The Cold-Brittleness Regularities of Low-Activation Ferritic-Martensitic Steel EK-181
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Internal Friction
3.2. TEM and SEM Studies
3.3. SEM EBSD Analysis
4. Discussion
- -
- increase in dislocation density with the formation of complex dislocation pileups as a result of their interaction with each other, with particles of the second phases (with nano-sized particles of the MX phase and with M23C6 carbides), as well as with other obstacles such as grain boundaries and subgrains;
- -
- curvature and migration of martensite laths boundaries;
- -
- refinement of the grain–subgrain structure;
- -
- fragmentation of martensitic laths with the formation of new low-angle boundaries.
5. Conclusions
- The curves of the temperature dependence of the vibration decrement of EK-181 steel after THT and HTMT in the range from −196 to 25 °C are similar to those of its impact toughness. A characteristic break was found on these curves in the region of the ductile–brittle transition temperature.
- At the temperatures below DBTT, the level of dislocation internal friction (the vibration decrement) in EK-181 is significantly lower compared to its values at room temperature.
- It was found that HTMT increases the steel Young’s modulus in the temperature range from −196 to 25 °C, compared to that after THT. This is due to the modification of their microstructure.
- When the temperature decreases from room temperature to −196 °C, the steel elastic modulus increases without any features in the ductile–brittle transition temperature range.
- Changing the temperature of impact tests from 100 to −196 °C (from the upper to the lower shelf of the temperature dependence of impact toughness) has a significant impact on the microstructure of EK-181 steel near the fracture surface of Charpy-type samples, compared to the initial state.
- Throughout the entire experimental temperature range, both under the surface of ductile dimple transcrystalline fracture and brittle fracture by quasi-cleavage, the traces of plastic deformation were found: increase in dislocation density, fragmentation of martensitic lamellas, and formation of complex dislocation pileups. These processes become less intensive as the temperature is decreased, which is due to the weaker dislocation mobility.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Odette, G.R.; Zinkle, S.J. Structural Alloys for Nuclear Energy Applications; Elsevier: Amsterdam, The Netherlands, 2019; p. 655. [Google Scholar] [CrossRef]
- Klueh, R.L.; Nelson, A.T. Ferritic/martensitic steels for next-generation reactors. J. Nucl. Mater. 2007, 371, 37–52. [Google Scholar] [CrossRef]
- Chernov, V.M. Cold brittleness of metals as a structural multistage dislocation process. Phys. Solid State 2023, 5, 693–702. [Google Scholar] [CrossRef]
- Stornelli, G.; Schino, A.D.; Mancini, S.; Montanari, R.; Testani, C.; Varone, A. Grain Refinement and Improved Mechanical Properties of EUROFER97 by Thermo-Mechanical Treatments. Appl. Sci. 2021, 11, 10598. [Google Scholar] [CrossRef]
- Abe, F.; Kern, T.-U.; Viswanathan, R. Creep-Resistant Steels; Woodhead: Cambridge, UK, 2008; p. 700. [Google Scholar]
- Srinivasan, S.; Basu, J.; Moitra, A.; Sasikala, G.; Singh, V. Effect of thermal aging on ductile–brittle transition temperature of modified 9Cr–1Mo steel evaluated with reference temperature approach under dynamic loading condition. Metall. Mater. Trans. A 2013, 44, 2141–2155. [Google Scholar] [CrossRef]
- Sasikala, G.; Ray, S.K. Evaluation of quasistatic fracture toughness of a modified 9Cr–1Mo (P91) steel. Mater. Sci. Eng. A 2008, 479, 105–111. [Google Scholar] [CrossRef]
- Polekhina, N.A.; Litovchenko, I.Y.; Almaeva, K.V. Microstructure, Structural-Phase Transformations, and Mechanical Properties of Low-Activation 12% Chromium Ferritic-Martensitic Steel EK-181 Depending on the Treatment Conditions. Inorg. Mater. Appl. Res. 2022, 13, 1247–1260. [Google Scholar] [CrossRef]
- Polekhina, N.; Linnik, V.; Litovchenko, I.; Almaeva, K.; Moskvichev, E.; Chernov, V.; Leontieva-Smirnova, M.; Degtyarev, N.; Moroz, K. The Microstructure, Tensile and Impact Properties of Low-Activation Ferritic-Martensitic Steel EK-181 after High-Temperature Thermomechanical Treatment. Metals 2022, 12, 1928. [Google Scholar] [CrossRef]
- Polekhina, N.A.; Linnik, V.V.; Litovchenko, I.Y.; Almaeva, K.V.; Chernov, V.M.; Leontieva-Smirnova, M.V. Fracture features of impact samples of low-activation ferritic-martensitic steel EK-181 after high-temperature thermomechanical treatment. Lett. Mater. 2022, 4, 451–456. [Google Scholar] [CrossRef]
- Prakash, P.; Vanaja, J.; Srinivasan, N.; Parameswaran, P.; Nageswara Rao, G.V.S.; Laha, K. Effect of thermo-mechanical treatment on tensile properties of reduced activation ferritic-martensitic steel. Mater. Sci. Eng. A 2018, 724, 171–180. [Google Scholar] [CrossRef]
- Shruti, P.; Sakthivel, T.; Nageswara Rao, G.V.S.; Laha, K.; Srinivasa Rao, T. The Role of Thermomechanical Processing in Creep Deformation Behavior of Modified 9Cr-1Mo Steel. Metall. Mater. Trans. A 2019, 50, 4582–4593. [Google Scholar] [CrossRef]
- Samant, S.S.; Singh, I.V.; Singh, R.N. Effect of Thermo-mechanical Treatment on High Temperature Tensile Properties and Ductile–Brittle Transition Behavior of Modified 9Cr-1Mo Steel. Metall. Mater. Trans. A 2020, 51, 3869–3885. [Google Scholar] [CrossRef]
- Maeda, T.; Okuhata, S.; Matsuda, K.; Masumura, T.; Tsuchiyama, T.; Shirahata, H.; Kawamoto, Y.; Fujioka, M.; Uemori, R. Toughening mechanism in 5%Mn and 10%Mn martensitic steels treated by thermo-mechanical control process. Mater. Sci. Eng. A 2021, 812, 141058. [Google Scholar] [CrossRef]
- Novikov, I.I.; Zolotarevskiy, V.S.; Portnoi, V.K.; Belov, N.A.; Livanov, D.V.; Medvedeva, S.V.; Aksenov, A.A.; Evseev, Y.V. Metal Science. Volume 1. Fundamentals of Metal Science: Textbook; MISiS: Moscow, Russia, 2014; p. 496. (In Russian) [Google Scholar]
- Nadgorny, E.M. Dislocation Dynamics and Mechanical Properties of Crystals. Prog. Mater Sci. 1988, 31, 1–530. [Google Scholar] [CrossRef]
- Nikanorov, S.P.; Kardashev, B.K. Elasticity and Dislocation Inelasticity of Crystals; Nauka: Moscow, Russia, 1985; p. 256. (In Russian) [Google Scholar]
- Shtremel, M.A. Alloy Strength. Part 2. Deformation: A Textbook for Universities; MISiS: Moscow, Russia, 1997; p. 527. (In Russian) [Google Scholar]
- Islamgaliev, R.K.; Nikitina, M.A.; Ganeev, A.V.; Sitdikov, V.D. Strengthening mechanisms in ultrafine-grained ferritic/martensitic steel produced by equal channel angular pressing. Mater. Sci. Eng. A 2019, 744, 163–170. [Google Scholar] [CrossRef]
- Sitdikov, V.D.; Islamgaliev, R.K.; Nikitina, M.A.; Sitdikova, G.F.; Alexandrov, I.V.; Wei, W. Analysis of precipitates in UFG metallic materials. Phil. Mag. 2019, 99, 73–91. [Google Scholar] [CrossRef]
- Kantor, M.M.; Vorkachev, K.G.; Solntsev, K.A. Nature of the Scatter in the Impact Toughness of Low-Carbon, Low-Alloy Steel for Fracture under Ductile-to-Brittle Transition Conditions. Inorg. Mater. 2020, 56, 1206–1210. [Google Scholar] [CrossRef]
- Poluhin, P.I.; Gorelik, S.S.; Vorontsov, V.K. Physical Basis of Plastic Deformation; Metallurgy: Moscow, Russia, 1982; p. 584. (In Russian) [Google Scholar]
- Wang, C.; Wang, M.; Shi, J.; Hui, W.; Dong, H. Effect of microstructural refinement on the toughness of low carbon martensitic steel. Scripta Mater. 2008, 58, 492–495. [Google Scholar] [CrossRef]
- Inoue, T.; Qiu, H.; Ueji, R.; Kimura, Y. Ductile-to-Brittle Transition and Brittle Fracture Stress of Ultrafine-Grained Low-Carbon Steel. Materials 2021, 14, 1634. [Google Scholar] [CrossRef]
- Inoue, T.; Kimura, Y. Effect of Delamination and Grain Refinement on Fracture Energy of Ultrafine-Grained Steel Determined Using an Instrumented Charpy Impact Test. Materials 2022, 15, 867. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Xiao, D.; Luo, D.; Tuo, C.; Wu, H. Effect of Quenching and Tempering on Mechanical Properties and Impact Fracture Behavior of Low-Carbon Low-Alloy Steel. Metals 2022, 12, 1087. [Google Scholar] [CrossRef]
- Tkachev, E.; Belyakov, A.; Kaibyshev, R. Effect of Hot-Rolling on the Microstructure and Impact Toughness of an Advanced 9%Cr Steel. Crystals 2023, 13, 492. [Google Scholar] [CrossRef]
- Li, X.; Lu, G.; Wang, Q.; Zhao, J.; Xie, Z.; Misra, R.D.K.; Shang, C. The Effects of Prior Austenite Grain Refinement on Strength and Toughness of High-Strength Low-Alloy Steel. Metals 2022, 12, 28. [Google Scholar] [CrossRef]
- Chatterjee, A.; Ghosh, A.; Moitra, A.; Bhaduri, A.K.; Mitra, R.; Chakrabarti, D. Role of hierarchical martensitic microstructure on localized deformation and fracture of 9Cr-1Mo steel under impact loading at different temperatures. Int. J. Plast. 2018, 104, 104–133. [Google Scholar] [CrossRef]
- Jain, V.; Chatterjee, A.; Patra, S.; Chakrabarti, D.; Ghosh, A. Effect of tilt and twist angles on the cleavage crack propagation in ferritic steel. Int. J. Fract. 2020, 225, 115–121. [Google Scholar] [CrossRef]
- Niu, Y.; Jia, S.; Liu, Q.; Tong, S.; Li, B.; Ren, Y.; Wang, B. Influence of Effective Grain Size on Low Temperature Toughness of High-Strength Pipeline Steel. Materials 2019, 12, 3672. [Google Scholar] [CrossRef]
- Hannula, J.; Porter, D.; Kaijalainen, A.; Somani, M.; Kömi, J. Optimization of Niobium Content in Direct Quenched High-Strength Steel. Metals 2020, 10, 807. [Google Scholar] [CrossRef]
- Kardashev, B.K.; Nefagin, A.S.; Ermolaev, G.N.; Leont’eva-Smirnova, M.V.; Potapenko, M.M.; Chernov, V.M. Internal friction and brittle-ductile transition in structural materials. Tech. Phys. Lett. 2006, 32, 799–801. [Google Scholar] [CrossRef]
- Grigoriev, E.G.; Perlovich, Y.A.; Solovyov, G.I.; Udovsky, A.L.; Yakushin, V.L. Physical Foundations of Strength. Radiation Physics of Solid Long Body. Computer Modeling. In Book Physical Materials Science; Kalin, B.A., Ed.; MEPhI: Moscow, Russia, 2008; Volume 4, p. 696. (In Russian) [Google Scholar]
- Rybin, V.V. Large Plastic Deformation and Destruction of Metals; Metallurgy: Moscow, Russia, 1986; p. 224. (In Russian) [Google Scholar]
- Trefilov, V.I.; Milman, Y.V.; Firstov, S.A. Physical Basis of the Strength of Refractory Metals; Naukova Dumka: Kiev, Ukraine, 1975; p. 314. (In Russian) [Google Scholar]
- Hirth, J.P.; Lothe, J. Theory of Dislocation; McGraw-Hill Book Company: New York, NY, USA, 1967; p. 760. [Google Scholar]
- Indenbom, V.L.; Lothe, J. Elastic Strain Fields and Dislocation Mobility; North-Holland: Amsterdam, The Netherlands, 1992; p. 778. [Google Scholar]
- Indenbom, V.L.; Chernov, V.M. Dynamic waves along dislocations overcoming local obstacles. Phys. Solid State 1979, 21, 1311–1320. [Google Scholar]
- Chatterjee, A.; Basiruddin, M.S.; Ghosh, A.; Mitra, R.; Chakrabarti, D. Combining crystal plasticity and electron microscopy to elucidate texture dependent micro-mechanisms of tensile deformation in lath martensitic steel. Int. J. Plast. 2022, 153, 103251. [Google Scholar] [CrossRef]
- Morozova, A.N.; Schapov, G.V.; Khotinov, V.A.; Farber, V.M.; Selivanova, O.V. Influence of the Direction of Propagation of the Main Crack on the Fracture Mechanism upon Impact Bending of Samples of High-Viscous Steel with a Filamentary Structure. Compression Region. Phys. Met. Metallogr. 2019, 120, 907–913. [Google Scholar] [CrossRef]
- Farber, V.M.; Khotinov, V.A.; Belikov, S.V.; Selivanova, O.V.; Lezhnin, N.V.; Morozova, A.N.; Karabonalov, M.S.; Zhilyakov, A.Y. Separations in Steels Subjected to Controlled Rolling, Followed by Accelerated Cooling. Phys. Met. Metallogr. 2016, 117, 407–421. [Google Scholar] [CrossRef]
- Morozova, A.N.; Schapov, G.V.; Khotinov, V.A.; Farber, V.M.; Selivanova, O.V. Influence of the Direction of Propagation of the Main Crack on the Fracture Mechanism upon Impact Bending of Samples of High-Viscous Steel with a Filamentary Structure. Tensile Region. Phys. Met. Metallogr. 2019, 120, 919–924. [Google Scholar] [CrossRef]
- Farber, V.M.; Pishmintzev, I.Y.; Arabey, A.B.; Khotinov, V.A.; Lejnin, N.V.; Mal’tzeva, A.M. Model of growth of the splitting of deviations from ideality. Izvestiya. Ferr. Metall. 2012, 55, 34–40. [Google Scholar] [CrossRef]
- Cho, L.; Bradley, P.E.; Lauria, D.S.; Martin, M.L.; Connolly, M.J.; Benzing, J.T.; Seo, E.J.; Findley, K.O.; Speer, J.G.; Slifka, A.J. Characteristics and mechanisms of hydrogen-induced quasi-cleavage fracture of lath martensitic steel. Acta Mater. 2021, 206, 116635. [Google Scholar] [CrossRef]
- Kantor, M.M.; Vorkachev, K.G.; Bozhenov, V.A.; Solntsev, K.A. The Role of Splitting Phenomenon under Fracture of Low-Carbon Microalloyed X80 Pipeline Steels during Multiple Charpy Impact Tests. Appl. Mech. 2022, 3, 740–756. [Google Scholar] [CrossRef]
- Shtremel, M.A. Informativeness of measurements of impact toughness. Met. Sci. Heat Treat. 2008, 50, 544–557. [Google Scholar] [CrossRef]
- Karzov, G.P.; Margolin, B.Z.; Shvecova, V.A. Physical and Mechanical Modeling of Destruction Processes; Politechnika: St. Petersburg, Russia, 1993; p. 391. (In Russian) [Google Scholar]
- Kantor, M.M.; Sudin, V.V.; Solncev, K.A. Deformation features of the propagation of cleavage cracks in a ferritic-pearlite microstructure in the ductile to brittle transition interval. Inorg. Mater. 2021, 57, 641–653. [Google Scholar] [CrossRef]
C | Cr | Mn | Mo | Nb | V | W | Ni | N | Si | Ta | Ce | Ti | B | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.16 | 11.17 | 0.74 | 0.01 | 0.01 | 0.25 | 1.13 | 0.03 | 0.04 | 0.33 | 0.08 | 0.15 | 0.05 | 0.006 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polekhina, N.; Osipova, V.; Litovchenko, I.; Spiridonova, K.; Akkuzin, S.; Chernov, V.; Leontyeva-Smirnova, M.; Degtyarev, N.; Moroz, K.; Kardashev, B. The Cold-Brittleness Regularities of Low-Activation Ferritic-Martensitic Steel EK-181. Metals 2023, 13, 2012. https://doi.org/10.3390/met13122012
Polekhina N, Osipova V, Litovchenko I, Spiridonova K, Akkuzin S, Chernov V, Leontyeva-Smirnova M, Degtyarev N, Moroz K, Kardashev B. The Cold-Brittleness Regularities of Low-Activation Ferritic-Martensitic Steel EK-181. Metals. 2023; 13(12):2012. https://doi.org/10.3390/met13122012
Chicago/Turabian StylePolekhina, Nadezhda, Valeria Osipova, Igor Litovchenko, Kseniya Spiridonova, Sergey Akkuzin, Vyacheslav Chernov, Mariya Leontyeva-Smirnova, Nikolay Degtyarev, Kirill Moroz, and Boris Kardashev. 2023. "The Cold-Brittleness Regularities of Low-Activation Ferritic-Martensitic Steel EK-181" Metals 13, no. 12: 2012. https://doi.org/10.3390/met13122012
APA StylePolekhina, N., Osipova, V., Litovchenko, I., Spiridonova, K., Akkuzin, S., Chernov, V., Leontyeva-Smirnova, M., Degtyarev, N., Moroz, K., & Kardashev, B. (2023). The Cold-Brittleness Regularities of Low-Activation Ferritic-Martensitic Steel EK-181. Metals, 13(12), 2012. https://doi.org/10.3390/met13122012