Improvement of the Oxidation Resistance of FeMnSiCrNi Alloys with a Pre-Oxidation Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Pre-Treated Sample Characterization
3.2. Oxidation Kinetics
3.3. Oxide Layer Characterization
3.4. Ferritic Layer Thickness and Composition
3.5. Metal/Oxide Interface Roughness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaudhari, R.; Vora, J.J.; Parikh, D.M. A Review on Applications of Nitinol Shape Memory Alloy. In Recent Advances in Mechanical Infrastructure; Parwani, A.K., Ramkumar, P., Abhishek, K., Yadav, S.K., Eds.; Springer: Singapore, 2021; pp. 123–132. ISBN 978-981-33-4175-3. [Google Scholar]
- Costanza, G.; Tata, M.E. Shape Memory Alloys for Aerospace, Recent Developments, and New Applications: A Short Review. Materials 2020, 13, 1856. [Google Scholar] [CrossRef]
- Safaei, K.; Abedi, H.; Nematollahi, M.; Kordizadeh, F.; Dabbaghi, H.; Bayati, P.; Javanbakht, R.; Jahadakbar, A.; Elahinia, M.; Poorganji, B. Additive Manufacturing of NiTi Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem. JOM 2021, 73, 3771–3786. [Google Scholar] [CrossRef]
- Zareie, S.; Issa, A.S.; Seethaler, R.J.; Zabihollah, A. Recent advances in the applications of shape memory alloys in civil infrastructures: A review. Structures 2020, 27, 1535–1550. [Google Scholar] [CrossRef]
- Zhang, Z.-X.; Zhang, J.; Wu, H.; Ji, Y.; Kumar, D.D. Iron-Based Shape Memory Alloys in Construction: Research, Applications and Opportunities. Materials 2022, 15, 1723. [Google Scholar] [CrossRef]
- Lee, W.J.; Weber, B.; Leinenbach, C. Recovery stress formation in a restrained Fe–Mn–Si-based shape memory alloy used for prestressing or mechanical joining. Constr. Build. Mater. 2015, 95, 600–610. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, Y.; Luo, Q.; Peng, H.; Wen, Y. Aligning Cr23C6 particles to improve shape memory effect in an FeMnSiCrNi alloy by ageing after pre-deformation at different temperatures. Mater. Charact. 2022, 192, 112238. [Google Scholar] [CrossRef]
- Pricop, B.; Söyler, A.U.; Özkal, B.; Bujoreanu, L.G. Powder Metallurgy: An Alternative for FeMnSiCrNi Shape Memory Alloys Processing. Front. Mater. 2020, 7, 247. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Okotete, E.A. Reconciling viability and cost-effective shape memory alloy options—A review of copper and iron based shape memory metallic systems. Eng. Sci. Technol. Int. J. 2016, 19, 1582–1592. [Google Scholar] [CrossRef]
- Otsuka, H.; Yamada, H.; Maruyama, T.; Tanahashi, H.; Matsuda, S.; Murakami, M. Effects of alloying additions on Fe-Mn-Si shape memory alloys. ISIJ Int. 1990, 30, 674–679. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef]
- Fu, Y.; Li, J.; Luo, H.; Du, C.; Li, X. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. J. Mater. Sci. Technol. 2021, 80, 217–233. [Google Scholar] [CrossRef]
- Raabe, D.; Tasan, C.C.; Springer, H.; Bausch, M. From High-Entropy Alloys to High-Entropy Steels. Steel Res. Int. 2015, 86, 1127–1138. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, H.; Li, W.H.; Wu, J.L.; Zhong, X.C.; Chen, G.; Guo, S. Novel high-entropy and medium-entropy stainless steels with enhanced mechanical and anti-corrosion properties. Mater. Sci. Technol. 2018, 34, 572–579. [Google Scholar] [CrossRef]
- Tsianikas, S.J.; Chen, Y.; Jeong, J.; Zhang, S.; Xie, Z. Forging strength–ductility unity in a high entropy steel. J. Mater. Sci. Technol. 2021, 113, 158–165. [Google Scholar] [CrossRef]
- Nie, Y.; Peng, H.; Yong, L.; Wang, D.; Zhang, C.; Wang, S.; Wen, Y. Improvement of shape memory effect via strengthening austenite by virtue of thermally activated process in FCC-type metastable multicomponent alloys. Mater. Sci. Eng. A 2020, 793, 139748. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, Y.; Zhang, Y.; Xing, X. Role of stacking faults in martensite transformation of FeMnSiCrNi shape memory alloy subjected to plastic deformation at high temperatures. Intermetallics 2020, 124, 106841. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, Y.; Zhang, Y.; Xing, X.; Yan, B. Constitutive behavior and microstructural evolution of FeMnSiCrNi shape memory alloy subjected to compressive deformation at high temperatures. Mater. Des. 2019, 182, 108019. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, J.; Xu, B.; Gu, C.; Feng, K.; Wang, Y. Effect of high-temperature oxidation on the subsurface microstructure and magnetic property of medium manganese austenitic steel. J. Alloys Compd. 2022, 913, 165254. [Google Scholar] [CrossRef]
- Da Cruz Passos, J.G.; Rabelo, L.F.P.; de Freitas, B.X.; Da Silva, R.; Della Rovere, C.A.; de Sousa Malafaia, A.M. Effects of silicon and manganese content on the oxidation behavior of FeMnSiCrNi alloys and the correlation between Mn-depleted zone, surface roughness and oxidation resistance. Corros. Sci. 2021, 191, 109724. [Google Scholar] [CrossRef]
- de Sousa Malafaia, A.M.; Latu-Romain, L.; Wouters, Y. FeMnSiCrNi Oxidation at 800 °C: Mechanism and Characterization of Improved Oxidation Resistance Generated by Vacuum Annealing Treatment. Oxid. Met. 2021, 96, 17–29. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, H.; Wen, Y. Influence of Temperature on the Oxidation Behaviour of an Austenitic Stainless FeMnSiCrNi Shape Memory Alloy. Oxid. Met. 2019, 92, 109–121. [Google Scholar] [CrossRef]
- Ma, R.; Peng, H.; Wen, Y.; Zhang, L.; Zhao, K. Oxidation behavior of an austenitic stainless FeMnSiCrNi shape memory alloy. Corros. Sci. 2013, 66, 269–277. [Google Scholar] [CrossRef]
- Veselkov, S.; Samoilova, O.; Shaburova, N.; Trofimov, E. High-Temperature Oxidation of High-Entropic Alloys: A Review. Materials 2021, 14, 2595. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, M.; Jin, J.; Gong, P.; Wang, X. Oxidation behavior of CoCrFeMnNi high entropy alloy after plastic deformation. Corros. Sci. 2020, 163, 108285. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.; Etim, I.P.; Liu, Y.; Wu, C.; Wang, J.; Su, X. High temperature oxidation behavior of Ni-based superalloy Nimonic95 and the effect of pre-oxidation treatment. Vacuum 2021, 194, 110582. [Google Scholar] [CrossRef]
- Shen, J.; Liu, S.; Guo, X.H.; Niu, Y. Simultaneous oxidation and carburization of a Fe-9Cr alloy under different oxygen pressures at 800 °C. Corros. Sci. 2017, 129, 1–15. [Google Scholar] [CrossRef]
- JUNG, I. Critical evaluation and thermodynamic modeling of the Mn–Cr–O system for the oxidation of SOFC interconnect. Solid State Ion. 2006, 177, 765–777. [Google Scholar] [CrossRef]
- deSousa Malafaia, A.M.; Da Silva, R.; Della Rovere, C.A.; Baldan, R.; Suárez-Fernández, L.; Cabrera-Marrero, J.-M.; de Oliveira, M.F. High temperature cyclic oxidation behavior of a low manganese Fe12Mn9Cr5Si4Ni-NbC shape memory stainless steels. J. Alloys Compd. 2021, 857, 158198. [Google Scholar] [CrossRef]
- Stott, F.H.; Wei, F.I.; Enahoro, C.A. The influence of manganese on the High-temperature oxidation of iron-chromium alloys. Mater. Corros. Werkst. Korros. 1989, 40, 198–205. [Google Scholar] [CrossRef]
- Hua, B.; Kong, Y.; Zhang, W.; Pu, J.; Chi, B.; Jian, L. The effect of Mn on the oxidation behavior and electrical conductivity of Fe–17Cr alloys in solid oxide fuel cell cathode atmosphere. J. Power Sources 2011, 196, 7627–7638. [Google Scholar] [CrossRef]
- Smith, A.F.; Hales, R. The diffusion of chromium in a duplex alloy steel. Met. Sci. 1976, 10, 418–423. [Google Scholar] [CrossRef]
- de Sousa Malafaia, A.M.; Latu-Romain, L.; Wouters, Y. Initial stages of FeMnSiCrNi shape memory stainless steels oxidation mechanism at 800 °C. Corros. Sci. 2021, 181, 109255. [Google Scholar] [CrossRef]
- Stenzel, A.; Fähsing, D.; Schütze, M.; Galetz, M.C. Volatilization kinetics of chromium oxide, manganese oxide, and manganese chromium spinel at high temperatures in environments containing water vapor. Mater. Corros. 2019, 70, 1426–1438. [Google Scholar] [CrossRef]
- Noh, W.; Lee, J.; Kim, D.-J.; Song, J.-H.; Lee, M.-G. Effects of the residual stress, interfacial roughness and scale thickness on the spallation of oxide scale grown on hot rolled steel sheet. Mater. Sci. Eng. A 2019, 739, 301–316. [Google Scholar] [CrossRef]
- Lee, J.; Noh, W.; Kim, D.-J.; Lee, M.-G. Spallation analysis of oxide scale on low carbon steel. Mater. Sci. Eng. A 2016, 676, 385–394. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passos, J.G.d.C.; Silva, R.d.; Rovere, C.A.D.; de Sousa Malafaia, A.M. Improvement of the Oxidation Resistance of FeMnSiCrNi Alloys with a Pre-Oxidation Treatment. Metals 2023, 13, 1928. https://doi.org/10.3390/met13121928
Passos JGdC, Silva Rd, Rovere CAD, de Sousa Malafaia AM. Improvement of the Oxidation Resistance of FeMnSiCrNi Alloys with a Pre-Oxidation Treatment. Metals. 2023; 13(12):1928. https://doi.org/10.3390/met13121928
Chicago/Turabian StylePassos, João Gabriel da Cruz, Rodrigo da Silva, Carlos Alberto Della Rovere, and Artur Mariano de Sousa Malafaia. 2023. "Improvement of the Oxidation Resistance of FeMnSiCrNi Alloys with a Pre-Oxidation Treatment" Metals 13, no. 12: 1928. https://doi.org/10.3390/met13121928
APA StylePassos, J. G. d. C., Silva, R. d., Rovere, C. A. D., & de Sousa Malafaia, A. M. (2023). Improvement of the Oxidation Resistance of FeMnSiCrNi Alloys with a Pre-Oxidation Treatment. Metals, 13(12), 1928. https://doi.org/10.3390/met13121928