Synthesis ZrON Films with Raman-Enhancement Properties Using Microwave Plasma
Abstract
:1. Introduction
2. Materials and Methods
3. Results
ZrON Films’ Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCauley, J.W.; Patel, P.; Chen, M.; Gilde, G.; Strassburger, E.; Paliwal, B.; Ramesh, K.T.; Dandekar, D.P. AlON: A brief history of its emergence and evolution. J. Eur. Ceram. Soc. 2009, 29, 223–236. [Google Scholar] [CrossRef]
- Corbin, N.D. Aluminum oxynitride spinel: A review. J. Eur. Ceram. Soc. 1989, 5, 143–154. [Google Scholar] [CrossRef]
- Arunachalam, M.; Yun, G.; Ahn, K. Unique photoelectrochemical behavior of TiO2 nanorods wrapped with novel titanium Oxy-Nitride (TiOxNy) nanoparticles. Int. J. Hydrog. Energy 2018, 43, 16458–16467. [Google Scholar] [CrossRef]
- Chisaka, M.; Ishihara, A.; Ota, K.; Muramoto, H. Electrochimica Acta Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells. Electrochim. Acta 2013, 113, 735–740. [Google Scholar] [CrossRef]
- Ohashi, M.; Kanzaki, S.; Tabata, H. Processing, Mechanical Properties, and Oxidation Behavior of Silicon Oxynitride Ceramics. J. Am. Ceram. Soc. 1991, 74, 109–114. [Google Scholar] [CrossRef]
- Ohashi, M.; Kanzaki, S.; Tabata, H. Effect of additives on some properties of silicon oxynitride ceramics. J. Mater. Sci. 1991, 26, 2608–2614. [Google Scholar] [CrossRef]
- Kharitonov, A.V.; Sergey, S.K. Tunable optical materials for multi-resonant plasmonics: From TiN to TiON. Opt. Mater. Express 2020, 10, 513–531. [Google Scholar] [CrossRef]
- Xin, Y.; Xu, T.; Wang, Y.; Luo, P.; Li, W.; Kang, B.; Mei, B.; Jing, W. Effect of ZrO2 Content on Microstructure Evolution and Sintering Properties of (Tb0.7Lu0.3)2O3 Magneto-Optic Transparent Ceramics. Magnetochemistry 2022, 8, 175. [Google Scholar] [CrossRef]
- Patsalas, P. Zirconium nitride: A viable candidate for photonics and plasmonics? Thin Solid Film. 2019, 688, 137438. [Google Scholar] [CrossRef]
- Kozlovskiy, A.L.; Alin, M.; Borgekov, D.B. Study of Polymorphic Transformation Processes and Their Influence in Polycrystalline ZrO2 Ceramics upon Irradiation with Heavy Ions. Ceramics 2023, 6, 686–706. [Google Scholar] [CrossRef]
- Kulyk, V.; Duriagina, Z.; Vasyliv, B.; Vavrukh, V.; Kovbasiuk, T.; Lyutyy, P.; Vira, V. The Effect of Sintering Temperature on the Phase Composition, Microstructure, and Mechanical Properties of Yttria-Stabilized Zirconia. Materials 2022, 15, 2707. [Google Scholar] [CrossRef]
- Muslimov, A.E.; Gadzhiev, M.K.; Kanevsky, V.M. Influence of Plasma Treatment Parameters on the Structural-Phase Composition, Hardness, Moisture-Resistance, and Raman-Enhancement Properties of Nitrogen-Containing Titanium Dioxide. Materials 2022, 15, 8514. [Google Scholar] [CrossRef] [PubMed]
- Muslimov, A.; Orudzhev, F.; Gadzhiev, M.; Selimov, D.; Tyuftyaev, A.; Kanevsky, V. Facile Synthesis of Ti/TiN/TiON/TiO2 Composite Particles for Plasmon-Enhanced Solar Photocatalytic Decomposition of Methylene Blue. Coatings 2022, 12, 1741. [Google Scholar] [CrossRef]
- Dombrovskii, L.A.; Isakaev, E.H.; Senchenko, V.N.; Chinnov, V.F.; Scherbakov, V.V. Efficiency of particle acceleration, heating, and melting in high-enthalpy plasma jets. High Temp. 2012, 50, 145–153. [Google Scholar] [CrossRef]
- Chen, C.J.; Li, S.Z. Spectroscopic measurement of plasma gas temperature of the atmospheric-pressure microwave induced nitrogen plasma torch. Plasma Sources Sci. Technol. 2015, 24, 035017. [Google Scholar] [CrossRef]
- Wang, J.; Lin, W.; Cao, E.; Xu, X.; Liang, W.; Zhang, X. Surface Plasmon Resonance Sensors on Raman and Fluorescence Spectroscopy. Sensors 2017, 17, 2719. [Google Scholar] [CrossRef]
- Moldovan, R.; Toma, V.; Iacob, B.-C.; Știufiuc, R.I.; Bodoki, E. Off-Resonance Gold Nanobone Films at Liquid Interface for SERS Applications. Sensors 2022, 22, 236. [Google Scholar] [CrossRef]
- Yasui, T.; Hayashi, K.; Fukumoto, M. Behaviors of Micro-Arcs, Bubbles, and Coating Growth during Plasma Electrolytic Oxidation of β-Titanium Alloy. Materials 2023, 16, 360. [Google Scholar] [CrossRef]
- Xu, L.; Ma, J.; Wei, G.; Gu, C.; Jiang, T. Improved surface-enhanced Raman scattering performance enabled by hydrophilic-hydrophobic piezoelectric PVDF-silver substrate. Sens. Actuators B 2022, 370, 132431. [Google Scholar] [CrossRef]
- Duan, Z.; Luo, D.; Liu, Z.; Zhao, Z.; Zhao, M.; Zhang, J.; Zhao, G. Patterning ZrO 2 films surface: Superhydrophilic and superhydrophobic properties. Ceram. Int. 2017, 43, 5089–5094. [Google Scholar] [CrossRef]
- Antonov, D.V.; Islamova, A.G.; Strizhak, P.A. Hydrophilic and Hydrophobic Surfaces: Features of Interaction with Liquid Drops. Materials 2023, 16, 5932. [Google Scholar] [CrossRef] [PubMed]
- Tikhonov, V.N.; Aleshin, S.N.; Ivanov, I.A.; Tikhonov, A.V. The low-cost microwave plasma sources for science and industry applications. J. Phys. Conf. Ser. 2017, 927, 012067. [Google Scholar] [CrossRef]
- Chepelev, V.M.; Chistolinov, A.V.; Khromov, M.A.; Antipov, S.N.; Gadzhiev, M.K. Thermocouple and electric probe measurements in a cold atmospheric-pressure microwave plasma jet. J. Phys. Conf. Ser. 2020, 1556, 012091. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Mynuddin, M. Kinetic Modelling of Atmospheric Pressure Nitrogen Plasma. Am. J. Mod. Phys. 2018, 7, 185–193. [Google Scholar]
- Zhao, X.; Vanderbilt, D. Phonons and lattice dielectric properties of zirconia. Phys. Rev. B 2002, 65, 075105. [Google Scholar] [CrossRef]
- Efaw, C.M.; Vandegrift, J.L.; Reynolds, M.; McMurdie, S.; Jaques, B.J.; Hu, H.; Hui, X.; Hurley, M.F. Characterization of zirconium oxides part I: Raman mapping and spectral feature analysis. Nucl. Mater. Energy 2019, 21, 100707. [Google Scholar] [CrossRef]
- Kuznetsov, K.B.; Kovalev, I.A.; Nechaev, A.N.; Ogarkov, A.I.; Shevtsov, S.V.; Chernyavskii, A.S.; Solntsev, K.A. Stability of the structure of compact zirconium nitride ceramics to irradiation with high-energy xenon ions. Inorg. Mater. 2016, 52, 1235–1239. [Google Scholar] [CrossRef]
- Kruchinin, V.N.; Aliev, V.S.; Gerasimova, A.K.; Gritsenko, V.A. Optical properties of nonstoichiometric ZrO x according to spectroellipsometry data. Opt. Spectrosc. 2016, 121, 241–245. [Google Scholar] [CrossRef]
- Chen, L.; Ran, Y.; Jiang, Z.; Li, Y.; Wang, Z. Structural, Compositional, and Plasmonic Characteristics of Ti–Zr Ternary Nitride Thin Films Tuned by the Nitrogen Flow Ratio in Magnetron Sputtering. Nanomaterials 2020, 10, 829. [Google Scholar] [CrossRef]
- Yuan, Y.; Lee, T.R. Surface Science Techniques; Bracco, G., Holst, B., Eds.; Springer Series in Surface Sciences; Springer: Berlin/Heidelberg, Germany, 2013; Volume 51, pp. 3–34. [Google Scholar]
- Méndez-López, A.; Zelaya-Ángel, O.; Toledano-Ayala, M.; Torres-Pacheco, I.; Pérez-Robles, J.F.; Acosta-Silva, Y.J. The Influence of Annealing Temperature on the Structural and Optical Properties of ZrO2 Thin Films and How Affects the Hydrophilicity. Crystals 2020, 10, 454. [Google Scholar] [CrossRef]
- Belov, N.A.; Alentiev, A.Y.; Bogdanova, Y.G.; Vdovichenko, A.Y.; Pashkevich, D.S. Direct Fluorination as Method of Improvement of Operational Properties of Polymeric Materials. Polymers 2020, 12, 2836. [Google Scholar] [CrossRef] [PubMed]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Etchegoin Surface Enhancedment Raman Scattering Enhacement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Li, C.; Huang, Y.; Lai, K.; Rasco, B.A.; Fan, Y. Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control. 2016, 65, 99–105. [Google Scholar] [CrossRef]
Element | Zr | O | N |
---|---|---|---|
Quantity,% | 17.66 | 77.32 | 5.02 |
Mode | [25] | This Work |
---|---|---|
1 | 103 (Ag) | |
2 | 175 (Bg) | |
7 | 180 (Ag) | 185 |
4 | 190 (Ag) | 197 |
5 | 224 (Bg) | |
6 | 313 (Bg) | |
7 | 317 (Ag) | |
8 | 330 (Bg) | 342 |
9 | 345 (Ag) | 354 |
10 | 381 (Ag) | 387 |
11 | 382 (Bg) | |
12 | 466 (Ag) | 483 |
13 | 489 (Bg) | 510 |
14 | 533 (Bg) | 542 |
15 | 548 (Ag) | 565 |
16 | 601 (Bg) | 625 |
17 | 631 (Ag) | 648 |
18 | 748 (Bg) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muslimov, A.; Antipov, S.; Gadzhiev, M.; Kanevsky, V. Synthesis ZrON Films with Raman-Enhancement Properties Using Microwave Plasma. Metals 2023, 13, 1927. https://doi.org/10.3390/met13121927
Muslimov A, Antipov S, Gadzhiev M, Kanevsky V. Synthesis ZrON Films with Raman-Enhancement Properties Using Microwave Plasma. Metals. 2023; 13(12):1927. https://doi.org/10.3390/met13121927
Chicago/Turabian StyleMuslimov, Arsen, Sergey Antipov, Makhach Gadzhiev, and Vladimir Kanevsky. 2023. "Synthesis ZrON Films with Raman-Enhancement Properties Using Microwave Plasma" Metals 13, no. 12: 1927. https://doi.org/10.3390/met13121927
APA StyleMuslimov, A., Antipov, S., Gadzhiev, M., & Kanevsky, V. (2023). Synthesis ZrON Films with Raman-Enhancement Properties Using Microwave Plasma. Metals, 13(12), 1927. https://doi.org/10.3390/met13121927