-based constitutive relations for material dynamics calculations. J. Appl. Phys. 1987, 61, 1816–1825. [Google Scholar] [CrossRef]
Alloy | Fe | Ni | Cr | Mn | Al |
---|---|---|---|---|---|
Fe45Mn15Cr15Ni25 (R1273) | 45.26 | 25.06 | 14.86 | 14.89 | - |
Fe35Mn15Cr15Ni25Al10 (R1473) | 37.03 | 24.74 | 14.83 | 14.63 | 8.77 |
Fe35Mn15Cr15Ni25Al10 (A973) | 37.29 | 24.76 | 14.71 | 15.04 | 8.2 |
Composition | Temperatures (K) | σ0.2 (MPa) | σUTS (MPa) | εu (%) |
---|---|---|---|---|
Fe45Mn15Cr15Ni25 (R1273) | 293 | 190 ± 20 | 510 ± 26 | 49 ± 2 |
473 | 170 ± 20 | 480 ± 28 | 45 ± 2 | |
673 | 130 ± 20 | 395 ± 24 | 40 ± 3 | |
873 | 115 ± 17 | 280 ± 21 | 23 ± 2 | |
1073 | 85 ± 16 | 125 ± 19 | 16 ± 1 | |
Fe35Mn15Cr15Ni25Al10 (R1473) | 293 | 255 ± 22 | 705 ± 17 | 45 ± 3 |
473 | 180 ± 20 | 535 ± 28 | 50 ± 4 | |
673 | 170 ± 21 | 525 ± 25 | 49 ± 2 | |
873 | 155 ± 19 | 435 ± 21 | 29 ± 2 | |
1073 | 140 ± 18 | 190 ± 19 | 11 ± 2 | |
Fe35Mn15Cr15Ni25Al10 (A973) | 293 | 860 ± 26 | 1260 ± 46 | 9 ± 1 |
473 | 780 ± 25 | 1125 ± 45 | 11 ± 1 | |
673 | 735 ± 23 | 1030 ± 43 | 11 ± 2 | |
773 | 680 ± 20 | 915 ± 40 | 12 ± 1 | |
873 | 350 ± 18 | 505 ± 38 | 8 ± 1 | |
1073 | 230 ± 16 | 290 ± 36 | 9 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Jin, X.; Yang, H.; Qiao, J.; Zhang, Y. High-Temperature Mechanical Behavior of Cobalt-Free FeMnCrNi(Al) High-Entropy Alloys. Metals 2023, 13, 1885. https://doi.org/10.3390/met13111885
Liu D, Jin X, Yang H, Qiao J, Zhang Y. High-Temperature Mechanical Behavior of Cobalt-Free FeMnCrNi(Al) High-Entropy Alloys. Metals. 2023; 13(11):1885. https://doi.org/10.3390/met13111885
Chicago/Turabian StyleLiu, Dan, Xi Jin, Huijun Yang, Junwei Qiao, and Yong Zhang. 2023. "High-Temperature Mechanical Behavior of Cobalt-Free FeMnCrNi(Al) High-Entropy Alloys" Metals 13, no. 11: 1885. https://doi.org/10.3390/met13111885
APA StyleLiu, D., Jin, X., Yang, H., Qiao, J., & Zhang, Y. (2023). High-Temperature Mechanical Behavior of Cobalt-Free FeMnCrNi(Al) High-Entropy Alloys. Metals, 13(11), 1885. https://doi.org/10.3390/met13111885