A Method to Optimize Parameters Development in L-PBF Based on Single and Multitracks Analysis: A Case Study on Inconel 718 Alloy
Abstract
:1. Introduction
- lower heat in L-PBF induces lower distortions, which allows a higher dimensional precision for the final part [11];
- L-PBF technique is suitable for many materials, especially for engineering metal alloys;
- L-PBF can be conducted at a much higher speed with lower material cost.
- The frequent modification/upgrade of machines for firmware updates, the introduction of new models with different recoating systems, gas flow distribution, base plate dimensions, number of heat sources (e.g., single-laser/multi-laser);
- The introduction of new materials with a higher productivity rate (through the increment of scanning speed).
2. Materials and Methods
2.1. Screening Phase
- Definition of the test plan for the screening phase
- Specimens modelling for the screening phase
- Printing of the specimens for the screening phase
- Single track stability assessment
2.1.1. Definition of the Test Plan for the Screening Phase
2.1.2. Specimen Modelling for the Screening Phase
2.1.3. Printing of the Specimens for the Screening Phase
2.1.4. Single Track Stability Assessment
- (1)
- Check for interruptions along the tracks (in this paper it is considered interruptions the non-melting of powder for at least ten microns of length); all the tracks with an interruption must be considered unstable (Figure 5)
- (2)
- For the tracks with no interruptions, evaluate and quantify the presence of section changes (S) according to the following steps:
- (A)
- Divide the track into five fields and, for each one, measure the width, avoiding taking into account the beginning of the track being areas where the melt pool is not yet stable (Figure 6);
- (B)
- Calculate the average width for each track;
- (C)
- Evaluate the presence of section change along the tracks; a change of section has to be considered if the measured value of the tracks’ width is not comprised in tolerance of plus or minus 30% from the average track width;
- (D)
- Repeat from point (A) for five random tracks for each specimen.
- (3)
- Depending on the number of sections changes, the tracks are considered:
- (A)
- Not stable if S > k1;
- (B)
- Metastable if k1 < S < k2;
- (C)
- Stable S < k2.
2.2. Optimization Phase
- Optimization of laser power and scanning speed (at a fixed value of hatch distance) is performed by analyzing the melt pool shape of a cross-section of single tracks. This sub-phase consists of the following steps:
- Preparation of selected specimens for micrographic analysis
- Micrographic analysis (porosity and melt pool)
- Identification of the best configuration for laser power and scanning speed.
- Optimization of hatch distance on the best configuration using multi tracks analysis. This sub-phase consists of the following steps:
- Definition of the test plan for multi tracks analysis
- Specimens modelling for multi tracks analysis
- Printing of specimens for multi tracks analysis
- Preparation of specimens for micrographic analysis
- Micrographic analysis (porosity and overlap analysis)
- Identification of the best configuration of hatch distance.
2.2.1. Optimization of Laser Power and Scanning Speed
2.2.2. Optimization of Hatch Distance on the Best Configuration Using Multi-Tracks Analysis
- 1-
- Perform a width (W) measurement for the three tracks within the considered multi-tracks set and calculate the average width;
- 2-
- Measure the overlap width (OW). The OW is defined as the part of the W dimension common among two adjacent tracks. This distance has to be greater or equal to “k3” times the track width (W) measured in step 1 to avoid the presence of an un-melted zone between the tracks;
- 3-
- Measure the overlap depth (OD). The OD is the depth of overlap between two adjacent tracks. This distance has to be greater o equal than 1.5 [17] times the value of the layer thickness taken into account during the analysis to ensure a proper remelting of the previous layer;
- 4-
- Repeat step 2 for three random overlap regions to assess process variability for the analyzed configuration.
3. Results of a Case Study on Inconel 718 Alloy
3.1. Screening Phase
3.2. Optimization of Laser Power and Scanning Speed
3.3. Optimization of Hatch Distance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Guan, K.; Gao, M.; Li, X.; Chen, X.; Zeng, X. The microstructure and mechanical properties of deposited-IN718 by selective laser melting. J. Alloys Compd. 2012, 513, 518–523. [Google Scholar] [CrossRef]
- Das, S. Physical aspects of process control in selective laser sintering of metals. Adv. Eng. Mater. 2003, 5, 701–711. [Google Scholar] [CrossRef]
- Osakada, K.; Shiomi, M. Flexible manufacturing of metallic products by selective laser melting of powder. Int. J. Mach. Tools Manuf. 2006, 46, 1188–1193. [Google Scholar] [CrossRef]
- Kruth, J.P.; Mercelis, P.; Van Vaerenbergh, J.; Froyen, L.; Rombouts, M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 2005, 11, 26–36. [Google Scholar] [CrossRef]
- Yadroitsev, I.; Gusarov, A.; Yadroitsava, I.; Smurov, I. Single track formation in selective laser melting of metal powders. J. Mater. Process. Technol. 2010, 210, 1624–1631. [Google Scholar] [CrossRef]
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser additive manufacturing of ceramic components: Materials, processes, and mechanisms. Laser Addit. Manuf. Mater. Des. Technol. Appl. 2016, 6608, 163–180. [Google Scholar]
- Smith, J.; Xiong, W.; Yan, W.; Lin, S.; Cheng, P.; Kafka, O.L.; Wagner, G.J.; Cao, J.; Liu, W.K. Linking process, structure, property, and performance for metal-based additive manufacturing: Computational approaches with experimental support. Comput. Mech. 2016, 57, 583–610. [Google Scholar] [CrossRef]
- Metelkova, J.; Kinds, Y.; Kempen, K.; De Formanoir, C.; Witvrouw, A.; Van Hooreweder, B. On the influence of laser defocusing in Selective Laser Melting of 316L. Addit. Manuf. 2018, 23, 161–169. [Google Scholar] [CrossRef]
- Ceccanti, F.; Giorgetti, A.; Arcidiacono, G.; Citti, P. Laser Powder Bed Fusion: A Review on the Design Constraints. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1038, 012065. [Google Scholar] [CrossRef]
- Singh, S.N.; Chowdhury, S.; Nirsanametla, Y.; Deepati, A.K.; Prakash, C.; Singh, S.; Wu, L.Y.; Zheng, H.Y.; Pruncu, C. A Comparative Analysis of Laser Additive Manufacturing of High Layer Thickness Pure Ti and Inconel 718 Alloy Materials Using Finite Element Method. Materials 2021, 14, 876. [Google Scholar] [CrossRef]
- Mahmoud, D.; Magolon, M.; Boer, J.; Elbestawi, M.A.; Mohammadi, M.G. Applications of Machine Learning in Process Monitoring and Controls of L-PBF Additive Manufacturing: A Review. Appl. Sci. 2021, 21, 11910. [Google Scholar] [CrossRef]
- Achillas, C.; Tzetzis, D.; Raimondo, M.O. Alternative production strategies based on the comparison of additive and traditional manufacturing technologies. Int. J. Prod. Res. 2017, 55, 3497–3509. [Google Scholar] [CrossRef]
- Ciappi, A.; Giorgetti, A.; Ceccanti, F.; Canegallo, G. Technological and economical consideration for turbine blade tip restoration through metal deposition technologies. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 1741–1758. [Google Scholar] [CrossRef]
- Cobbinah, P.V.; Nzeukou, R.A.; Onawale, O.T.; Matizamhuka, W.R. Laser Powder Bed Fusion of Potential Superalloys: A Review. Metals 2021, 11, 58. [Google Scholar] [CrossRef]
- Abd-Elaziem, W.; Elkatatny, S.; Abd-Elaziem, A.; Khedr, M.; El-baky, M.A.A.; Hassan, M.A.; Abu-Okail, M.; Mohammed, M.; Järvenpää, A.; Allam, T.; et al. On the current research progress of metallic materials fabricated by laser powder bed fusion process: A review. J. Mater. Res. Technol. 2022, 20, 681–707. [Google Scholar] [CrossRef]
- Ceccanti, F.; Giorgetti, A.; Citti, P. A support structure design strategy for laser powder bed fused parts. Procedia Struct. Integr. 2019, 24, 667–679. [Google Scholar] [CrossRef]
- Blakey-Milner, B.; Gradl, P.; Snedden, G.; Brooks, M.; Pitot, J.; Lopez, E.; Leary, M.; Berto, F.; Du Plessis, A. Metal additive manufacturing in aerospace: A review. Mater. Des. 2021, 209, 110008. [Google Scholar] [CrossRef]
- Khan, H.M.; Karabulut, Y.; Kitay, O.; Kaynak, Y.; Jawahir, I.S. Influence of the post-processing operations on surface integrity of metal components produced by laser powder bed fusion additive manufacturing: A review. Mach. Sci. Technol. 2021, 25, 118–176. [Google Scholar] [CrossRef]
- Mostafaei, A.; Zhao, C.; He, Y.; Ghiaasiaan, S.R.; Shi, B.; Shao, S.; Shamsaei, N.; Wu, Z.; Kouraytem, N.; Sun, T.; et al. Defects and anomalies in powder bed fusion metal additive manufacturing. Curr. Opin. Solid State Mater. Sci. 2022, 26, 100974. [Google Scholar] [CrossRef]
- Makona, N.W.; Yadroitsava, I.; Moller, H.; Tlotleng, M.; Yadroitsev, I. Evaluation of single tracks of 17-4PH steel manufactured at different power densities and scanning speeds by selective laser melting. S. Afr. J. Ind. Eng. 2016, 27, 210–218. [Google Scholar] [CrossRef]
- Liu, X.; Wang, K.; Hu, P.; He, X.; Yan, B.; Zhao, X. Formability, Microstructure and Properties of Inconel 718 Superalloy Fabricated by Selective Laser Melting Additive Manufacture Technology. Materials 2021, 14, 991. [Google Scholar] [CrossRef] [PubMed]
- Panwisawas, C.; Gong, Y.; Tang, Y.T.; Reed, R.C.; Shinjo, J. Additive manufacturability of superalloys: Process-induced porosity, cooling rate and metal vapour. Addit. Manuf. 2021, 47, 102339. [Google Scholar] [CrossRef]
- Abedi, H.R.; Hanzaki, A.Z.; Azami, M.; Kahnooji, M.; Rahmatabadi, D. The high temperature flow behavior of additively manufactured Inconel 625 superalloy. Mater. Res. Express 2019, 6, 116514. [Google Scholar] [CrossRef]
- Yuhua, C.; Yuqing, M.; Weiwei, L.; Peng, H. Investigation of welding crack in micro-laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints. Opt. Laser Technol. 2017, 91, 197–202. [Google Scholar] [CrossRef]
- Xie, J.; Chen, Y.; Yin, L.; Zhang, T.; Wang, S.; Wang, L. Microstructure and mechanical properties of ultrasonic spot welding TiNi/Ti6Al4V dissimilar materials using pure Al coating. J. Manuf. Process. 2021, 64, 473–480. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Jia, Y.; Pang, Y.; Zhang, T.; Wang, S.; Yin, L. Microstructure and mechanical properties of dissimilar NiTi/Ti6Al4V joints via back-heating assisted friction stir welding. J. Manuf. Process. 2021, 64, 379–391. [Google Scholar] [CrossRef]
- Kan, W.H.; Chiu, L.N.S.; Lim, C.V.S.; Zhu, Y.; Tian, Y.; Jiang, D.; Huang, A. A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion. J. Mater. Sci. 2022, 57, 9818–9865. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Santos, T.G.; Miranda, R.M. Revisiting fundamental welding concepts to improve additive manufacturing: From theory to practice. Prog. Mater. Sci. 2020, 107, 100590. [Google Scholar] [CrossRef]
- Mukherjee, T.; Zuback, J.S.; De, A.; DebRoy, T. Printability of alloys for additive manufacturing. Sci. Rep. 2016, 6, 19717. [Google Scholar] [CrossRef]
- Oliveira, J.P.; LaLonde, A.D.; Ma, J. Processing parameters in laser powder bed fusion metal additive manufacturing. Mater. Des. 2020, 193, 108762. [Google Scholar] [CrossRef]
- Giorgetti, A.; Ceccanti, F.; Citti, P.; Ciappi, A.; Arcidiacono, G. Axiomatic Design of Test Artifact for Laser Powder Bed Fusion Machine Capability Assessment. MATEC Web Conf. 2019, 301, 00006. [Google Scholar] [CrossRef] [Green Version]
- Giorgetti, A.; Ceccanti, F.; Kemble, S.; Arcidiacono, G.; Citti, P. _L-PBF Machine Capability Monitoring through an Axiomatic Designed Test Artifact. Designs. forthcoming.
- Ahmadi, M.; Tabary, S.B.; Rahmatabadi, D.; Ebrahimi, M.S.; Abrinia, K.; Hashemi, R. Review of Selective Laser Melting of Magnesium Alloys: Advantages, Microstructure and Mechanical Characterizations, Defects, Challenges, and Applications. J. Mater. Res. Technol. 2022, 19, 1537–1562. [Google Scholar] [CrossRef]
- Li, S.; Xiao, H.; Liu, K.; Xiao, W.; Li, Y.; Han, X.; Song, J.M.L. Melt-pool motion, temperature variation and dendritic morphology of Inconel 718 during pulsed- and continuous-wave laser additive manufacturing: A comparative study. Mater. Des. 2017, 119, 351–360. [Google Scholar] [CrossRef]
- Makona, N.W.; Yadroitsava, I.; Moller, H.; Yadroitsev, I. Characterization of 17-4PH single tracks produced at different parametric conditions towards increased productivity of LPBF systems—The effect of laser power and spot size upscaling. Metals 2018, 8, 475. [Google Scholar] [CrossRef]
- Manvatkar, V.; De, A.; Debroy, T. Heat transfer and material flow during laser assisted multi-layer additive manufacturing. J. Appl. Phys. 2014, 116, 124905. [Google Scholar] [CrossRef]
- Johnson, L.; Mahmoudi, M.; Zhang, B.; Seede, R.; Huang, X.; Maier, J.T.; Maier, H.J.; Karaman, I.; Elwany, A.; Arróyave, R. Assessing printability maps in additive manufacturing of metal alloys. Acta Mater. 2019, 176, 199–210. [Google Scholar] [CrossRef]
- Tenbrock, C.; Fischer, F.G.; Wissenbach, K.; Schleifenbaum, J.H.; Wagenblast, P.; Meiners, W.; Wagner, J. Influence of keyhole and conduction mode melting for top-hat shaped beam profiles in laser powder bed fusion. J. Mater. Process. Technol. 2020, 278, 116514. [Google Scholar] [CrossRef]
- King, W.A.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.W.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 2014, 214, 2915–2925. [Google Scholar] [CrossRef]
- Tian, Y.; Tomus, D.; Rometsch, P.; Wu, X. Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Addit. Manuf. 2017, 13, 103–112. [Google Scholar] [CrossRef]
- Ning, J.; Wang, W.; Zamorano, B.; Liang, S.Y. Analytical modeling of lack-of-fusion porosity in metal additive manufacturing. Appl. Phys. 2019, 125, 797. [Google Scholar] [CrossRef]
- Mukherjee, T.; DebRoy, T. Mitigation of lack of fusion defects in powder bed fusion additive manufacturing. J. Manuf. Process. 2018, 36, 442–449. [Google Scholar] [CrossRef]
- Leicht, A.; Fischer, M.; Klement, U.; Nyborg, L.; Hryha, E. Increasing the Productivity of Laser Powder Bed Fusion for Stainless Steel 316L through Increased Layer Thickness. J. Mater. Eng. Perform. 2021, 30, 575–584. [Google Scholar] [CrossRef]
- Childs, T.H.C.; Hauser, C.; Badrossamay, M. Mapping and Modelling Single Scan Track Formation in Direct Metal Selective Laser Melting. CIRP Ann. 2004, 53, 191–194. [Google Scholar] [CrossRef]
- Guo, Y.; Jia, L.; Kong, B.; Wang, N.; Zhang, H. Single track and single layer formation in selective laser melting of niobium solid solution alloy. Chin. J. Aeronaut. 2018, 31, 860–866. [Google Scholar] [CrossRef]
- Shrestha, S.; Chou, K. Single track scanning experiment in laser powder bed fusion process. Procedia Manuf. 2018, 26, 857–864. [Google Scholar] [CrossRef]
- Balbaa, M.; Mekhiel, S.; Elbestawi, M.; McIsaac, J. On Selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses. Mater. Des. 2020, 193, 108818. [Google Scholar] [CrossRef]
- Yadroitsava, I.; Els, J.; Booysen, G.; Yadroitsev, I. Peculiarities of single track formation from Ti6AL4V alloy at different laser power densities by selective laser melting. S. Afr. J. Ind. Eng. 2015, 26, 86–95. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Y.; Xie, Y.; Yang, S.; Hou, R.; Ge, Y.; Lang, L.; Gong, S.; Li, H. Observation of Vapor Plume Behavior and Process Stability at Single-Track and Multi-Track Levels in Laser Powder Bed Fusion Regime. Metals 2021, 11, 937. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, Y.; Wen, W.; Ge, J.; Liang, J. Effect of Hatch Spacing on Melt Pool and As-built Quality During Selective Laser Melting of Stainless Steel: Modeling and Experimental Approaches. Materials 2019, 12, 50. [Google Scholar] [CrossRef]
- Caiazzo, F.; Alfieri, V.; Casalino, G. On the Relevance of Volumetric Energy Density in the Investigation of Inconel 718 Laser Powder Bed Fusion. Materials 2020, 13, 538. [Google Scholar] [CrossRef]
- Li, Y.; Založnik, M.; Zollinger, J.; Dembinski, L.; Mathieu, M. Effects of the powder, laser parameters and surface conditions on the molten pool formation in the selective laser melting of IN718. J. Mater. Process. Technol. 2021, 289, 116930. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, Y.; Strayer, S.; Zhao, Y.; Aoyagi, K.; Koizumi, Y.; Chiba, A.; Xiong, W.; To, A.C. Elucidating the effect of preheating temperature on melt pool morphology variation in Inconel 718 laser powder bed fusion via simulation and experiment. Addit. Manuf. 2021, 37, 101642. [Google Scholar] [CrossRef]
- Baldi, N.; Giorgetti, A.; Palladino, M.; Arcidiacono, G.; Citti, P. Study on the Effect of Interlayer Cooling Time on the Microstructure of IN718 processed by Laser Powder Bed Fusion. Addit. Manuf. forthcoming.
- Yadroitsev, I.; Krakhmalev, P.; Yadroitsava, I. Hierarchical design principles of selective laser melting for high quality metallic objects. Addit. Manuf. 2015, 7, 45–56. [Google Scholar] [CrossRef]
- Tran, H.C.; Lo, Y.L. Systematic approach for determining optimal processing parameters to produce parts with high density in selective laser melting process. Int. J. Adv. Manuf. Technol. 2019, 105, 4443–4460. [Google Scholar] [CrossRef]
C | Mn | Si | P | S | Cr | Ni | Co | Mo | Nb + Ta | Ti |
0.040 | 0.08 | 0.08 | <0.015 | 0.002 | 18.37 | 55.37 | 0.23 | 3.04 | 5.34 | 0.98 |
Al | B | Ta | Cu | Fe | Ca | Mg | Pb | Bi | Se | Nb |
0.50 | 0.004 | 0.005 | 0.04 | 17.80 | <0.01 | <0.01 | 0.0001 | 0.0001 | <0.001 | 5.33 |
Yield Strength (Mpa) | Tensile Stress (Mpa) | Strain (%) | Elastic Modulus (Gpa) | Thermal Conductivity (W/mK) | Density (kg/m3) |
---|---|---|---|---|---|
1100 | 1310 | 23.3 | 206 | 11.2 | 8470 |
Sample | Scanning Speed (mm/s) | Laser Power (W) | Hatch Distance (µm) |
---|---|---|---|
1 | 760 | 190 | 0.09/0.10/0.11 |
2 | 960 | 190 | 0.09/0.10/0.11 |
3 | 1160 | 190 | 0.09/0.10/0.11 |
4 | 1360 | 190 | 0.09/0.10/0.11 |
5 | 1560 | 190 | 0.09/0.10/0.11 |
6 | 760 | 235 | 0.09/0.10/0.11 |
7 | 960 | 235 | 0.09/0.10/0.11 |
8 | 1160 | 235 | 0.09/0.10/0.11 |
9 | 1360 | 235 | 0.09/0.10/0.11 |
10 | 1560 | 235 | 0.09/0.10/0.11 |
11 | 760 | 280 | 0.09/0.10/0.11 |
12 | 960 | 280 | 0.09/0.10/0.11 |
13 | 1160 | 280 | 0.09/0.10/0.11 |
14 | 1360 | 280 | 0.09/0.10/0.11 |
15 | 1560 | 280 | 0.09/0.10/0.11 |
16 | 760 | 325 | 0.09/0.10/0.11 |
17 | 960 | 325 | 0.09/0.10/0.11 |
18 | 1160 | 325 | 0.09/0.10/0.11 |
19 | 1360 | 325 | 0.09/0.10/0.11 |
20 | 1560 | 325 | 0.09/0.10/0.11 |
21 | 760 | 370 | 0.09/0.10/0.11 |
22 | 960 | 370 | 0.09/0.10/0.11 |
23 | 1160 | 370 | 0.09/0.10/0.11 |
24 | 1360 | 370 | 0.09/0.10/0.11 |
25 | 1560 | 370 | 0.09/0.10/0.11 |
Sample | Average Track Shift | Average Interruption | Stability Level |
---|---|---|---|
1 | 0 | 0 | Stable |
2 | 0.7 | 0.0 | Stable |
3 | 1.0 | 0.3 | Not stable |
4 | 1.0 | 1.0 | Not stable |
5 | 2.3 | 2.3 | Not stable |
6 | 0.0 | 0.0 | Stable |
7 | 0.0 | 0.0 | Stable |
8 | 0.0 | 0.0 | Stable |
9 | 1.0 | 0.0 | Stable |
10 | 2.3 | 0.0 | Meta-stable |
11 | 0.0 | 0.0 | Stable |
12 | 0.0 | 0.0 | Stable |
13 | 0.0 | 0.0 | Stable |
14 | 0.0 | 0.0 | Stable |
15 | 2.1 | 0.0 | Meta-stable |
16 | 0.0 | 0.0 | Stable |
17 | 0.0 | 0.0 | Stable |
18 | 0.0 | 0.0 | Stable |
19 | 0.0 | 0.0 | Stable |
20 | 0.0 | 0.0 | Stable |
21 | 0.0 | 0.0 | Stable |
22 | 0.0 | 0.0 | Stable |
23 | 0.0 | 0.0 | Stable |
24 | 0.0 | 0.0 | Stable |
25 | 0.0 | 0.0 | Stable |
Sample | Scanning Speed (mm/s) | Laser Power (W) | Porosity (%) (HD = 0.09 mm) | Porosity (%) (HD = 0.10 mm) | Porosity (%) (HD = 0.11 mm) | |||
---|---|---|---|---|---|---|---|---|
Avg. | SD | Avg. | SD | Avg. | SD | |||
1 | 760 | 190 | 0.005 | 0.002 | 0.006 | 0.002 | 0.006 | 0.003 |
2 | 960 | 190 | 0.009 | 0.005 | 0.009 | 0.002 | 0.017 | 0.010 |
3 | 1160 | 190 | 0.049 | 0.012 | 0.066 | 0.013 | 0.092 | 0.027 |
4 | 1360 | 190 | 0.066 | 0.015 | 0.088 | 0.014 | 0.333 | 0.147 |
5 | 1560 | 190 | 0.140 | 0.036 | 0.373 | 0.205 | 1.490 | 0.768 |
6 | 760 | 235 | 0.004 | 0.002 | 0.003 | 0.002 | 0.045 | 0.011 |
7 | 960 | 235 | 0.003 | 0.002 | 0.005 | 0.003 | 0.016 | 0.005 |
8 | 1160 | 235 | 0.011 | 0.005 | 0.020 | 0.007 | 0.031 | 0.016 |
9 | 1360 | 235 | 0.029 | 0.010 | 0.047 | 0.014 | 0.213 | 0.026 |
10 | 1560 | 235 | 0.076 | 0.015 | 0.137 | 0.035 | 0.526 | 0.117 |
11 | 760 | 280 | 0.072 | 0.018 | 0.002 | 0.002 | 0.024 | 0.011 |
12 | 960 | 280 | 0.016 | 0.008 | 0.007 | 0.002 | 0.008 | 0.003 |
13 | 1160 | 280 | 0.004 | 0.002 | 0.014 | 0.005 | 0.015 | 0.009 |
14 | 1360 | 280 | 0.008 | 0.003 | 0.012 | 0.003 | 0.058 | 0.015 |
15 | 1560 | 280 | 0.096 | 0.019 | 0.239 | 0.074 | 0.368 | 0.119 |
16 | 760 | 325 | 0.365 | 0.209 | 0.233 | 0.107 | 0.110 | 0.073 |
17 | 960 | 325 | 0.010 | 0.005 | 0.008 | 0.003 | 0.012 | 0.006 |
18 | 1160 | 325 | 0.006 | 0.004 | 0.015 | 0.007 | 0.016 | 0.006 |
19 | 1360 | 325 | 0.011 | 0.004 | 0.012 | 0.005 | 0.038 | 0.010 |
20 | 1560 | 325 | 0.018 | 0.007 | 0.029 | 0.009 | 0.063 | 0.014 |
21 | 760 | 370 | 0.388 | 0.209 | 0.228 | 0.073 | 0.170 | 0.055 |
22 | 960 | 370 | 0.128 | 0.025 | 0.080 | 0.018 | 0.083 | 0.013 |
23 | 1160 | 370 | 0.013 | 0.007 | 0.027 | 0.011 | 0.029 | 0.004 |
24 | 1360 | 370 | 0.013 | 0.005 | 0.030 | 0.010 | 0.046 | 0.007 |
25 | 1560 | 370 | 0.029 | 0.006 | 0.029 | 0.010 | 0.068 | 0.016 |
Sample | Scanning Speed (mm/s) | Laser Power (W) | Depth (µm) | Width (µm) | ||
---|---|---|---|---|---|---|
Avg. | SD | Avg. | SD | |||
1 | 760 | 190 | 69.6 | 5.5 | 152.4 | 5.2 |
2 | 960 | 190 | 41.8 | 7.4 | 123.4 | 4.8 |
3 | 1160 | 190 | 29.4 | 6.3 | 107.2 | 6.5 |
4 | 1360 | 190 | 15.2 | 4.1 | 83.6 | 15.0 |
5 | 1560 | 190 | 10.2 | 9.5 | 49.6 | 46.9 |
6 | 760 | 235 | 122.2 | 5.2 | 187.8 | 15.1 |
7 | 960 | 235 | 78.4 | 9.8 | 135.4 | 9.2 |
8 | 1160 | 235 | 61.6 | 10.9 | 116.4 | 6.1 |
9 | 1360 | 235 | 51.2 | 4.7 | 108.0 | 2.4 |
10 | 1560 | 235 | 35.2 | 6.1 | 100.8 | 6.9 |
11 | 760 | 280 | 145.8 | 10.9 | 200.0 | 4.8 |
12 | 960 | 280 | 112.6 | 5.7 | 171.8 | 4.1 |
13 | 1160 | 280 | 74.8 | 7.9 | 133.0 | 5.6 |
14 | 1360 | 280 | 54.8 | 8.0 | 108.6 | 1.7 |
15 | 1560 | 280 | 43.0 | 5.0 | 111.2 | 8.7 |
16 | 760 | 325 | 199.0 | 17.0 | 196.0 | 15.2 |
17 | 960 | 325 | 135.0 | 10.4 | 182.4 | 9.4 |
18 | 1160 | 325 | 101.2 | 2.9 | 156.5 | 9.0 |
19 | 1360 | 325 | 81.2 | 4.1 | 133.6 | 9.3 |
20 | 1560 | 325 | 69.2 | 3.2 | 126.8 | 7.9 |
21 | 760 | 370 | 214.6 | 9.9 | 207.8 | 15.2 |
22 | 960 | 370 | 154.0 | 6.4 | 200.8 | 8.5 |
23 | 1160 | 370 | 115.0 | 7.2 | 162.8 | 6.4 |
24 | 1360 | 370 | 71.7 | 3.8 | 132.0 | 11.2 |
25 | 1560 | 370 | 75.0 | 6.3 | 130.0 | 9.5 |
Sample | Scanning Speed (mm/s) | Laser Power (W) | Depth/Thickness | Width/Depth |
---|---|---|---|---|
1 | 760 | 190 | 2.3 | 2.3 |
2 | 960 | 190 | 1.4 | 2.9 |
3 | 1160 | 190 | 0.9 | 4.0 |
4 | 1360 | 190 | 0.5 | 5.9 |
5 | 1560 | 190 | 0.3 | 3.7 |
6 | 760 | 235 | 4.1 | 1.5 |
7 | 960 | 235 | 2.6 | 1.8 |
8 | 1160 | 235 | 2.0 | 2.0 |
9 | 1360 | 235 | 1.8 | 2.1 |
10 | 1560 | 235 | 1.1 | 3.1 |
11 | 760 | 280 | 4.9 | 1.4 |
12 | 960 | 280 | 3.8 | 1.5 |
13 | 1160 | 280 | 2.4 | 1.8 |
14 | 1360 | 280 | 1.9 | 1.9 |
15 | 1560 | 280 | 1.4 | 2.1 |
16 | 760 | 325 | 6.6 | 1.0 |
17 | 960 | 325 | 4.6 | 1.4 |
18 | 1160 | 325 | 3.4 | 1.5 |
19 | 1360 | 325 | 2.7 | 1.6 |
20 | 1560 | 325 | 2.3 | 1.8 |
21 | 760 | 370 | 7.1 | 1.0 |
22 | 960 | 370 | 5.1 | 1.3 |
23 | 1160 | 370 | 3.9 | 1.4 |
24 | 1360 | 370 | 1.8 | 1.9 |
25 | 1560 | 370 | 2.5 | 1.8 |
# | SS (mm/s) | P (W) | Overlap Width Average (µm) | Overlap Depth Average (µm) | Width Tracks Average (µm) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | I | II | III | I | II | III | ||||||||||||
Avg. | SD | Avg. | SD | Avg. | SD | Avg. | SD | Avg. | SD | Avg. | SD | Avg. | SD | Avg. | SD | Avg. | SD | |||
1 | 760 | 190 | 80 | 7 | 69 | 13 | 60 | 15 | 101 | 11 | 89 | 8 | 66 | 16 | 127 | 10 | 141 | 22 | 134 | 6 |
2 | 960 | 190 | 45 | 21 | 21 | 19 | 12 | 20 | 51 | 30 | 18 | 18 | 10 | 17 | 111 | 5 | 102 | 9 | 109 | 7 |
3 | 1160 | 190 | 25 | 5 | 10 | 9 | 6 | 10 | 43 | 10 | 11 | 11 | 13 | 22 | 109 | 53 | 97 | 6 | 107 | 8 |
4 | 1360 | 190 | 12 | 11 | 7 | 12 | 0 | 0 | 16 | 16 | 6 | 11 | 0 | 0 | 89 | 15 | 93 | 11 | 98 | 12 |
5 | 1560 | 190 | 15 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 91 | 6 | 88 | 2 | 92 | 3 |
6 | 760 | 235 | 92 | 8 | 86 | 7 | 83 | 7 | 160 | 5 | 149 | 10 | 123 | 14 | 176 | 3 | 177 | 13 | 180 | 15 |
7 | 960 | 235 | 88 | 10 | 74 | 7 | 71 | 8 | 86 | 12 | 92 | 12 | 90 | 5 | 134 | 2 | 135 | 11 | 137 | 5 |
8 | 1160 | 235 | 68 | 14 | 55 | 11 | 36 | 8 | 78 | 3 | 63 | 13 | 55 | 12 | 117 | 7 | 114 | 2 | 116 | 6 |
9 | 1360 | 235 | 32 | 5 | 12 | 13 | 9 | 10 | 33 | 1 | 17 | 10 | 15 | 14 | 95 | 6 | 100 | 1 | 104 | 5 |
10 | 1560 | 235 | 13 | 12 | 13 | 22 | 0 | 0 | 17 | 15 | 8 | 13 | 0 | 0 | 91 | 2 | 92 | 6 | 100 | 6 |
11 | 760 | 280 | 110 | 2 | 99 | 9 | 97 | 9 | 161 | 22 | 155 | 17 | 143 | 35 | 170 | 6 | 170 | 13 | 170 | 10 |
12 | 960 | 280 | 84 | 3 | 76 | 8 | 65 | 12 | 127 | 6 | 120 | 11 | 117 | 24 | 156 | 12 | 150 | 10 | 156 | 11 |
13 | 1160 | 280 | 69 | 7 | 56 | 12 | 54 | 9 | 98 | 12 | 83 | 10 | 73 | 16 | 121 | 11 | 125 | 12 | 127 | 6 |
14 | 1360 | 280 | 52 | 3 | 35 | 6 | 22 | 7 | 89 | 13 | 50 | 6 | 35 | 16 | 115 | 1 | 107 | 4 | 113 | 2 |
15 | 1560 | 280 | 27 | 3 | 15 | 14 | 0 | 0 | 29 | 2 | 20 | 20 | 0 | 0 | 98 | 4 | 99 | 6 | 101 | 6 |
16 | 760 | 325 | 139 | 11 | 132 | 4 | 117 | 20 | 218 | 13 | 203 | 21 | 199 | 44 | 193 | 42 | 197 | 9 | 201 | 30 |
17 | 960 | 325 | 125 | 12 | 109 | 17 | 92 | 9 | 143 | 14 | 134 | 17 | 121 | 12 | 175 | 13 | 174 | 2 | 178 | 3 |
18 | 1160 | 325 | 78 | 2 | 78 | 10 | 69 | 13 | 111 | 6 | 105 | 4 | 100 | 17 | 139 | 9 | 144 | 4 | 140 | 5 |
19 | 1360 | 325 | 78 | 9 | 50 | 5 | 43 | 14 | 104 | 11 | 83 | 12 | 52 | 15 | 130 | 6 | 130 | 12 | 123 | 10 |
20 | 1560 | 325 | 54 | 8 | 29 | 9 | 20 | 17 | 70 | 14 | 31 | 15 | 19 | 16 | 114 | 14 | 107 | 4 | 111 | 10 |
21 | 760 | 370 | 139 | 22 | 140 | 13 | 116 | 5 | 231 | 29 | 212 | 33 | 201 | 42 | 207 | 43 | 209 | 54 | 227 | 40 |
22 | 960 | 370 | 135 | 20 | 132 | 12 | 116 | 17 | 168 | 19 | 155 | 13 | 150 | 26 | 184 | 22 | 186 | 17 | 195 | 15 |
23 | 1160 | 370 | 102 | 17 | 96 | 6 | 82 | 12 | 126 | 17 | 119 | 15 | 116 | 19 | 153 | 7 | 161 | 9 | 165 | 9 |
24 | 1360 | 370 | 86 | 8 | 64 | 9 | 58 | 6 | 90 | 10 | 83 | 7 | 40 | 11 | 135 | 8 | 126 | 6 | 120 | 6 |
25 | 1560 | 370 | 71 | 8 | 46 | 10 | 34 | 16 | 93 | 14 | 68 | 27 | 29 | 7 | 117 | 18 | 118 | 19 | 117 | 5 |
# | Scan Speed (mm/s) | Power (W) | Remelting Depth | Overlap Threshold | ||||
---|---|---|---|---|---|---|---|---|
I | II | III | I | II | III | |||
1 | 760 | 190 | Ok | Ok | Ok | Ok | Ok | Ok |
2 | 960 | 190 | Ok | NR | NR | Ok | Ok | NO |
3 | 1160 | 190 | NR | NR | NR | Ok | NO | NO |
4 | 1360 | 190 | NR | NR | NR | NO | NO | NO |
5 | 1560 | 190 | NR | NR | NR | NO | NO | NO |
6 | 760 | 235 | Ok | Ok | Ok | Ok | Ok | Ok |
7 | 960 | 235 | Ok | Ok | Ok | Ok | Ok | Ok |
8 | 1160 | 235 | Ok | Ok | Ok | Ok | Ok | Ok |
9 | 1360 | 235 | NR | NR | NR | Ok | NO | NO |
10 | 1560 | 235 | NR | NR | NR | NO | NO | NO |
11 | 760 | 280 | Ok | Ok | Ok | Ok | Ok | Ok |
12 | 960 | 280 | Ok | Ok | Ok | Ok | Ok | Ok |
13 | 1160 | 280 | Ok | Ok | Ok | Ok | Ok | Ok |
14 | 1360 | 280 | Ok | Ok | NR | Ok | Ok | NO |
15 | 1560 | 280 | NR | NR | NR | Ok | NO | NO |
16 | 760 | 325 | Ok | Ok | Ok | Ok | Ok | Ok |
17 | 960 | 325 | Ok | Ok | Ok | Ok | Ok | Ok |
18 | 1160 | 325 | Ok | Ok | Ok | Ok | Ok | Ok |
19 | 1360 | 325 | Ok | Ok | Ok | Ok | Ok | Ok |
20 | 1560 | 325 | Ok | NR | NR | Ok | Ok | NO |
21 | 760 | 370 | Ok | Ok | Ok | Ok | Ok | Ok |
22 | 960 | 370 | Ok | Ok | Ok | Ok | Ok | Ok |
23 | 1160 | 370 | Ok | Ok | Ok | Ok | Ok | Ok |
24 | 1360 | 370 | Ok | Ok | NR | Ok | Ok | Ok |
25 | 1560 | 370 | Ok | Ok | NR | Ok | Ok | Ok |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giorgetti, A.; Baldi, N.; Palladino, M.; Ceccanti, F.; Arcidiacono, G.; Citti, P. A Method to Optimize Parameters Development in L-PBF Based on Single and Multitracks Analysis: A Case Study on Inconel 718 Alloy. Metals 2023, 13, 306. https://doi.org/10.3390/met13020306
Giorgetti A, Baldi N, Palladino M, Ceccanti F, Arcidiacono G, Citti P. A Method to Optimize Parameters Development in L-PBF Based on Single and Multitracks Analysis: A Case Study on Inconel 718 Alloy. Metals. 2023; 13(2):306. https://doi.org/10.3390/met13020306
Chicago/Turabian StyleGiorgetti, Alessandro, Niccolò Baldi, Marco Palladino, Filippo Ceccanti, Gabriele Arcidiacono, and Paolo Citti. 2023. "A Method to Optimize Parameters Development in L-PBF Based on Single and Multitracks Analysis: A Case Study on Inconel 718 Alloy" Metals 13, no. 2: 306. https://doi.org/10.3390/met13020306
APA StyleGiorgetti, A., Baldi, N., Palladino, M., Ceccanti, F., Arcidiacono, G., & Citti, P. (2023). A Method to Optimize Parameters Development in L-PBF Based on Single and Multitracks Analysis: A Case Study on Inconel 718 Alloy. Metals, 13(2), 306. https://doi.org/10.3390/met13020306