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Abstract: A uniaxial high-temperature tensile test of an AA7075 aluminum alloy sheet was conducted
using an established induction heating test system. Five different types of specimens were designed
to obtain the stress–strain curves at different forming temperatures and strain rates so as to construct
and modify the Johnson–Cook constitutive model. The uniaxial tensile test of different stress states
was numerically simulated using ABAQUS finite element software, and the stress triaxiality and
equivalent fracture strain parameters were extracted. The Johnson–Cook ductile fracture model was
constructed, and an error evaluation scheme was designed to determine the best failure parameter
combination. Based on the obtained Johnson–Cook ductile fracture model, finite element models of
different strain paths were constructed, and theoretical forming limit curves at different temperatures
and strain rates were obtained. The results of the Nakazima test and finite element simulation are
mostly consistent, which confirms the reliability of the constructed fracture model and theoretical
forming limit curves.

Keywords: AA7075 aluminum alloy; Johnson–Cook model; finite element simulation; theoretical
forming limit curve

1. Introduction

In the automotive industry, the pursuit of safe and lightweight materials is unremit-
ting [1–3]. The 7-series aluminum alloy has broad development prospects in the field of
electric vehicles because of its light weight, high strength, good corrosion resistance, good
formability, and excellent impact resistance. In addition, the aluminum alloy industry has a
wide range of applications and unique advantages in aerospace, weaponry development,
and mobile phone manufacturing. Therefore, the research progress of aluminum alloy-
related processes has become a key factor related to the development of key industries [4–9].
Stamping is the main aspect of aluminum alloy sheet formation. Because the plasticity
of 7-series high-strength aluminum sheets at room temperature is poor, warm-forming
technology has been widely studied to effectively improve its formability.

A forming limit diagram is important for exploring the formability of materials [10,11].
At present, research on the forming limit test of materials at room temperature is quite
mature. Using the system and standard for room-temperature tests, the high-temperature
forming limit has also been thoroughly investigated. However, many external factors affect
the test results under the conditions of high-temperature forming. In addition, the heating
temperature, holding time, strain rate, friction, etc., are difficult to control precisely, which
introduces higher requirements for the study of high-temperature forming limit [12,13].
Therefore, when studying the forming limit of materials under high-temperature conditions,
many scholars have used theoretical calculations or FEM methods to construct forming limit
prediction models. For the ductile fracture of an AA7075-T6 sheet, Yang et al. [14] proposed
a new digital image correlation method to determine the ductile fracture parameters, and
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the forming limit diagram was constructed using a partition optimization method based on
multiple sets of fracture parameters. Under the influence of different process parameters
such as forming temperature, lubrication mode, and forming speed, Morchhale et al. [15]
obtained the process curve by stretch forming. Stretch forming and deep drawing processes
were conducted at 300 K and 673 K. The formability and strain limit of the IN625 alloy were
determined, and a fracture-forming limit diagram (FFLD) was obtained. Goksen et al. [16]
performed Nakazima tests on DKP-6112 and AZ31 Mg alloys using eight different types of
specimens. The FLD results determined by the test were compared with numerical results
and were found to be consistent. Through the wide-temperature-gradient tensile test and
improved Erichsen test, Nasri et al. [17] studied the thermodynamic behavior and failure
regularity of an A1050 aluminum alloy sheet in the forming process.

Generally, 7-series aluminum alloy is based on the heat treatment-forming-quenching
(HFQ) process [18–20], and stamping is completed by means of a thermal simulation testing
machine. In this study, to overcome unfavorable factors such as uncontrollable spatial
distribution of the hot zone of the thermal simulation test machine and closed heating
environment, AA7075 high-strength aluminum alloy was taken as the research object. The
mechanical properties and fracture behavior characteristics of AA7075 aluminum alloy
under different temperatures, strain rates, and stress states were obtained by induction
heating. As a result, the Johnson–Cook fracture model was constructed. Based on the
obtained Johnson–Cook ductile fracture criterion, finite element models of different strain
paths were constructed, and theoretical forming limit curves at different temperatures and
strain rates were obtained. The feasibility of the fracture model and theoretical forming
limit curve was verified by a bulging test and simulation of an AA7075 aluminum alloy
steel mold.

2. Uniaxial High-Temperature Tensile Test
2.1. Test Scheme

The material used in the test was AA7075 cold-rolled high-strength aluminum alloy
with a thickness of 2 mm. The chemical composition of the material is given in Table 1. To
obtain the basic material properties and fracture response under different stress states of
AA7075 high-strength aluminum alloy, five different specimens were prepared, including a
smooth specimen (UT), notched specimens (NT2.5, NT5, and NT10), and a shear specimen
(SH). The shapes and specifications of the specimens are shown in Figure 1. The gauge
section L0 of the specimen needs to satisfy 5.65

√
S0 ≥ 15, and the length of the parallel

section should not exceed L0 + b/2, where S0 is the cross-sectional area of the specimen and
b is its width. Depending on the size of b, the gauge length L0 is 25 mm, and the parallel
length is 60 mm [21].

Five different specimens were subjected to high-temperature uniaxial tensile tests
based on the HFQ isothermal forming process. First, the specimens were heated to 490 ◦C
(solid-solution temperature (SHT)) for a short time, and then maintained for 300 s. After
the insulation treatment was completed, the temperature control threshold was adjusted
to reduce the specimen temperature to the specified tensile test temperature. Finally, the
specimens were subjected to isothermal tensile deformation until they fractured. Figure 2
shows the isothermal-forming HFQ hot forming process route map.

Table 1. Chemical composition of AA7075 (wt.%).

Si Fe Cu Mn Mg Cr Zn Ti Al

0.17 0.22 1.57 0.11 2.46 0.20 5.63 0.09 -
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Figure 2. HFQ hot forming process route map.

While simulating the process of transferring specimens from the heating furnace to
the mold, the cooling time of each specimen was controlled within 10 s to prevent the long
quenching time from affecting the mechanical properties of the specimens. However, the
cooling water circuit set is in the fixture, and the thermal conductivity of the aluminum
alloy is excellent. Thus, after testing, it was found that the heat-insulated specimen could
be quickly cooled to the test temperature by quenching the mold at a cooling rate greater
than 10 ◦C/s, without the need for an auxiliary cooling device.

Before the test, the prepared specimen gauge section was polished and smoothed,
and black high-temperature matte paint was sprayed to obtain a black-and-white scatter
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diagram. Based on the black high-temperature matte paint coating, two symmetrical white
spot patterns with a diameter of approximately 1 mm were plotted as the initial positions
of the virtual extensometer, such as the black dot in Figure 1. A scatter diagram of the
specimen was constructed to ensure that the scatter quality of the specimen was in the best
state during the hot stretching process. The specimen was then fixed to a special fixture,
and a 100 N preload was applied to reduce the systematic error caused by the specimen
sliding during the test. Finally, the parameters of the hot tensile test system were adjusted,
and the high-frequency power supply was turned on. A hot tensile test was conducted
according to the HFQ hot forming process and related requirements. A field diagram of
the hot tensile test system is shown in Figure 3.
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Figure 3. Hot tensile test system.

The UT specimens were subjected to uniaxial tensile tests at temperatures of 375, 425,
and 475 ◦C and strain rates of 0.01, 0.1, and 1/s. NT2.5, NT5, NT10, and SH specimens were
tested at strain rates of 0.01, 0.1, and 1/s at 425 ◦C and at a strain rate of 0.1/s at 375, 425,
and 475 ◦C. Each specimen was subjected to five test conditions. To ensure the accuracy of
the test data, a minimum of two tests were conducted for each condition.

2.2. Force–Displacement Curves

The influence of changes in the strain rate and temperature on the ultimate load,
fracture force, and fracture displacement of the material was explored. The test data
were collated and fitted, and the force–displacement curves of five specimens of AA7075
aluminum alloy at a certain strain rate and temperature were obtained. The position of the
fracture initiation point was marked according to the image taken by the DIC system. The
results are presented in Figures 4–8.
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Figure 4. Tensile force—displacement curve of UT specimen under a certain strain rate. (a) 0.01/s;
(b) 0.1/s; and (c) 1/s.
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The ultimate load, fracture displacement, and fracture force were found to be related
to the temperature and strain rate. Different specimens show the same characteristics: The
higher the temperature, the lower the ultimate load and fracture force, and the greater the
fracture displacement. The higher the strain rate, the higher the ultimate load and fracture
force, and the smaller the fracture displacement.

3. Constitutive Model

To accurately describe the mechanical properties of materials in different environments,
a constitutive model is usually constructed using constitutive theory. The Johnson–Cook
model is a phenomenological material flow rule proposed by Johnson and Cook in 1983 [22].
It couples plastic strain strengthening, strain rate sensitivity, and temperature softening.
The expression is given by Equation (1).

σ = (A + Bεn)[1 + C ln
.
ε
.
ε0
](1− (

T − Tr

Tm − Tr
)

m
) (1)

where σ is the equivalent stress of the material, ε is the equivalent plastic strain,
.
ε/

.
ε0

represents the equivalent strain rate,
.
ε is the current strain rate,

.
ε0 is the reference strain rate,

.
ε0 = 0.001/s, Tr is the reference temperature, Tr = 25 ◦C, and Tm is the melting temperature,
Tm = 550 ◦C. Finally, A, B, n, C, and m are five parameters to be calculated according to the
stress–strain curve fitting at different temperatures and strain rates.

The original Johnson–Cook model considers that plastic strain hardening, strain rate
sensitivity, and temperature softening are independent of each other. However, these three
factors influence and restrict each other in the hot forming process of 7075 aluminum
alloy. In fact, AA7075 aluminum alloy is less sensitive to low strain rates at room tem-
perature. Further, according to the previous analysis, the strain rate significantly changes
the mechanical properties of the material at high temperatures. Therefore, the strain rate
sensitivity coefficient obtained by the conventional fitting method is less applicable at high
temperatures. Therefore, the Johnson–Cook model should be corrected [23].

The necking stage of 7075 aluminum alloy is long, and the strengthening stage is
short during high-temperature forming. The first item of the original Johnson–Cook model
adopts the Holloman hardening model. This hardening model is a typical pure power-
hardening model, and the fitting accuracy of a large necking deformation is poor. Therefore,
the Holloman hardening model is modified to a more adaptable version of the Swift–Voce
model. The Swift–Voce model is a hardening model that combines the Swift and Voce
models using weighting coefficients. The form is expressed as Equation (2).

σ = [αAεn + (1− α)(K + Qe−Bε)] (2)

The modified model is expressed as Equation (3).

σ = [αAεn + (1− α)(K + Qe−Bε)][1 + C ln
.
ε
.
ε0
][1− (

T − Tr

Tm − Tr
)

m
] (3)

where α, A, n, K, Q, B, C, and m are undetermined parameters. The model was programmed
into ORIGIN v.10.0 software. Each parameter was set to an initial value. Next, each curve
was fitted, and the fitting results were collated and corrected. It is found that α changes
synergistically with the strain rate. When

.
ε = 0.01/s, the α value is 0; when

.
ε = 0.1/s, the

α value is 0.70337; and when
.
ε = 1/s, the α value is 0.73796. Here, A = 982.35250 MPa,

n = 0.02377, Q = −2209.13513, and m = 1.03161. The three parameters of K, B, and C are
related to the changes in temperature and strain rate, and the corresponding values are
obtained by fitting, as shown in Table 2.
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Table 2. Fitted values of K, B, and C parameters.

Temperature (◦C) Strain Rate (/s) K B C

375
0.01 92.07117 473.01661 3.00000
0.1 −414.94421 115.57266 −0.12683
1 328.87782 81.24024 −0.17783

425
0.01 259.48459 412.40667 0.50000
0.1 −3.73651 107.83479 −0.16058
1 −1058.39724 144.79391 0.16687

475
0.01 530.40297 338.87563 −0.14784
0.1 309.89884 89.32858 −0.04666
1 −691.78899 118.37685 0.28173

Figure 9 shows a comparison between the constitutive model fitting curve and the test
curve at different strain rates. A good fit is observed from the figure.
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4. Fracture Model

The Johnson–Cook fracture strain model is as follows.

ε f = [D1 + D2 exp(D3η)][1 + D4 ln(
.
ε
.
ε0
)][1 + D5(

T − Tr

Tm − Tr
)] (4)

The model consists of three parts: The first part shows the relationship between the
equivalent fracture strain ε f and the stress triaxiality η. The second part shows the influence
of the change in strain rate on the equivalent fracture strain ε f . The third part shows the
thermal softening effect on the ductility of the material. Here, D1, D2, D3, D4, and D5 are
failure parameters.

In the Johnson–Cook fracture model, the reference strain rate
.
ε0 is set to 0.1/s, the

reference temperature is set to 375 ◦C, the melting temperature Tm is 550 ◦C, and five failure
parameters D1–D5 are calibrated using specimens with different stress states.

In the fracture model, the stress triaxiality is selected as the stress–state characterization
parameter. The stress triaxiality can be directly calculated using the formula for a simple
stress state, but a large necking phenomenon usually occurs during hot stretching until the
fracture process. A material cannot be simply classified as a uniaxial tensile stress state near
a fracture. At this time, the stress state is more complicated. The method adopted by many
scholars is to extract the stress state parameters using finite element simulation [24–26].
In this study, ABAQUS/Standard finite element v.2022 software was used to model the
gauge sections of different types of specimens. The C3D8R mesh type was used for mesh
division, and the mesh of the main deformation parts of the notched specimen and the
shear specimen was locally refined. The geometric model is illustrated in Figure 10.
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After the simulation was completed, the experimental failure image and the FEM
equivalent fracture cloud map of the fracture initiation time of different types of specimens
at 375 ◦C and 0.1/s were extracted. The comparison results are shown in Figure 11.

To determine the behavior state of the material at the time of fracture initiation, the
first two-dimensional image of the fracture was captured using the DIC system, and the
macroscopic morphology of the specimen at the time of fracture initiation was observed.
Compared with the equivalent plastic strain results of the FEM numerical simulation, it
was found that the two were highly consistent. The types of specimens and the positions
of the critical points were different. The surface center element nodes of the smooth plate
specimens and the finite element models of the three notched specimens were determined
and extracted as the critical points of fracture. In the shear specimens, the node of the
equivalent plastic strain enrichment zone element below the notch was the critical point of
fracture. The specific analysis is as follows: Considering the experimental failure image and
simulation results at 425 ◦C and 0.1/s as an example, it can be seen from Figure 11a that
necking occurs in the middle of the UT specimen. Further, the fracture gradually expands
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from the center to the outside. From Figure 11b–d, it is evident that the fracture surface of
the three notched specimens is severely thinned and that the fracture surface cracks almost
simultaneously. This result is consistent with the equivalent plastic strain distribution at
the fracture surface in the simulation results. The position at which the shear specimen
begins to break is shown in Figure 11e.
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Figure 11. Experimental failure image and FEM results of the specimen fracture initiation moment.
(a) UT; (b) NT2.5; (c) NT5; (d) NT10; and (e) SH.

The stress triaxiality evolution process of the critical point at the fracture time of the
five specimens was extracted. The results are presented in Figures 12–16.
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For the Johnson–Cook fracture model, only five failure parameters must be obtained
for a full calibration. Based on the 44 sets of tests completed, the stress triaxiality and
fracture strain values of five different shapes and specifications of the specimens at the
reference temperature and strain rate were first extracted. The values of D1, D2, and D3
were then obtained by fitting. Subsequently, the data at the reference temperature and
the non-reference strain rate were selected to calibrate the value of D4, which were the
data corresponding to UT-375-0.01 and UT-375-1 specimens. Finally, data from one of the
remaining 22 specimens were inserted into Equation (4) to obtain the data of D5, and a
total of 44 groups of specimens were obtained.

For different specimen combinations, each set of data contains five different types of
specimens, but only D4 and D5 need to be obtained. The specimen number is represented
by Ui,j,k, where angle index i is 1 and 2, respectively, for UT-375-0.01 and UT-375-1. Integers
j from 1 to 5 represent UT, NT2.5, NT5, NT10, and SH specimens, respectively. Integers k
from 1 to 6 represent the test conditions of the specimens used to solve D5. The specific
numbers are listed in Table 3.

Table 3. Specimen combination number.

Specimen Type UT NT2.5 NT5 NT10 SH

425-0.01 Ui,1,1 Ui,2,1 Ui,3,1 Ui,4,1 Ui,5,1
425-0.1 Ui,1,2 Ui,2,2 Ui,3,2 Ui,4,2 Ui,5,2
425-1 Ui,1,3 Ui,2,3 Ui,3,3 Ui,4,3 Ui,5,3

475-0.1 Ui,1,4 Ui,2,4 Ui,3,4 Ui,4,4 Ui,5,4
475-0.01 Ui,1,5 - - - -

475-1 Ui,1,6 - - - -

The values of stress triaxiality and fracture strain are substituted into Equation (4),
and the values of D1, D2, and D3 are obtained by fitting: D1 = 2.10951, D2 = −0.11, and
D3 = 3.18367. The fitting results are shown in Figure 17. The resulting values of D4 and D5
are shown in Figure 18.
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Comparing the 44 sets of failure parameters, it was found that the D4 values obtained
from the solution were not significantly different, but the D5 values were significantly
different. The relationship between the theoretically predicted fracture strain and the
experimental fracture strain should be accurate. To this end, an error evaluation scheme
should be designed to analyze the prediction accuracy of different failure parameters, select
the best combination of specimens, and determine the optimal values of the five failure
parameters. The prediction accuracy of the failure parameters was evaluated by the error
mean δavg and variance s2. These expressions are given in Equations (5) and (6).

δavg =
1

29

29

∑
i=1

δ (5)

s2 =
29

∑
i=1

(
δ− δavg

)2

29
(6)

The mean error and variance of each group of failure parameters were calculated, as
shown in Figure 19.
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It can be seen from Figure 19a that the failure parameter combination with the largest
mean error is U1,2,2, and the average error is 37.07%. The failure parameter combination
with the smallest mean error is U2,2,1, and the average error is 11.16%. According to
Figure 19b, the overall variance is at a low level, which is maintained below 0.07. Here,
U1,2,2 represents the failure parameter combinations with the largest variance, and the
maximum value is 0.0699. The combination of failure parameters with the smallest variance
is U2,2,1, and the minimum value is 0.0070, which is the same as the result of the mean error.
Therefore, the best combination of specimens is U2,2,1, and the five best failure parameters
are D1 = 2.10951, D2 = −0.11, and D3 = 3.18367, D4 = −0.12386, and D5 = 0.858449.

5. Forming Limit Prediction
5.1. Theoretical Forming Limit Curve

Obtaining the forming limit curve by the high-temperature Nakazima test has many
uncertainty factors, such as time node, temperature control, and lubrication conditions,
and these factors affect each other. Therefore, a large number of repeated tests are needed,
which puts forward higher requirements for test equipment and the working environment.
Consequently, the test difficulty and cost increase significantly. Therefore, based on the
high-temperature bulging test method, this study used FEM simulation analysis to draw
the theoretical forming limit curve under different conditions.

The finite element simulation model of the Nakazima test was constructed using
ABAQUS software. The punch size was 90 mm, the die size was 130 mm, and the die fillet
was 5 mm. C3D8R mesh type was used for mesh division, the mesh size of the specimen
was set to 1 mm, and shell elements were used in both mold tools and specimens. Surface-to-
surface contact was selected between the die and the specimen, and the friction coefficient
was set to 0.1. Surface-to-surface contact was also selected between the hemisphere punch
and the specimen, and the friction coefficient was set to 0.001. The function of the blank
holder is set to apply a fully fixed constraint on the side of the specimen. The relative
position of each part is shown in Figure 20a. To obtain the principal strain under different
strain paths, five different widths of bone-shaped and circular plate specimens were selected
according to the China national standard GB/T 24171-2009. The total diameter of each
specimen is 180 mm. Figure 20b shows the shape of the selected bone-shaped specimen.
The length of the parallel segment L is 90 mm, the radius of the transition arc is 20 mm, and
the width dimensions are listed in Table 4.
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The failure of the material is determined according to the accumulation value of
the damage factor ξ. When the damage factor ξ accumulates from 0 to 1, the material
is considered to have completely failed. According to the calculation, when the damage
variable of the material is between 0.8 and 1, fracture failure has already occurred [27,28].
Figure 21 describes the damage distribution of different samples in the frame before rupture
when the temperature is 375 ◦C and the strain rate is 0.01/s. Sample W20 is close to the
unidirectional tensile state, and the fracture starts at the geometric center of the specimen,
which is similar to the actual fracture state. The cracks in the other four bone samples also
spread from the middle to both sides, and the circular plate samples break from the top
of the punch and spread around. The damaged fracture locations under other conditions
were the same as those at 375 ◦C.
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Figure 21. Damage distribution of the frame before fracture under certain conditions (375 ◦C,
0.01 s−1). (a) W 20. (b) W 40. (c) W 60. (d) W 80. (e) W 100. (f) circular plate.
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Two principal strains in the plane of specimens with different shapes and specifications
under certain temperature and strain rate conditions were extracted, and the theoretical
forming limit curve was obtained, as shown in Figures 22 and 23. Based on the constructed
Johnson–Cook fracture model, the theoretical forming limit curve of AA7075 aluminum
alloy can be predicted. Such a prediction avoids the influence of experimental uncertainty
factors, saves manpower and time, and plays an important auxiliary role in studying the
hot-forming performance of the 7075 aluminum alloy.
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(a) 0.01/s; (b) 0.1/s; and (c) 1/s.

It can be seen from Figures 22 and 23 that the theoretical forming limit of AA7075
aluminum alloy decreases with an increasing strain rate at a constant temperature. In
contrast, under the same strain rate, the theoretical forming limit of AA7075 aluminum
alloy gradually increases with increasing temperature.

5.2. Prediction Accuracy Assessment

To verify the accuracy of the Johnson–Cook fracture model and theoretical forming
limit curve, a high-temperature bulging test was conducted. In the high-temperature
Nakazima test, an INSPEKT Table 100 kN electronic universal high-temperature testing
machine was used to control the temperature and binder force of the hot stamping device
as bulging equipment. The punch diameter of the hot-stamping device was 20 mm, and the
inner circle diameter of the die was 30 mm. The schematic diagram is shown in Figure 24.
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According to the test procedure, bulging tests of circular plates with strain rates of
0.01, 0.1, and 1/s were completed at a forming temperature of 375 ◦C. A physical diagram
of the bulging fracture is shown in Figure 25.
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Figure 25. Specimen after bulging fracture. (a) 375 ◦C—0.01/s; (b) 375 ◦C—0.1/s; and
(c) 375 ◦C—1/s.

Based on ABAQUS software, a finite element simulation model was constructed. The
material properties were constitutive parameters under the same conditions when uniaxial
tension was applied. The friction coefficient between the punch and the mold was set to
0.2. The damage and fracture cloud map before the fracture was extracted. By analyzing
the data of the fracture position and displacement in the simulation results, the accuracy of
the prediction model was evaluated by comparing it with the experimental values.

Figure 26 shows a comparison between the predicted fracture position of the circular
plate specimen based on the Johnson–Cook fracture model and the test results. The test
and simulated fracture positions are close, and both break from the edge of the top circular
area.

Figure 27 shows the fracture displacement of the circular plate specimen predicted
using the Johnson–Cook fracture model. At 375 ◦C and 0.01/s, the experimental value of
the fracture displacement is 16.924 mm, the simulated fracture displacement is 16.41 mm,
and the relative error is 3%. At 375 ◦C and 0.1/s, the experimental value of the fracture
displacement is 16.18 mm, the simulated fracture displacement is 16.06 mm, and the relative
error is 0.7%. At 375 ◦C and 1/s, the experimental value of the fracture displacement is
15.67 mm, the simulated fracture displacement is 15.36 mm, and the relative error is 2%.
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The simulated fracture displacement is less than the experimental fracture displacement,
which increases the safety margin, and the relative error can be controlled within 5%. The
aforementioned results show that the prediction accuracy of circular plate bulging based
on the Johnson–Cook fracture model simulation prediction is high, which confirms the
high accuracy of the obtained theoretical forming limit curve.
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6. Conclusions

(1) The Johnson–Cook constitutive model was constructed and modified based on the
high-temperature uniaxial tensile test of AA7075 aluminum alloy. The modified
Johnson–Cook constitutive model has good applicability by modifying the Holloman
hardening model to the Swift–Voce hardening model.



Metals 2023, 13, 231 21 of 22

(2) After the Johnson–Cook fracture model of AA7075 aluminum alloy was constructed,
error evaluation was conducted based on 44 combination schemes calibrated by the
model. The optimal combination scheme of specimens and optimal values of five
failure parameters were determined. Based on the Johnson–Cook fracture model, the
theoretical forming limit curves were obtained for different strain rates and tempera-
tures.

(3) The reliability of the Johnson–Cook fracture model was predicted and evaluated
through a Nakazima test of an AA7075 aluminum alloy circular plate. The experi-
mental fracture location was in good agreement with the simulated fracture location,
and the fracture displacement error was controlled within 5%. The results show that
the prediction accuracy of circular-plate bulging based on the Johnson–Cook fracture
model simulation prediction is high, which confirms the high accuracy of the obtained
theoretical forming limit curve.
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