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Abstract: The addition of active seed for increasing the precipitation rate leads to the formation of
fine Al(OH)3 particles that complicates separation of solid from the mother liquor. In this study,
the enhanced precipitation of coarse Al(OH)3 from sodium aluminate solution using active agglom-
erated seed was investigated. Aluminum salt (Al2(SO4)3) were used for active agglomerated seed
precipitation at the initial of the process. About 50% of precipitation rate was obtained when these
agglomerates were used as a seed in the amount of 20 g L−1 at 25 ◦C within 10 h. The agglomerated
active seed and precipitate samples were characterized using X-ray diffraction (XRD), scanning
electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). SEM images showed
that agglomerates consist of flake-like particles that can be stick together by bayerite (β-Al(OH)3)
acting as a binder. The precipitation temperature above 35 ◦C and the high concentration of free
alkali (αk = 1.645Na2Ok/Al2O3 > 3) lead to the agglomerates refinement that can be associated with
the bayerite dissolution.

Keywords: alumina; Bayer process; bauxite; seeded precipitation; coarse gibbsite; agglomeration

1. Introduction

The alkaline Bayer process is used to produce more than 90% of alumina world-
wide [1,2]. The main rate-limiting step of the Bayer process is the precipitation of gibbsite
from sodium aluminate solution. Extensive investigations were conducted in order to
understand the precipitation mechanism and find possible ways to increase the precipita-
tion rate. Problems caused by long-lasting precipitation and a high amount of seed in the
precipitation are still major issues for alumina refineries [3].

Several methods have been proposed to enhance the precipitation rate and speed, such
as mechanical or thermal activation of the industrial seed [4,5], active seed and additive
application [6–8], and operating conditions optimization [9]. Seed surface purification from
organic and nonorganic species can also enhance seeded precipitation rate [10–12] because
adsorbed impurities on the seed surface can reduce the active site availability.

The use of freshly precipitated active aluminum hydroxide and additives, along
with an increased precipitation rate, allows to eliminate seed recycling. However, the
major disadvantage of all methods for increasing precipitation rate is the refinement of the
product. To overcome this problem, the precipitation of coarse aluminum hydroxide was
reported to be successful using the two-stage precipitation process [13,14]. This process
involves the rapid precipitation of active (or even amorphous) aluminum hydroxide on
the first stage, followed by the subsequent recrystallisation with the formation of a coarse
product. However, the main disadvantage of the two-stage precipitation is the filtering
of fine aluminum hydroxide from the mother liquor after the first stage. Adding pulp or
unwashed hydroxide to the second stage leads to a higher caustic modulus.
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In this research, we chose aluminum salts as an additive because of their potential to
enhance the precipitation rate even if a small amount of salt was added (5 g L−1 or less) [15].
When an aluminum salt is added in sodium aluminate solution, for example aluminum
sulphate (Al2(SO4)3·18H2O), there are several reactions proceeded:

• Aluminum sulphate reacts with sodium aluminate to form aluminum hydroxide and
sodium sulphate:

Al2(SO4)3·18H2O + 6Na[Al(OH)4] = 8Al(OH)3 + 3Na2SO4 +18H2O, (1)

• The neutralization of free caustic also takes place:

Al2(SO4)3·18H2O + 6NaOH = 2Al(OH)3 + 3Na2SO4 +18H2O. (2)

Bhatacharia et al. [16] demonstrated that aluminum hydroxide obtained by reactions
(1) and (2) has a boehmite structure and strong activity. Such activity leads to the fast pre-
cipitation of aluminum hydroxide from sodium aluminate solution. The 50% precipitation
rate can be reached within 8 h. Due to the nucleation predominance, a fine powder is
obtained. Ye et al. [17] showed that, under certain conditions, fine particles can agglomerate
in the precipitation process even if an active seed was added. The conditions that help to
achieve these results include: 1–4 g L−1 of active seed, a precipitation time of less than 20 h,
and temperatures below 40 ◦C. However, the average particle size obtained in this study
did not exceed 30 µm and began to significantly decrease after reaching the precipitation
rate of 50%.

The aim of this research was to determine certain conditions when agglomeration
and/or crystal growth begin to predominate even if active seed is added to the precipitation.
It allows for the efficient synthesis of coarse aluminum hydroxide agglomerates within
a relatively short period of time. The effects of temperature, time, seed amount and
Na2Ok concentration on precipitation rate and particles size were studied to evaluate such
conditions. The active seed and solid product were characterized using X-ray diffraction
(XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy
(FTIR). The data obtained in this research should help to better understand the mechanism
of product refinement with the addition of active seed and how the precipitation process
could be enhanced without further problems with pulp filtration.

2. Materials and Methods
2.1. Materials

Supersaturated sodium aluminate solution was prepared by dissolving aluminium
hydroxide (JSC “BaselCement-Pikalevo”, Pikalevo, Russia) in an aqueous sodium hydrox-
ide solution (JSC Soda, Sterlitamak, Russia). All reagents were of analytical grade. The
solution was filtered twice and then diluted to the required volume at 60 ◦C. Diluted solu-
tion was used for Al and Na2O analysis by ICP-OES. The composition of the solution was
expressed using the caustic molar ratio αk. αk = 1.645Na2Ok/Al2O3, where Na2Ok is the
concentration of NaOH in solution expressed as Na2Ok, g L−1; Al2O3 is the concentration
of alumina, g L−1.

Active seed was prepared by addition 6.7 g L−1 Al2SO4·18H2O into sodium aluminate
solution with CNa2O 130 g L−1 and αk 1.65 at 25 ◦C for 16 h and mild agitation formed by
circulating of the solution through the reactor by the pump. Sodium aluminate solution
with CNa2O 130–160 g L−1 and αk 1.5 was used in the experiments seeded by as prepared
active seed. All reagents were of analytical purity.

2.2. Experimental

In the precipitation experiments with active seed addition, 400 mL of the sodium
aluminate solution with Na2Ok = 130, 140, 150 and 160 g L−1 and αk = 1.5 (molar ratio that
is used on modern alumina refineries) was transferred into the 0.5 L precipitator-shaped
vessel (Figure 1). The reactor has openings for injecting chemical reagents as well as for
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temperature control and the recycling of evaporated water via a water-cooled refrigerator.
The seed amount was 10, 20, 30 and 40 g L−1. The stirring was made by pumping the
solution through the slurry on the bottom of the vessel that helps to prevent agglomerates
breaking by overhead stirrer. Samples were taken at intervals via syringe and centrifuged.
The solution was used for Na2O and Al2O3 analysis. Solid samples were filtered, washed
and analyzed by physical methods.
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Figure 1. Schematic of the precipitator-shaped experimental 0.5 L set-up.

2.3. Analysis

The phase composition of the solid samples was determined by X-ray diffraction
(XRD) using a Rigaku D/MAX-2200 diffractometer equipped with a Cu-Kα radiation
source (Rikagu Corp., Tokyo, Japan) using the “Match! 3” software (Version 3.12, Crystal
impact, Bonn, Germany). Chemical analysis was performed by inductively coupled plasma
optical emission spectrometry (ICP-OES) analysis using a spectrometer Vista Pro (Varian
Optical Spectroscopy Instr., Mulgrave, Australia). For quality assurance, samples were
analyzed twice. The morphological analysis of the solid samples was determined by
scanning electron microscopy (SEM, JSM-6390LV microscope, JEOL Ltd., Tokyo, Japan).
The particle size distribution and mean particle size analysis were performed by the laser
diffraction method (LD) using an Analysette 22 NanoTec (Fritsch, Idar-Oberstein, Germany).
The specific surface area of the samples was determined via the Brunauer-Emmett-Teller
method (BET) using NOVA 1200e (Quantachrome Instruments, Boynton Beach, FL, USA).
Before BET analysis, all samples were subjected to degassing under vacuum at 200 ◦C
for 12 h.

3. Results and Discussion
3.1. Active Seed Preparation

To obtain an active coarse seed, a precipitation process of aluminum hydroxide from
an alkaline aluminate solution is used by adding aluminum sulfate in an amount of
6.7 g L−1 at a temperature of 25 ◦C. The precipitation of finely dispersed aluminum hy-
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droxide with the addition of aluminum salts was demonstrated in [16]. According to the
research data, the mechanism of fine particle precipitation is associated with the formation
of a large number of crystallization centers at the initial moment. This is achieved by
Equations (1) and (2) [16]. However, below 40 ◦C and in the absence of intensive mixing,
the growth of crystals will occur. The particle size distribution, SEM images, X-ray and
IR-spectra of the resulting product are shown in Figures 2–5.
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According to Figure 1, the product obtained at low temperature and mild mixing
conditions with the addition of aluminum sulfate is very large, with an average particle
size of 117 µm. SEM images in Figure 2 shows that the product is represented by the
agglomerates of the flake-like particles.

The XRD pattern in Figure 4 shows that the precipitate consists of gibbsite and a small
amount of bayerite. The presence of bayerite peaks at 3654 cm−1 can also be observed on
the FTIR-spectra of the active seed (see Figure 5). Bayerite can play the role of the binder
that sticks gibbsite particles together.

The same phenomenon was found by Ye et al. [17] in the investigation of sodium
aluminate solution precipitation using active seed at 45 ◦C and 0.5–4.0 g L−1 seed addition.
It was discovered that flake-like crystals were growing under such conditions on the active
site of seed, and these particles were cemented by bayerite. When the temperature is
increased, bayerite is dissolved, which leads to the breakdown of the agglomerates and
the formation of small particles, which serve as nucleation centers and contribute to the
refinement of the product.

The lack of stirring promotes the agglomeration of the flake-like crystals, which results
in a coarser particle size distribution (PSD) according to Figure 2.

As a result, when aluminum salts are added to a sodium aluminate solution, active
aluminum hydroxide precipitate (with high amount of active site) are formed. On each active
site, flake-like crystals begin to form which become active sites on their own. Furthermore,
deposited crystals begin to agglomerate with the help of bayerite and it is possible to obtain
coarse agglomerates of flake-like gibbsite (FLG). FLG would result in an increased precipitation
rate due to its high surface area. The specific surface area (BET) of the active seed was found
to be 34 m g−1, which is much higher than the 0.1–5 m g−1 for the industrial seed.

3.2. Kinetics of Precipitation from Sodium Aluminate Solution Using Coarse Active Seed

It was previously demonstrated [4,18,19] that the most effective way to increase the
degree of precipitation of gibbsite from an alkaline aluminate solution is to use an active
seed—a seed with a high specific surface area. Even when using a small amount of such a
seed (less than 20 g L−1), it is possible to achieve a high precipitation degree in a short time.
This is in contrast to using a standard industrial seed, which requires more than 400 g L−1

of the solid for intensive precipitation.
In this study, the kinetics of the FLG precipitation from an alkali-aluminate solution

using active seed was studied in more detail, and the effect of the seed amount, temperature,
and concentration on the rate of the process was investigated. The seed ratio was less than
0.3 units (10–40 g of solid per 1 L) in all experiments, which makes it possible to exclude
the autocatalytic effect of the process, that could be caused by an increase in the amount
of precipitate.

Since the autocatalytic effect of the precipitated aluminum hydroxide in this case is
already excluded, the methodology proposed in the article [20] was used to calculate the
activation energy of the process. The authors of research [20] used Equation (3) to reflect
the change in concentration of the solution:

dC/dt = K(C − Ce)
2, (3)

where C is the concentration of Al2O3 at a given time, g L−1; Ce is the equilibrium concen-
tration of Al2O3, g L−1; K is the precipitation rate constant.

If we integrate Equation (3), the following Equations (4) and (5) can be obtained:∫ C

C0

dC

(C − Ce)
2 =

∫ ∞

0
Kdt, (4)

1
C − Ce

− 1
C0 − Ce

= Kt. (5)
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Using experimental data obtained at various times for a given solution at a given
temperature, it is possible to determine the constant K by the slope of the curve in coordinate
1/C − t (Equation (5)).

Equation (7) can be obtained from the Arrhenius Equation (6) by taking the logarithm.

K = Ae−E/RT (6)

lgK = lgA − Ea/(2.3RT) (7)

The value of Ea can then be found by using the slope of the straight line in coordinates
lgK − 1/T.

The equilibrium concentration of Al2O3 was calculated using Equation (8) proposed
by Misra [21]:

Ce = Na2Okexp(6.211 − 2486.7/T + 1.088Na2Ok/T) (8)

Figure 6 shows the results of experiments on the effect of precipitation time and
temperature at Na2Ok = 150 g L−1, αk = 1.5 and the active seed amount of 20 g L−1.
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Figure 6. The effect of temperature and time on the precipitation of the flake-like gibbsite (FLG) from
an alkaline aluminate solution (Na2Ok = 150 g L−1, αk = 1.5) using active aluminum hydroxide in
the amount of 20 g g L−1 as a seed.

The results of the experiments in Figure 6 were used to construct plots in coordinates
1000/(C − Ce) − τ (Figure 7). The precipitation rate constants were determined from the
slopes of the straight lines in Figure 7. The results are presented in Table 1.
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Figure 7. Dependence of 1000/(C − Ce) in Figure 6 on the duration of precipitation at various
temperatures.

Table 1. Results of the processing of the data in Figure 7.

T, K 293 298 303 308

1000/T, K−1 3.413 3.356 3.301 3.247

K 3.796 3.477 3.147 2.545

lnK −0.310 0.203 0.683 1.253

The lnK—1000/T dependence (Figure 8) was constructed based on the data obtained
in Table 1. The slope of the straight line obtained from the plot of ln(k) vs. 1/T was used
to calculate the value of the apparent activation energy of the precipitation process using
Equation (7).
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According to the slope of the straight line obtained in Figure 8, the value Ea = 77.5 kJ mol−1

is determined, which indicates a possible kinetic limitations of the process. The obtained value
is also in good agreement with the literature data for the precipitation process using a standard
seed (60–80 kJ mol−1) [22–24]. However, the time required for precipitation was reduced by
5 times. This indicates the crucial role of the seed surface on the rate of precipitation from the
alkali-aluminate solution. Further experiments were conducted to investigate the effect of the
initial seed amount on the rate of the process. The process temperature was 25 ◦C throughout
all experiments, and the Na2O concentration was 150 g L−1. The experimental results are
presented in Figure 9.
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Figure 9. The effect of the duration and amount of active seed on the degree of precipitation at 25 ◦C
and the Na2O concentration 150 g L−1.

As shown in Figure 9, an increase in the amount of active seed significantly increases
the degree of precipitation. Therefore, with an increase in the amount of seed from 10 to
40 g L−1, the degree of the precipitation at 25 ◦C, and the concentration of Na2Ok 150 g L−1

after 10 h increases from 42.9% to 53.2%.
The experimental results presented in Figure 9 were fitted with linear regression in a

similar way to the method used to construct straight lines in Figure 7. Figure 10 shows the
results of linearization.
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The precipitation rate constants were determined from the slopes of the straight lines
in Figure 10. Since the constant A in the Arrhenius equation (Equation (7)) depends on
a large number of parameters, including the seed amount and Na2Ok concentration, this
equation can be written as follows (Equation (9)).

K = GnCme−E/RT, (9)

where G is the amount of active seed per unit of the solution volume, C is the Na2Ok
concentration, and n, m are the seed amount and alkali concentration orders, respectively.

In order to determine the order of the amount of seed, it is necessary to plot a graph
in lgK − lgC coordinates. The slope of the straight line can then be used to determine the
order of the amount of seed.

The results of processing the data in Figure 10 are presented in Table 2.

Table 2. Results of the processing of the data in Figure 10.

G, g L−1 10 20 30

lnG 2.303 2.996 3.401

lnK −0.077 0.183 0.390

Next, the graph in lnK − lnG coordinates (Figure 11) was plotted. Then according to
Equation (9), the order value of the seed amount was calculated (n = 0.400).
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The concentration of caustic alkali in the solution is also important because, as the con-
centration of alkali increases, the nature of the aluminate ions in the solution changes [25]
and the degree of the supersaturation (C0 − Ce) is decreased [26]. Therefore, the experi-
ments were continued by investigating the effect of Na2Ok concentration on the rate of the
process. In all experiments, the temperature was 25 ◦C and the amount of active seed was
20 g L−1. The experimental results are presented in Figure 12.
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As shown in Figure 12, an increase in caustic alkali concentration leads to a decrease in
degree of precipitation. When the Na2Ok concentration is increased from 130 to 160 g L−1,
the degree of precipitation at 25 ◦C and seed amount 20 g L−1 after 10 h decreases from
57.8 to 44.0%.

The experimental results presented in Figure 12 were linearized in a similar way to the
method used to plot the lines in Figure 7. Figure 13 shows the results of linearization. By using
Equation (9), the value of the order of Na2Ok concentration equal to −5.1 was calculated.
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Figure 13. Dependence of 1000/(C − Ce) on time at different concentrations of caustic alkali.

The slope of the lines in Figure 13 was used to determine the precipitation rate
constants. The data in Figure 13 have been processed and the results are presented in
Table 3. The dependence of lgK on lgCNa2O was plotted (Figure 14).
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Table 3. Results of the processing of the curves in Figure 13.

CNa2O, g dm–3 130 140 150

lnCNa2O 4.868 4.942 5.011

lnK 0.907 0.526 0.183
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Considering the data obtained and Equations (5) and (9), the following semi-empirical
expression (Equation (10)) can be derived.

1
C − Ce

− 1
C0 − Ce

= K0C−5.0
Na2OG0.4e−77,500/RTt. (10)

This equation can be used to calculate the precipitation ratio of FLG from a sodium
aluminate solution, when an agglomerated active seed is used.

To determine the constant K0, the dependence of 1/(C − Ce) − 1/(C0 − Ce) on
C−5.0G0.40e−77,500/RTt was constructed for all known values at different temperatures, the
amount of seed, Na2Ok concentration, and time (Figure 15).
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From the results in Figure 15, the constant k0 1.04 × 1021 was obtained, and the
semiempirical Equation (11) was derived.

1
C − Ce

− 1
C0 − Ce

= 1.04 × 1021C−5.0G0.40e−77,500/RTt (11)

The results show that temperature and concentration of caustic alkali have the signif-
icant effect on the FLG precipitation. It turned out that the order of the amount of seed
in Equation (11) was relatively low. However, the use of an active seed reduces diffusion
limitations, and it also increases the degree of precipitation by further increasing the surface
area of the seed. According to literature data [27–29], when precipitation occurs using a
metallurgical quality seed, the activation energy of the process has the same order, but the
precipitation rate is much lower. It can be connected with the predominance of nucleation in
the FLG precipitation process because gibbsite crystal growth rate is the slowest stage of the
Bayer precipitation process [30]. Therefore, the FLG addition accelerates the nucleation pro-
cess. The reason for this may be that the specific surface area of the FLG is 30 times higher
than that of the industrial seed. These data can be used to explain the mechanism of FLG
precipitation from sodium aluminate solution. Based on experiments using compounds
with a high specific surface area as a seed [31], it was assumed that the role of the seed
during precipitation is the adsorption of polymer ions and/or associates. After adsorption,
due to the fact that the Gibbs energy change at the phase interface for crystallization is
lower than under homogeneous conditions, polycondensation of associates occurs with the
formation of nucleai.

It was later proved that there is an adsorption layer with a thickness of 0.3 to 10 nm on
the surface of the seed in an aluminate solution using modern methods of analysis carried
out by Vernon et al. [32,33]. Although the nature of this layer is not completely clear; there
are assumptions that it consists of polymer ions [25], and Vernon et al. [32] suggest that
this adsorption layer consists of sodium cations. Sodium cations interfere with the supply
of building material to the crystal surface, which is a reason for the slow crystallization of
gibbsite from alkaline aluminate solutions.

The theory of the existence of an adsorption layer of sodium ions is not capable of
explaining the reason why, in the late period of precipitation, only the seed that has not
been completely washed from the mother liquor has the seeding ability [34]. It can be
explained by the presence of an adsorption layer containing polymerized aluminate ions
on the surface of the seed that has not been washed from the mother liquor. The high
amount of polymerized ions adsorbed on the surface of FLG increases the supersaturation
of the solution at the interface, which leads to faster precipitation. The higher the specific
surface area of the seed, the greater its adsorption capacity and the lower the limitations to
precipitation will be.

3.3. Solid Product Characterization

Table 4 shows that the PSD of FLG precipitated at 25 ◦C for 8 h at a Na2O concentration
of 150 g L−1 and a seed amount of 20 g L−1, as well as PSD of the product obtained under
the same other equal conditions, but at 35 ◦C. For comparison, the PSD of metallurgical
grade aluminum hydroxide is also given.

Table 4. Results of the processing of the curves in Figure 13.

Fraction, µm –45 45–63 63–125 125–200 200–315 +315 d50

FLG 35 ◦C 100.0 - - - - - 1.5

FLG 25 ◦C 24.7 6.1 22.4 23.7 14.9 8.2 115.5

Industrial seed 13.5 19.2 62.5 4.0 1.0 - 69
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At high temperature, it is evident that the product is finely dispersed, which may be
due to the dissolution of agglomerates sticked together by bayerite. Lee et al. observed a
similar phenomenon when at a high degree of precipitation (at later stages of precipitation)
and elevated temperature, the product was refined. The reason for this is the dissolution of
the bayerite glue at a high caustic modulus, when there is a large amount of free caustic
alkali in the solution. The high temperature also causes the solution to become unsaturated
relative to bayerite. Figure 16 illustrates the result of examination of the X-ray patterns
section of hydroxides from Table 4.
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Figure 16. XRD pattern of the aluminum hydroxide samples in a certain area of interplane reflections.

In the product obtained at 25 ◦C, a peak of bayerite is observed at an angle of 2Theta
equal to 53◦. This peak disappears in the product obtained at 35 ◦C that can indicate bayerite
dissolution at this temperature. The FLG peaks are wider and lower than metallurgical
grade hydroxide, which indicates a lower degree of crystallization. The results of the DTA
analysis (Figure 17) also confirm a lower degree of crystallization and a small particle size. It
is typical for finely dispersed aluminum hydroxide to skip the stage of boehmite formation.



Metals 2023, 13, 193 15 of 17

Metals 2023, 13, x FOR PEER REVIEW 16 of 18 
 

 

metallurgical grade hydroxide, which indicates a lower degree of crystallization. The re-
sults of the DTA analysis (Figure 17) also confirm a lower degree of crystallization and a 
small particle size. It is typical for finely dispersed aluminum hydroxide to skip the stage 
of boehmite formation. 

 
Figure 17. Results of DTA analysis of FLG hydroxide and industrial aluminum hydroxide of metal-
lurgical grade (where (x.y) is a peak coordinates). 

4. Conclusions 
In this article, the possibility of coarse active aluminum hydroxide precipitation from 

the sodium aluminate solution of the Bayer process was demonstrated. It is possible to 
reduce the precipitation time by 4–5 times compared to the industrial Bayer precipitation 
by using this hydroxide as a seed. The result of this process is a product composed of 
flake-like gibbsite (FLG) particles, which can be bonded together by bayerite. Due to the 
high temperature (>35 °C) and high caustic modulus, bayerite dissolution and agglomer-
ate breakdown occur. The coarse-activated aluminum hydroxide obtained in this research 
has a specific surface area higher than 30 m2 g−1 that is 100 times higher than the metallur-
gical grade gibbsite. Flake-like agglomerated hydroxide can be used for two-stage precip-
itation, where the first stage is a rapid precipitation from the solution, and the second 
stage is a recrystallization of the first stage product. The effect of different parameters on 
the FLG precipitation was elaborated: 
1. The effect of temperature and time on the FLG precipitation indicates that the tem-

perature increase from 20 to 35 °C leads to an increase in the precipitation rate from 
40% to 60%. It was found that the maximum precipitation rate was obtained at 35 °C, 
which is in agreement with the literature data on kinetics of the precipitation of gibbs-
ite from sodium aluminate solution. 

2. The increase in the amount of seed from 10 g L−1 to 40 g L−1 helps to increase the 
precipitation rate from 42.9% to 54.8%. 

3. Relatively high alkali concentrations were found to inhibit the precipitation of FLG. 
An increase in the Na2Ok concentration from 130 to 160 g L−1 leads to a decrease in 
the precipitation rate from 58.3 to 44.0%. 

Author Contributions: Conceptualization, A.S. and I.L.; methodology, A.S.; software, D.V.; valida-
tion, A.S., I.L. and K.A.; formal analysis, K.A.; investigation, A.S.; resources, I.L.; data curation, I.L.; 
writing—original draft preparation, A.S.; writing—review and editing, D.V.; visualization, K.A.; 
supervision, I.L.; project administration, I.L.; funding acquisition, A.S. All authors have read and 
agreed to the published version of the manuscript. 

Figure 17. Results of DTA analysis of FLG hydroxide and industrial aluminum hydroxide of metal-
lurgical grade (where (x,y) is a peak coordinates).

4. Conclusions

In this article, the possibility of coarse active aluminum hydroxide precipitation from
the sodium aluminate solution of the Bayer process was demonstrated. It is possible to
reduce the precipitation time by 4–5 times compared to the industrial Bayer precipitation
by using this hydroxide as a seed. The result of this process is a product composed of
flake-like gibbsite (FLG) particles, which can be bonded together by bayerite. Due to the
high temperature (>35 ◦C) and high caustic modulus, bayerite dissolution and agglomerate
breakdown occur. The coarse-activated aluminum hydroxide obtained in this research has
a specific surface area higher than 30 m2 g−1 that is 100 times higher than the metallurgical
grade gibbsite. Flake-like agglomerated hydroxide can be used for two-stage precipitation,
where the first stage is a rapid precipitation from the solution, and the second stage is a
recrystallization of the first stage product. The effect of different parameters on the FLG
precipitation was elaborated:

1. The effect of temperature and time on the FLG precipitation indicates that the tempera-
ture increase from 20 to 35 ◦C leads to an increase in the precipitation rate from 40% to
60%. It was found that the maximum precipitation rate was obtained at 35 ◦C, which
is in agreement with the literature data on kinetics of the precipitation of gibbsite from
sodium aluminate solution.

2. The increase in the amount of seed from 10 g L−1 to 40 g L−1 helps to increase the
precipitation rate from 42.9% to 54.8%.

3. Relatively high alkali concentrations were found to inhibit the precipitation of FLG.
An increase in the Na2Ok concentration from 130 to 160 g L−1 leads to a decrease in
the precipitation rate from 58.3 to 44.0%.
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