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Abstract: Unsaturated titanium hydride (TiHX) powder has high formability and is a promising raw
material for titanium-based powder metallurgy. In this work, TiH2, TiHX, and HDH Ti powders were
characterized, the cold compaction behavior of the powders was investigated, and the densification
mechanism was analyzed. The TiHX was a three-phase mixture containing an α plastic phase and
δ and ε brittle phases through Rietveld refinement. The TiHX compacts had compressive strength
of over 420 MPa (higher than TiH2 and similar to HDHTi) and relative density of over 80% (higher
than TiH2 and HDH Ti) at 600 MPa. The Gerdemann–Jablonski and Cooper–Eaton equation were
used to simulate the powder compaction curves and describe powder compaction behavior. The
plastic deformation of TiHX powder is greater than TiH2, and the particle rearrangement is greater
than HDH Ti during cold compaction. Such compaction behavior of TiHX causes an excellent
green-strength–relative-density combination.

Keywords: titanium powder metallurgy; titanium-based powders; cold compaction; Gerdemann–
Jablonski equation; Cooper–Eaton equation

1. Introduction

Titanium and titanium alloys, being prestigious among lightweight materials owing to
their unmatched mechanical properties, are crucial structural components in the aerospace,
automobiles, and navigation industries [1,2]. The major challenge of these materials resides
in the expensiveness that prohibits overall commercialization, which could be resolved by
the deployment of the powder metallurgy (PM) technique [1,2]. Based on compaction and
sintering, the process achieves better cost-effectiveness in comparison with cast/wrought
titanium alloys [2,3].

Throughout the PM process, cold compaction was developed into a reliable and
efficient technique aiming at cost and energy optimization [2,3]. Ensuring fine compaction
of powder is the initial step of the PM process; this directly imposes an influence on green
strength and, eventually, the mechanical properties of a sample part after sintering.

The compaction behavior of metal, ceramic, and pharmaceutical powders has been
studied continuously, and several different descriptions of stages of densification mecha-
nisms have been proposed to explain the phenomena observed during powder compaction.
Seelig and Wulff describe the mechanism in three stages, as particle packing, elastic and
plastic deformation, and cold working and fragmentation [4]. Since Walker first related
green density to compaction pressure to describe the compaction process [5], many com-
paction equations have been derived. The compression equations applied to titanium and
titanium-base powder are as follows: Heckel [6], Kawakita and Ludde [7], Panelli-Filho [8],
Ge [9], Shapiro [10], Gerdemann–Jablonski [4] and Cooper–Eaton [11]. Among them,
the Gerdemann–Jablonski equation, as well as Cooper–Eaton equation, which showed a
good fit to experimental data in the pressure range, have been proposed to describe the
compaction mechanisms.

Researchers have shown continued interest in the cold compaction behavior of ti-
tanium and titanium-based powder due to the development of low-cost titanium PM.
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Hydride–dehydride (HDH) Ti powder, similar to other ductile metal powders, exhibits the
characteristic of plastic deformation during the pressing process [12–16]. In contrast, the
density of titanium alloy prepared with HDH Ti powder has only reached about 95% [17].
In addition to the studies developed for HDH Ti powder, selecting TiH2 powder as feed-
stock instead of HDH Ti powder, titanium alloys with low oxygen content and high density
were obtainable [17–20]. Unlike pure titanium powder, the compaction behavior of TiH2
powder appears closer to a ceramic material due to its low strength and brittleness; during
compaction, particle rearrangement, fracture, and fragmentation are involved in the cold
pressing process rather than plastic deformation [21–24]. Although TiH2 PM has many
advantages, TiH2 applied as raw material still exhibits certain defects, containing TiH2
showing unappealing strength, and showing vulnerability of green compact on edge drop
and crack; these are especially significant during the preparation of parts having large-scale
and high structural complexity [25]. A solution to these issues was discussed by Wei et al.
by application of unsaturated titanium hydride (TiHX, 0 < X < 2) powder raw material
in replacement of TiH2 [25]. Green compact made from TiHX powder had higher green
strength compared to HDH Ti and TiH2 powders.

In this study, the powder characteristics and compaction behavior of HDH Ti, TiH2,
and TiHX powders were investigated. From the perspective of mathematical fitting and
physical description, the validity of two nonlinear compaction equations used in the field of
powder metallurgy for the compaction behavior of the above three powders was evaluated,
and a more reliable explanation of the compaction mechanism was provided.

2. Materials and Methods

In this study, TiH2, TiHX, and HDH Ti powders were used. The TiH2 powder was
obtained by crushing hydrogenated titanium sponge and then sieving into 325–150 mesh.
The hydrogenated sponge titanium was obtained by activating titanium sponge(Panzhihua
Steel Enterprise Xinyu Chemical Co., Ltd., Panzhihua, China) under vacuum (within 10−2

Pa) at 420 ◦C for 1 h in a tube reactor (Sichuan University, Chengdu, China), then completely
absorbing hydrogen in an ultrapure hydrogen (99.999%) atmosphere, and, finally, cooling
to room temperature. The TiH2 powder then underwent dehydrogenation in a vacuum
furnace (Shanghai Chenhua Electric Furnace Co., Ltd., Shanghai, China) at a pressure
of 10−3 Pa to produce TiHX and HDH Ti powders. The process parameters of the heat
treatments for TiH2 and TiHX powders are given in Table 1.

Table 1. Parameters of heat treatments of individual samples.

Sample No. Dehydrogenation
Temperature (◦C) Dehydrogenation Time

TiH2 0 0 min
Dehy-1 640 1 min
Dehy-2 640 5 min
Dehy-3 640 15 min
HDH Ti 640 4 h

Note: Dehy-1, Dehy-2, and Dehy-3 are the designation of TiHX.

The particle size distributions (PSD) of the powder fractions were measured using a
JL-1155 laser particle-size instrument (Chengdu Jingxin Powder Test Equipment Co., Ltd.,
Chengdu, China). The morphology of all the powders and green compacts was investigated
with scanning electron microscopy (SEM) using Aztec X-Max (Oxford Instruments, Oxford,
UK). The oxygen content of the powders was measured by the LECO ONH analyzer (LECO,
San Jose, CA, USA). The crystal structures of the powders were identified with X-ray
diffraction (EMPYREAN, PANalytical B.V., Almelo, Holland) using Cu-Ka radiation in air
at room temperature under scanning profiles of 20◦ to 90◦ in 2θ range, 0.013◦ step angle,
and 10 s duration per step angle (10 s per channel acquisition time). The XRD patterns were
compared with known phases and analyzed using the JCPC standard diffraction database.
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Rietveld refinement was used to analyze all XRD patterns for quantitative analysis of phase
composition and determination of crystal structure and lattice parameters [26].

The compressibility test was performed to study the cold compaction behavior of
powders following a procedure similar to that described in Gerdemann’s work [4]. A
1.2 g quantity of each powder was uniaxially pressed to 650 MPa in a 10.0 mm cylindrical
steel die using an Instron 5569 hydraulic universal testing machine (Instron, Norwood,
MA, USA) with a punching speed of 1 mm/min and pressure changes recorded every
0.1 s. Before filling the cavity with powder, mold walls and plunger were wiped with
a small amount of a 1:1 suspension of zinc stearate and absolute ethanol. The powder
compact was then de-molded, and its mass, height, and diameter were measured. Finally,
the green density for each applied load was obtained. Origin 9.0 software was used to fit
experimental data with compaction equations and analyze the parameters.

Green strength was determined by a compressive strength test using an Instron
5569 hydraulic universal testing machine at a loading speed of 0.3 mm/min. The sample
preparation method for the compression test was as follows: a 3 g quantity of each powder
was uniaxially compacted with a four-column hydraulic press (34 SM-810 H-T, Chengdu
Lux Hydraulic Manufacturing Co., Ltd., Chengdu, China) at a pressure of 600 MPa to
achieve a cold compact with a height–diameter ratio of 1:1.

3. Results and Discussion
3.1. Powder Characterization

SEM was applied to observe the morphology of TiH2, TiHX, and HDH Ti powders; the
shape of particles was found to be angular. Vacuum dehydrogenation has a negligible effect
on the morphology of TiH2 powder under low magnification (Figure 1a,b,d,e,g,h,j,k,m,n).
Figure 1c displays micrographs of the cleaved surfaces at a higher magnification, showing
the different structural planes of the TiH2 powder. From observation of TiHX powder
presented in Figure 1f,i,l and HDH Ti powder shown in Figure 1o, the steps on the surface
of the samples were found to be smoothened, indicating the critical effect brought to
the morphology by dehydrogenation treatment. Similarity in surface morphology found
between TiHX and HDH Ti powders further validated the significance of dehydrogenation
in this aspect.

The PSDs of all the powders are shown in Figure 2 and Table 2. The D10, D50, and D90
of all the powders show a tendency to decline during the ongoing hydrogen desorption
process of TiHX. Nonetheless, PSDs of all the powders remained similar, which suggested
the effect of dehydrogenation on particle size was insignificant and was not considered
within the scope of this work.

Table 2 lists the oxygen content of each powder. It has been verified that the dehydro-
genation process of TiH2 is accompanied with deoxidation [27], and the relatively lower
oxygen content of HDH Ti and Dehy-1 powders compared with TiH2 was considered to
be a reflection of goodness for the process. However, the oxygen content of Dehy-2 and
Dehy-3 was higher than that of TiH2; further discussion on these phenomena is given in
the XRD analysis below.

Table 2. Particle size distribution and oxygen content of TiH2, Dehy-1, Dehy-2, Dehy-3 and HDH
Ti powders.

Sample. No PSD (µm) D10 (µm) D50 (µm) D90 (µm) Oxygen (wt%)

TiH2 0–115 58.29 76.85 98.94 0.17
Dehy-1 0–115 37.27 75.27 98.95 0.14
Dehy-2 0–115 37.15 75.05 98.19 0.20
Dehy-3 0–115 36.76 74.68 98.14 0.23
HDH Ti 0–115 37.19 72.73 96.78 0.16
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Figure 2. Particle-size distribution of the TiH2, Dehy-1, Dehy-2, Dehy-3 and HDH Ti powders.

Figure 3 shows the XRD patterns of all the powders, and the corresponding crystallo-
graphic data are summarized in Table 3. From comparison with the XRD database, the TiH2
powder was found to be a single phase. Using powder diffraction files, its composition was
identified as δ phase of titanium hydride in face-centered cubic crystal structure with lattice
parameter found to be a = 4.4500 Å. The HDH Ti powder after dehydrogenation also existed
as a single phase, which was the α phase of Titanium (a = 2.9493 Å, c = 4.6822 Å) with
hexagonal closest-packed crystal structure. All the TiHX powders with different hydrogen
concentrations showed the co-existence of the α phase, the δ phase, and the ε phase of
titanium hydride. The ε phase has a face-centered tetragonal structure with c/a < 1. After
dehydrogenation for 1 and 5 min, it was verified to be the dominant hydride phase, taking
up 94% and 85% of the total hydride phase, respectively. In contrast, as dehydrogenation
time prolonged to 15 min, the δ phase became the major phase, with the amount of phase
reaching 54.92%. With the increase in dehydrogenation time, the phase content of the α
phase increased gradually.
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Table 3. Crystallographic data of the TiH2 , TiHX , and HDH Ti powders based on Rietveld
refinement analysis.

Sample. No Theoretical
Density (g/cm3)

Phase
Composition Space Group Portion (wt%) Lattice Parameters (Å) V (Å3)

TiH2 3.75 δ F m-3 m 100.00 a 4.4500 88.1211

Dehy-1 3.79

δ F m-3 m 3.00 a 4.4212 86.4189

ε I 4/m m m 95.61
a 3.1663

43.8074c 4.3697

α P 63/m m c 1.39
a 2.9474

40.4241c 4.6533

Dehy-2 3.85

δ F m-3 m 9.55 a 4.4163 86.1335

ε I 4/m m m 84.30
a 3.1638

43.6661c 4.3623

α P 63/m m c 6.15
a 2.9514

40.6855c 4.6708

Dehy-3 3.89

δ F m-3 m 54.92 a 4.4109 85.8199

ε I 4/m m m 31.31
a 3.1614

43.5763c 4.3599

α P 63/m m c 13.77
a 2.9537

40.7924c 4.6757
HDH Ti 4.51 α P 63/m m c 100.00 a 2.9493 40.7270

The lattice constant and unit cell volume of the δ phase in all the TiHX powders was
smaller than that in TiH2, since hydrogen atoms were released at elevated temperatures.
For the case of the ε phase, known to be unstable in this process, its lattice and unit cell
volume declined as the dehydrogenation process continued. Even though the unit volume
of α decreased during desorption of hydrogen atoms, the influence of oxygen atoms on it
is still dominant, because the volume of each hydrogen atom is much smaller than oxygen
atoms. Considering the high affinity of oxygen to the α phase, the unit cell volume of
the α phase could be increased by promoting α phase oxygen solid solution. Hence, the
amount of oxygen solution was positively correlated with the α content, which explains
why the oxygen content and the unit cell volume of α expanded as dehydrogenation kept
proceeding. Theoretically, the HDH Ti powder after a complete dehydrogenation process
would reduce the oxygen content of TiH2 powder. However, experimental results suggested
otherwise: higher oxygen content in Dehy-2, Dehy-3, and HDH Ti than Dehy-1 was
detected; these deviations from theory might be caused by powder sample contamination.
The above analysis shows that a certain amount of δ phase and ε phase is beneficial to resist
oxygen pollution.

The theoretical density of TiH2 is 3.75 g/cm3, and the theoretical density of HDH Ti
is 4.51 g/cm3. For TiHX, because it is composed of mixed phases, its theoretical density
(ρtheoretical) is calculated with Equation (1), according to the mass fraction and theoretical
density of each phase:

ρtheoretical = (wδ/ρδ + wε/ρε + wα/ρα)/100 (1)

The wx and ρx (x replaced with α, δ, or ε) are the mass fraction and theoretical density
of corresponding phases, which vary as the lattice of each phase changes with the removal
of hydrogen atoms. The theoretical density of TiHX, which was used in the calculation of
relative density, increases with dehydrogenation time.

3.2. Green Compact Characterization

The morphologies of the upper surface of the green compacts of TiH2, TiHX, and
HDH Ti powders after cold pressing under 600 MPa are shown in Figure 4. The bulk of
green compacts were found to be filled with pieces of samples that were shattered during
pressing, and there are no significant visual indicators of plastic deformation behavior in
the TiH2 compact. In fact, it was found that these prevailing cracks also developed into
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the inner sections of these particles. Generally, these phenomena suggest that the plastic
deformation contribution is quite minor in the compaction process of TiH2 powder, and
the process is mainly dependent on the rearrangement of particles and their fragments.

Metals 2023, 13, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 4. SEM images of the top surface of the TiH2 (a,b), Dehy-1 (c,d), Dehy-2 (e,f), Dehy-3 (g,h) 
and HDH Ti (i,j) powders fraction-compacted at 600 MPa, showing regions of fracture, particle re-
arrangement and plastic deformation. 

The morphologies of HDH Ti compact were found to contain fewer amounts of 
small-particle filling and inner-crack development than TiH2 compact (Figure 4c,d). From 
its good mechanical meshing that determines particle bond strength, the fine plastic de-
formation of HDH Ti compact is confirmed. It conforms with the prediction that this ma-
terial has a small probability of breaking at 600 MPa, and the compact would mainly de-
velop by particle rearrangement as well as plastic deformation. 

Figure 4e–j show the TiHX compact morphologies; although crushing and cracking 
of particles produced considerable numbers of small particles, it is still milder compared 
to TiH2 compact. Plastic deformation characteristics were found between particles, and 
finer plastic meshing between the particles was verified by the observations. The above 
analyses on morphologies suggest that the major densification mechanisms during TiHx 
powder compaction are fragmentation and plastic rearrangement of particles. 
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and HDH Ti (i,j) powders fraction-compacted at 600 MPa, showing regions of fracture, particle
rearrangement and plastic deformation.

The morphologies of HDH Ti compact were found to contain fewer amounts of small-
particle filling and inner-crack development than TiH2 compact (Figure 4c,d). From its good
mechanical meshing that determines particle bond strength, the fine plastic deformation
of HDH Ti compact is confirmed. It conforms with the prediction that this material has
a small probability of breaking at 600 MPa, and the compact would mainly develop by
particle rearrangement as well as plastic deformation.
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Figure 4e–j show the TiHX compact morphologies; although crushing and cracking of
particles produced considerable numbers of small particles, it is still milder compared to
TiH2 compact. Plastic deformation characteristics were found between particles, and finer
plastic meshing between the particles was verified by the observations. The above analyses
on morphologies suggest that the major densification mechanisms during TiHx powder
compaction are fragmentation and plastic rearrangement of particles.

The relative density vs compaction pressure for TiH2, TiHX, and HDH Ti powders is
shown in Figure 5. Relative density of HDH Ti powder became the smallest, and relative
densities of TiHX powders were higher than the TiH2 powder lots at 600 MPa. It can be
seen from Figure 4d,e,h that TiHX green compacts combine the advantages of filling in TiH2
and meshing in HDH Ti. The excellent relative density obtained in the successive stage
of pressing is achieved from fine-particle meshing and the mechanism of small particles
filling into large ones. From the analysis of TiH2, it was shown to maintain higher relative
density than both TiHX and HDH Ti before 100 MPa; after the pressure, its relative density
became smaller than TiHX and HDH Ti. Hence, TiH2 is brittle at low pressure and will
produce small particles that promote rapid densification of itself.
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Apart from density, green strength determines the ability of green compact to retain
its size and shape before the sintering process; this variable of the samples is identified
by compressive strength, as shown in Figure 6. The compressive strength of TiHX and
HDH Ti green compacts was significantly better than that of TiH2. It is commonly known
that the brittleness of TiH2 leads to poor powder formability. HDH Ti is a plastic material,
which has higher formability than TiH2, and the degree of particle plastic deformation is
higher during powder compaction. The formability of the TiHX compacts is more similar
to or even higher than that of HDH Ti, which shows the advantage of the combination
of the brittle phase (α) and the plastic phase (δ and ε). TiHX powder, which has an outer
layer of α phase, is really different from the fragile TiH2 powder. The α phase provides
TiHX green compacts with higher particle strength and higher meshing strength between
particles (plastic meshing between particles) than TiH2. During the pressing process, the
outer layer of TiHX particles first resists the damage of external forces, and the outer layer
maintains the high strength of the α phase until the outer layer breaks, so the TiHX powder
with only 1.39 wt % α phase also shows much higher compressive strength than TiH2. The
compressive strength of Dehy-2 was also slightly higher than HDH Ti, which is due to
the possible buffering effect of δ and ε phases breaking during the pressing. However, the
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possibility of particle breakage decreases with the extension of dehydrogenation time, with
the result that a further increase in α phase does not significantly improve compressive
strength. Furthermore, the contribution of plastic deformation to improving compressive
strength does not increase significantly with the increase in α phase, which will be seen in
the compaction equations analysis.
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3.3. Compressive Curve Fitting and Densification Mechanism Analysis

Numerous applications of various compaction equations showed that the Gerdemann–
Jablonski equation and Cooper–Eaton equation achieve goodness of fit to the density–
pressure relationship for titanium and titanium-based powders [15,16,28–30]. It is worth
noting that parameters of the above two compression equations provide the significance of
the contribution of different densification mechanisms.

3.3.1. Cooper–Eaton Equation

Cooper and Eaton described the pressing process as two processes in which powder
fills pores. The first is to fill pores of the same size as the original particle, which mainly
occurs due to the particles sliding against each other. This causes elastic deformation of
particles and slight cracking, or plastic deformation sometimes occurs. The second process
describes the filling of pores that are smaller than the original particles and could only
be accomplished through plastic deformation or fragmentation. These two processes are
represented by Equation (2),

V∗ =
V0 − V

V0 − V∞
= a1exp

(
− k1

P

)
+ a2exp

(
− k2

P

)
(2)

where V* is the fractional volume of pores filling at applied pressure P, V0 is the initial
volume, V is the volume at applied pressure P, and V∞ is the volume when all pores
are filled. The dimensionless coefficients a1 and a2 represent the theoretical fraction of
compaction that each particular process will achieve at infinite pressure. The coefficients k1
and k2 with units of pressure indicate the magnitude of the pressure where the associated
process has the greatest probability.
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Figure 7 shows the pore-volume reduction plotted vs the applied pressure, fitted
to the Cooper–Eaton equation for all the powders under investigation. The results of
fitting parameters are listed in Table 4. The Cooper–Eaton equation showed pretty good
fit to experimental data, with an R-squared value exceeding 99.68%. According to the
fitting data, the contribution of particle rearrangement on densification of TiH2 powder
is dominant, while plastic deformation in TiHX and HDH Ti powders is considered the
dominant mechanism of densification. At the same time, with the increase in powder
dehydrogenation time, the contribution of plastic deformation to densification gradually
increases. The densification at high pressure tends to be underestimated by Equation (2);
the interpretation of compaction based on the parameters of the Cooper–Eaton equation
seems quite similar to a realistic process, especially the cold compaction of the TiH2 powder.
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Table 4. Fit Parameters to Equation (2) for the Powder Materials Under Investigation.

Sample No.
Particle

Rearrangement
Fragmentation/ Plastic

Deformation
Correlation
Coefficient Particle

Rearrangement/%
Fragmentation/Plastic

Deformation/%a1 k1 a2 k2 R2

TiH2 0.6419 3.4303 0.3583 185.7217 0.9968 64.18 35.82
Dehy-1 0.4434 13.0164 0.6412 172.7629 0.9986 40.88 59.12
Dehy-2 0.4315 12.8420 0.6327 174.8165 0.9982 40.55 59.45
Dehy-3 0.4272 14.2781 0.6349 186.2967 0.9986 40.22 59.78
HDH Ti 0.2971 11.4522 0.7442 204.9790 0.9968 28.53 71.47

Note: Particle Rearrangement % = a1
a1+a2 × 100 % ; Fragmentation/ Plastic De f ormation % = a2

a1+a2 × 100 %

Figure 8 shows the plot of each term of Equation (2) within the whole range of applied
pressure. Particle rearrangement also starts from the beginning of compaction, becoming
strongly active up to an asymptote value and maintaining itself to densification. Another
densification mechanism (fragmentation and/or plastic deformation) initiates at 50 MPa,
increasing continuously up to completion.
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densification according to Equation (2). The five powders are distinguished as follows: TiH2, Dehy-1,
Dehy-2, Dehy-3 and HDH Ti.

3.3.2. The Gerdemann–Jablonski Equation

Gerdemann and Jablonski incorporated three densification mechanisms of compaction
into one simple equation. The equation is expressed as a constant (an initial density) and
two independent first-order rate equations (particle rearrangement including sliding and
fracture of the particles, and work hardening, including elastic and plastic deformation of
particles). The three mechanisms are described in Equation (3),

D = D0 + A(1 − exp(−aP)) + B(1 − exp(−bP)) (3)

where D0 represents an initial density, parameters A and B reflect the relative contribution
of particle rearrangement and work hardening mechanisms, respectively, to densification;
following Gerdemann and Jablonski, parameters a and b reflect the amount of pressure
required to complete each mechanism. Ronald Machaka [16] evaluated the equation and
pointed out that the equation is composed of two dynamic compaction mechanisms, namely,
particle rearrangement and work hardening, and the initial density represents the initial
condition rather than a mechanism for the entire compaction process.

Figure 9 is a plot of the true density vs applied pressure for all powders along with
the fit to Equation (3). The fit parameters in Equation (3) for all the powders are tabulated
in Table 5. An excellent fit (R2 > 99.95%) of Equation (3) was achieved to the data over
the entire pressure range of the experiment. Table 5 shows the relative contribution of
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each densification mechanism to the overall final density. The HDH Ti powder has the
relatively lowest contribution from the rearrangement term, and the TiHX powder has a
more significant contribution from the rearrangement mechanism. The contribution of the
particle rearrangement term of TiH2 powder to the overall densification is higher than that
of TiHX and HDH Ti powders.
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Table 5. Fit Parameters to Equation (3) for the Powder Materials Under Investigation.

Sample. No
Initial

Density
Particle

Rearrangement Work Hardening Correlation
Coefficient

Particle
Rearrangement/%

Work
Hardening/%

D0 A a B b R2

TiH2 1.510 0.3253 0.0605 1.8581 0.0020 0.9995 14.90 85.10
Dehy-1 1.498 0.2224 0.0431 2.3805 0.2224 0.9996 8.55 91.45
Dehy-2 1.496 0.2125 0.0480 2.3070 0.0021 0.9995 8.44 91.56
Dehy-3 1.471 0.1990 0.0426 2.3770 0.0020 0.9997 7.72 92.28
HDH Ti 1.770 0.1388 0.0658 2.9945 0.0014 0.9998 4.43 95.57

Note: Particle Rearrangement % = A
A+B × 100 %; Work Hardening % = B

A+B × 100 %

The two exponential terms of Equation (3), and how they vary with pressure, are
also plotted individually within Figure 10. The particle rearrangement term rises rapidly
and reaches an asymptote value at low applied pressure, and the asymptote value and
its corresponding applied pressure value for each powder decline with the increase in
powder dehydrogenation time. With the increase in pressure, the work hardening term
gradually increases but does not reach an asymptotic value, and gradually dominates in
the later stage.

In the Gerdemann–Jablonski equation, all the powders have a more significant con-
tribution from the plastic deformation mechanism, which is very consistent with the
compaction behavior of HDH Ti. Obviously, the compaction behavior of TiH2 powder does
not meet this point, and the Cooper–Eaton equation is more convincing; Sergio Luis Gra-
ciano Petroni [30] came to a similar conclusion. These two nonlinear equations accurately
describe the changes in the compaction mechanism of different titanium-based powders. It
is clearly shown in Tables 4 and 5 that the more the content of α plastic phase, the greater
the contribution of plastic deformation to densification, and the more the content of brittle
phases (δ and ε), the more obvious the particle rearrangement.
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Dehy-1, Dehy-2, Dehy-3 and HDH Ti.

3.3.3. Analysis of the Densification Mechanism of Powder

TiH2 is a typical brittle ceramic-like material, with particles undergoing only small and
inadequate plastic deformation, followed by cracking at higher pressures. HDH Ti is typical
of a ductile material, in which densification is mainly governed by plastic deformation.
The contributions of particle rearrangement to densification are greater for all powders
at lower pressures. Fragmentation and plastic deformation show greater contribution at
intermediate and high pressures.

The presence of the α phase in TiHX powder plays an important role in cold com-
paction, which provides the powder with more ability to go on to plastic deformation. The
existence of titanium hydride phases (ε and δ phase) can make the powder more prone to
fragmentation. Corresponding to the above equations, its particle rearrangement effect is
still higher than that of HDH Ti. The relative density of the TiHX green compact is higher
than that of HDH Ti and TiH2, which is due to its ability to cause particle breakage under
low pressure and its plastic deformation ability to promote the densification process when
particle breakage cannot contribute to densification under high pressure.
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4. Conclusions

The powder characteristics and cold compaction behavior of TiHX compared with
TiH2 and HDH Ti were investigated. The findings could be abridged as follows:

TiHX was a three-phase mixture including α, δ, and ε phases. The effect of dehy-
drogenation on smoothing the cleavage surface of TiH2 powder was seen in TiHX and
HDH Ti. The morphologies of TiHX compacts were characterized by the gap between
small particles filling large particles and the plastic meshing between particles. The TiHX
compacts could obtain compressive strength of more than 420 MPa (higher than TiH2 and
similar to HDHTI) and relative density of more than 80% (higher than TiH2 and HDH Ti)
at 600 MPa.

Gerdemann–Jablonski and Cooper–Eaton equations were found to be suitable to fitting
powder compressibility curves. The above two equations accurately describe the change in
cold compaction behavior caused by the change in phase composition of TiHX; that is, the
more α phase content, the greater the contribution of plastic deformation to densification,
while the change in rearrangement is the opposite.

The TiHX compacts possess both the filling advantage of TiH2—that is, the brittle
phases (δ and ε) produce particle breakage and make small particles fill the gap between
large particles—and the meshing advantage of HDH Ti—that is, the existence of α plastic
phase made strong bonding strength between particles. This is why an excellent green-
strength—relative-density combination is obtained in TiHX compact.
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