Fabrication of Aluminum Alloy with Open-Channel and Columnar Structures through a Ceramic Fiber Template Method
Abstract
:1. Introduction
- (1)
- The templates should be solid and inflexible when embedded in aluminum alloy melt;
- (2)
- Once solidified, the templates should be macerated by some solution to remove them so that the templates can be removed without any extraction force. Ceramic fibers and polyvinyl alcohol are chosen as the materials of the templates, and water is chosen as a solution to be satisfied. Although the fibers themselves are flexible, the fibers impregnated with polyvinyl alcohol harden and do not crook against the melt pressure when the aluminum alloy melt is poured into a crucible. The present research is conducted to simplify the manufacturing process by adopting such a ceramic fiber template method instead of the extraction method using the template of metallic wires coated with lubricant.
2. Materials and Fabrication Method
2.1. Fabrication of Open-Channel Aluminum Alloy
- (1)
- The adhesive must improve the wettability of the mixture of ceramic fibers and polyvinyl alcohol to SUS wires;
- (2)
- Long ceramic fibers must be shortened and disassembled by mixing with polyvinyl alcohol using a mixer, thus causing them to change to minute ceramic fibers.
2.2. Fabrication of Columnar-Structured Aluminum Alloy
3. Results and Discussion
3.1. Fabrication of Open-Channel Aluminum Alloy
3.2. Fabrication of Columnar-Structured Aluminum Alloy
3.3. Removal of Ceramic Fiber
3.4. Comparison of Fiber Template Method with Previous Investigations
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gibson, L.J.; Ashby, M.F. Cellular Solids; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Nakajima, H. Fabrication, properties and application of porous metals with directional pores. Prog. Mater. Sci. 2007, 52, 1091–1173. [Google Scholar] [CrossRef]
- Drenchev, L.; Sobczak, J.J. GASARS—A Special Class of Porous Materials; Motor Transport Institute, Warsaw and Foundry Research Institute: Cracow, Poland, 2008. [Google Scholar]
- Gibson, L.J.; Ashby, M.F.; Harley, B.A. Cellular Materials in Nature and Medicine; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Chiba, H.; Ogushi, T.; Nakajima, H. Heat transfer capacity of lotus-type porous copper heat sink for air cooling. J. Thermal Sci. Technol. 2010, 5, 222–237. [Google Scholar] [CrossRef]
- Ikeda, T.; Aoki, T.; Nakajima, H. Fabrication of lotus-type porous stainless steel by continuous zone melting technique and mechanical property. Metall. Mater. Trans. 2005, 36A, 77–86. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, Y.; Zhang, H.; Chen, K.; Li, Y. Compressive and corrosion properties of lotus-type porous Mg-Mn alloys fabricated by unidirectional solidification. Metall. Mater.Trans. 2020, 51A, 3238–3247. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Zhang, H.; Liu, Y.; Chen, X. Pore structure analysis of directionally solidified porous copper. China Foundry 2020, 17, 325–331. [Google Scholar] [CrossRef]
- Liu, E.; He, P.; Li, Z.; Wu, C.; Liu, M. Fabrication of gasar porous Mg-Ag alloys by metal-gas eutectic directional solidification method. Cryst. Growth Des. 2023, 23, 8303–8310. [Google Scholar] [CrossRef]
- Sadeghi, Z.; Mansoorianfar, M.; Panjepour, M.; Meratian, M. Lotus-type porous magnesium production via in situ pyrolysis of viscose rayon fiber in a melting process. J. Mater. Sci. 2023, 58, 9297–9307. [Google Scholar] [CrossRef]
- Utsunomiya, H.; Koh, H.; Miyamoto, J.; Sakai, T. High-strength porous copper by cold-extrusion. Adv. Eng. Mater. 2008, 10, 826–829. [Google Scholar] [CrossRef]
- Vesenjak, M.; Nakashima, Y.; Hokamoto, K.; Ren, Z.; Marumo, Y. Development of unidirectional cellular structure with multiple pipe layers and characterisation of its mechanical properties. Materials 2020, 13, 3880. [Google Scholar] [CrossRef]
- Nishi, M.; Tanaka, S.; Vesenjak, M.; Ren, Z.; Hokamoto, K. Experimental and computational analysis of the uni-directional porous (UniPore) copper mechanical response at high-velocity impact. Inter. J. Impact Eng. 2020, 136, 103409. [Google Scholar] [CrossRef]
- Ide, T.; Iio, Y.; Nakajima, H. Fabrication of porous aluminum with directional pores through continuous casting technique. Metall. Mater. Trans. 2012, 43A, 5140–5152. [Google Scholar] [CrossRef]
- Takahashi, K.; Sasajima, Y.; Ikeda, T. Pore formation and shape control simulation of lotus aluminum by the phase-field method. ACS Omega 2022, 7, 14985–14993. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y. Available online: http://www.osaka-jp.net/osk22-2.htm (accessed on 12 October 2023).
- Gillen, D.; Moore, D. Available online: http://www.blueacretechnology.com (accessed on 12 October 2023).
- Gregory, O.; Griffith, A.J.; Stroud, D. Drilling Turbine Blades. U.S. Patent 5,222,617, 29 June 1993. [Google Scholar]
- Hakamada, M.; Asao, Y.; Kuromura, T.; Chen, Y.; Kusuda, H.; Mabuchi, M. Processing of three-dimensional metallic microchannel by spacer method. Mater.Lett. 2008, 62, 1118–1121. [Google Scholar] [CrossRef]
- Kwok, P.J.; Oppenheimer, S.M.; Dunand, D.C. Porous titanium by electro-chemical dissolution of steel space-holders. Adv. Eng. Mater. 2008, 10, 820–825. [Google Scholar] [CrossRef]
- Jorgensen, D.J.; Dunand, D.C. Structure and mechanical properties of Ti-6Al-4V with a replicated network of elongated pores. Acta Mater. 2011, 59, 640–650. [Google Scholar] [CrossRef]
- Neurohr, A.J.; Dunand, D.C. Shape-memory NiTi with two-dimensional networks of micro-channels. Acta Biomater. 2011, 7, 1862–1872. [Google Scholar] [CrossRef]
- Haga, T.; Toyoda, K.; Fuse, H. Effect of casting conditions on fabrication of lotus type holes in ingot cast by core-bar pulling method. Key Eng. Mater. 2017, 748, 187–191. [Google Scholar] [CrossRef]
- Haga, T.; Fuse, H. Fabrication of lotus type through-holes using the semisolid condition. Adv. Mater. Process. Tech. 2018, 4, 16–23. [Google Scholar] [CrossRef]
- Haga, T.; Fuse, H. Fabrication of lotus type porous ingots using the core-bar pulling method. Solid State Phenom. 2019, 285, 259–263. [Google Scholar] [CrossRef]
- Muto, D.; Yoshida, T.; Tamai, T.; Sawada, M.; Suzuki, S. Fabrication porous metals with unidirectionally aligned pores by rod-dipping process. Mater. Trans. 2019, 60, 544–553. [Google Scholar] [CrossRef]
- Sawada, M.; Ichikawa, D.; Borovinsek, M.; Vesenjak, M.; Suzuki, S. Characterization of the compressive stress drop in the plateau region in porous metals with unidirectional pores. Mater. Trans. 2020, 61, 1782–1789. [Google Scholar] [CrossRef]
- Ichikawa, D.; Sawada, M.; Suzuki, S. The compression angle dependence of the strength of porous metals with regularly aligned directional pores. Mater. Trans. 2023, 64, 2471–2480. [Google Scholar] [CrossRef]
- Kaneko, A.; Takeuchi, G.; Abe, Y.; Suzuki, Y. Condensation behavior in a microchannel heat exchanger. J. Thermal Sci. Tech. 2009, 4, 469–482. [Google Scholar] [CrossRef]
- Nakajima, H. Through Hole Aluminum Fabricated by the Extraction of Lubricated Metallic Wires. Metall. Mater. Trans. 2019, 50A, 5707–5712. [Google Scholar] [CrossRef]
- Nakajima, H. Fabrication of open-channel aluminum by template-extraction technique. Mater. Trans. 2023, 64, 2643–2647. [Google Scholar] [CrossRef]
- Triyono, T.; Muhayat, N.; Supriyanto, A.; Lutiyatmi, L. Effect of degassing treatment on the interfacial reaction of molten aluminum and solid steel. Arch. Foundry Eng. 2017, 17, 227–239. [Google Scholar] [CrossRef]
- Lazaro-Nebreda, J.; Patel, J.B.; Lordan, E.; Zhang, Y.; Karakulak, E.; Al-Helal, K.; Scamans, G.M.; Fan, Z. Degassing of aluminum alloy melts by high shear melt conditioning technology: An overview. Metals 2022, 12, 1772. [Google Scholar] [CrossRef]
- Hayashi, Y. Suction die casting process. J. Jpn. Foundrymen’s Soc. 1994, 66, 955–960. (In Japanese) [Google Scholar]
- Szklarz, Z.; Krawiec, H.; Rogal, L. The effect of vacuum suction casting on the microstructure and corrosion behavior of aluminium alloy 2017. Mater. Sci. Eng. B 2019, 240, 23–32. [Google Scholar] [CrossRef]
- Kadam, S.T.; Kumar, R. Twenty first century cooling solution: Microchannel heat sinks. Int. J. Therm. Sci. 2014, 85, 73–92. [Google Scholar] [CrossRef]
- Zhou, J.; Cao, X.; Zhang, N.; Yuan, Y.; Zhao, X.; Hardy, D. Micro-channel heat sink: A review. J. Therm. Sci. 2020, 29, 1431–1462. [Google Scholar] [CrossRef]
Si | Mg | Fe | Ni | Ti | P |
---|---|---|---|---|---|
6.92 | 0.42 | 0.07 | 0.01 | 0.12 | 0.0004 |
Process | Wire-Extraction Method | Fiber Template Method | |
---|---|---|---|
Fabricated structure | Open-channel | Open-channel | Columns |
Template | Wires coated with lubricant | Reinforced plate or wire coated with fiber + PVA | Drilled hole perforated in fiber + PVA |
Casting process | Embedded in aluminum alloy melt | ||
Removal of templates | Extraction by tensile machine | Impregnated by water | |
Roughness of inner wall | Not controllable | Controllable | |
Cost performance | Not good | Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakajima, H. Fabrication of Aluminum Alloy with Open-Channel and Columnar Structures through a Ceramic Fiber Template Method. Metals 2023, 13, 1914. https://doi.org/10.3390/met13121914
Nakajima H. Fabrication of Aluminum Alloy with Open-Channel and Columnar Structures through a Ceramic Fiber Template Method. Metals. 2023; 13(12):1914. https://doi.org/10.3390/met13121914
Chicago/Turabian StyleNakajima, Hideo. 2023. "Fabrication of Aluminum Alloy with Open-Channel and Columnar Structures through a Ceramic Fiber Template Method" Metals 13, no. 12: 1914. https://doi.org/10.3390/met13121914
APA StyleNakajima, H. (2023). Fabrication of Aluminum Alloy with Open-Channel and Columnar Structures through a Ceramic Fiber Template Method. Metals, 13(12), 1914. https://doi.org/10.3390/met13121914